1
|
Milanesi L, Gomila RM, Frontera A, Tomas S. Binding of a Co(III) Metalloporphyrin to Amines in Water: Influence of the p Ka and Aromaticity of the Ligand, and pH-Modulated Allosteric Effect. Inorg Chem 2025; 64:85-96. [PMID: 39707973 PMCID: PMC11733933 DOI: 10.1021/acs.inorgchem.4c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Metalloporphyrins have been widely utilized as building blocks for molecular self-assembly in organic solvents, but their application in water is less common due to competition from water molecules for the metal center. However, Co(III) metalloporphyrins are notable for their strong binding to two aromatic amine ligands in aqueous buffers. In this study, we present a comprehensive investigation of the binding behavior of Co(III) tetraphenyl sulfonic acid porphyrin with selected aromatic and aliphatic amines in aqueous solution. Our findings reveal that the ligand affinity is influenced by the pKa values of both the ligand and the porphyrin, as well as the hybridization state of the nitrogen atom, with binding to sp3-hybridized nitrogen being significantly weaker than to sp2-hybridized nitrogen. DFT calculations further suggest that the variations in binding affinities are due to differences in the electrostatic potential at the nitrogen atoms, with aromatic ligands generally exhibiting stronger Co-N coordination due to greater electrostatic attraction. Moreover, our study and the binding model we developed demonstrate that changes in pH affect the affinity for each ligand to varying degrees, sometimes resulting in an allosteric cooperative effect. This effect is linked to electronic changes introduced by the binding of the first ligand. Our model provides a predictive tool for understanding the assembly behavior of these porphyrins in aqueous buffers, with potential applications in developing more efficient catalysts and in the creation of smart materials for fields ranging from catalysis to nanomedicine and optoelectronics.
Collapse
Affiliation(s)
- Lilia Milanesi
- Departament de Química, Universitat de les Illes Balears, Ctra Valldemossa, Km 7.5., 07122 Palma de Mallorca, Spain
| | - Rosa M. Gomila
- Departament de Química, Universitat de les Illes Balears, Ctra Valldemossa, Km 7.5., 07122 Palma de Mallorca, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Ctra Valldemossa, Km 7.5., 07122 Palma de Mallorca, Spain
| | - Salvador Tomas
- Departament de Química, Universitat de les Illes Balears, Ctra Valldemossa, Km 7.5., 07122 Palma de Mallorca, Spain
| |
Collapse
|
2
|
Ricardo‐Noordberg JF, Kamal S, Majewski MB. Molecular Copper(I)-Sensitized Photoanodes for Alcohol Oxidation under Ambient Conditions. CHEMSUSCHEM 2024; 17:e202400611. [PMID: 38932662 PMCID: PMC11660751 DOI: 10.1002/cssc.202400611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Dye-sensitized photoelectrochemical cells can enable the production of molecules currently accessible through energetically demanding syntheses. Copper(I)-based dyes represent electronically tunable charge transfer and separation systems. Herein, we report a Cu(I)-bisdiimine donor-chromophore-acceptor dye with an absorbance in the visible part of the solar spectrum composed of a phenothiazine electron donor, and dipyrido[3,2-a:2',3'-c]phenazine electron acceptor. This complex is incorporated onto a zinc oxide nanowire semiconductor surface effectively forming a photoanode that is characterized spectroscopically and electrochemically. We investigate the photo-oxidation of hydroquinone, and the photosensitization of 2,2,6,6-tetramethylpiperidine-1-oxyl and N-hydroxyphthalimide for the oxidation of furfuryl alcohol to furfuraldehyde, resulting in near quantitative conversions, with poor selectivity to the alcohol.
Collapse
Affiliation(s)
- Joseph F. Ricardo‐Noordberg
- Department of Chemistry and Biochemistry and Centre for NanoScience ResearchConcordia UniversityMontrealQuebecH4B 1R6Canada
| | - Saeid Kamal
- Department of Chemistry and Laboratory for Advanced Spectroscopy and Imaging Research (LASIR)The University of British ColumbiaVancouverBritish ColumbiaV6T 1Z1Canada
| | - Marek B. Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience ResearchConcordia UniversityMontrealQuebecH4B 1R6Canada
| |
Collapse
|
3
|
Yuan H, Ming M, Yang S, Guo K, Chen B, Jiang L, Han Z. Molecular Copper-Anthraquinone Photocatalysts for Robust Hydrogen Production. J Am Chem Soc 2024; 146:31901-31910. [PMID: 39508387 DOI: 10.1021/jacs.4c11223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The development of robust and inexpensive photocatalysts for H2 production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (R4N)CuL2 (R = ethyl, L = alizarin dianion (CuAA); R = n-butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H2 production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts. Under irradiation of blue light, complex CuAA produces H2 in a mixture of H2O/DMF with undiminished activity over 42 days, giving a turnover number exceeding 6800. Electrochemical and UV-vis studies are consistent with an EECC mechanism (E: electron transfer and C: protonation) in the catalytic cycle. The initial photochemical steps involve conversion of both anthraquinone ligands to hydroquinones. Further light-driven reductions of the hydroquinones followed by two protonation steps results in formation of H2. Dependence of the catalytic rate on the concentration of H2O suggests that either the generation of a CuII-H intermediate by protonation or heterocoupling between CuII-H and H+ to produce H2 is the turnover-limiting step in catalysis.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Bixian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
4
|
Yin CW, Zhuo LT, Chen JY, Lin YH, Lin YT, Chen HY, Tsai MK, Chen YJ. Intrinsic 77 K Phosphorescence Characteristics and Computational Modeling of Ru(II)-(Bidentate Cyclometalated-Aromatic Ligand) Chromophores: Their Relatively Low Nonradiative Rate Constants Originating from Low Spin-Orbit Coupling Driven Vibronic Coupling Amplitudes between Emitting and Ground States. Inorg Chem 2024; 63:21981-21993. [PMID: 39509593 DOI: 10.1021/acs.inorgchem.4c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We investigated the photoinduced relaxation of Kasha-type emitting ruthenium-(bidentate cyclometalated aromatic ligand), Ru-CM, chromophores of [Ru(pzpy)2(CM)]+ ions (CM = 1-phenylisoquinoline, 2,3-diphenylpyrazine, and 1,4-diazatriphenylene and pzpy = 2-pyrazol-1-yl-pyridine). This is the first report of the phosphorescence behavior of pure Ru-(bidentate CM) chromophores. The 77 K photoinduced relaxation characteristics of phosphorescence chromophores showed emission quantum yields higher than those of reference Ru-bpy (bpy = 2,2'-bipyridine) chromophores in the emission region of 670-900 nm. This phenomenon of the Ru-CM chromophores could be attributed to their unusually low magnitudes for 77 K nonradiative rate constants (kNRD), although their radiative rate-constants (kRAD) are not remarkable. In order to examine the 77 K photoinduced behavioral relaxation difference between Ru-CM and Ru-bpy chromophores, we used computational simulation, applying the fundamental formalism of kRAD and temperature-independent kNRD equations, which included calculated spin-orbit coupling values.
Collapse
Affiliation(s)
- Chi-Wei Yin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Li-Ting Zhuo
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Jie Ying Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Hui Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Yu-Ting Lin
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| | - Hsing-Yin Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| | - Ming-Kang Tsai
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan, R.O.C
| | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C
| |
Collapse
|
5
|
Dwivedi A, Rasmusson AJ, Richerme P, Iyengar SS. Quantum Nuclear Dynamics on a Distributed Set of Ion-Trap Quantum Computing Systems. J Am Chem Soc 2024; 146:29355-29363. [PMID: 39413021 DOI: 10.1021/jacs.4c07670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Quantum nuclear dynamics with wavepacket time evolution is classically intractable and viewed as a promising avenue for quantum information processing. Here, we use IonQ, Inc.'s 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton within a short-strong hydrogen-bonded system. We also provide the first application of distributed quantum computing for chemical dynamics problems, where a distributed set of quantum processes is constructed using a tensor network formalism. For a range of initial states, we experimentally drive the ion-trap system to emulate the quantum nuclear wavepacket as it evolves along the potential surface generated from the electronic structure. Following the experimental creation of the nuclear wavepacket, we extract measurement observables such as its time-dependent spatial projection and its characteristic vibrational frequencies to good agreement with classical results. Vibrational eigenenergies obtained from quantum computation are in agreement with those obtained from classical simulations to within a fraction of a kilocalorie per mole, thus suggesting chemical accuracy. Our approach opens a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules and also provides the first demonstration of parallel quantum computation on a distributed set of ion-trap quantum computers.
Collapse
Affiliation(s)
- Anurag Dwivedi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Indiana University Quantum Science and Engineering Center, Bloomington, Indiana 47405, United States
| | - A J Rasmusson
- Indiana University Quantum Science and Engineering Center, Bloomington, Indiana 47405, United States
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
| | - Philip Richerme
- Indiana University Quantum Science and Engineering Center, Bloomington, Indiana 47405, United States
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Indiana University Quantum Science and Engineering Center, Bloomington, Indiana 47405, United States
| |
Collapse
|
6
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Li Q, Wu K, Zhu H, Yang Y, He S, Lian T. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chem Rev 2024; 124:5695-5763. [PMID: 38629390 PMCID: PMC11082908 DOI: 10.1021/acs.chemrev.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.
Collapse
Affiliation(s)
- Qiuyang Li
- Department
of Physics, University of Michigan, 450 Church St, Ann Arbor, Michigan 48109, United States
| | - Kaifeng Wu
- State
Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Zhu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ye Yang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng He
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
8
|
Das S, Bar M, Ganguly T, Baitalik S. Control of Photoisomerization Kinetics via Multistage Switching in Bimetallic Ru(II)-Terpyridine Complexes. Inorg Chem 2024; 63:6600-6615. [PMID: 38557011 DOI: 10.1021/acs.inorgchem.3c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this study, we carried out detailed experimental and theoretical investigation on photophysical, electrochemical, and photoisomerization behaviors of a new array of luminescent binuclear Ru(II) complexes derived from a phenylene-vinylene-substituted terpyridyl ligand possessing RT lifetimes within 60.3-410.5 ns. The complexes experienced trans-to-cis isomerization in MeCN on irradiation with visible light, accompanied by significant changes in their absorption and emission spectral profiles. The reverse cis-to-trans process is also possible with the use of ultraviolet (UV) light. On conversion from trans to cis isomers, the emission intensity increases substantially, while for the reverse process, luminescence quenching occurs. Thus, "off-on" and "on-off" emission switching is facilitated upon treatment with visible and UV light alternatively. By the use of chemical oxidants (ceric ammonium nitrate and potassium permanganate) and reductants (metallic sodium) as well as light of appropriate wavelengths, multistate switching phenomena involving reversible oxidation-reduction and trans-cis isomerization have been achieved. Interestingly, the rate of this multistate photoswitching process becomes much faster compared to only two-state trans-cis isomerization of these complexes. Density functional theory (DFT) and time-dependent-DFT (TD-DFT) calculations are also performed to obtain a clear picture of the electronic environment of the complexes and also for the appropriate assignment of absorption and emission spectral bands.
Collapse
Affiliation(s)
- Soumi Das
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Manoranjan Bar
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tanusree Ganguly
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
9
|
Chen QF, Xian KL, Zhang HT, Su XJ, Liao RZ, Zhang MT. Pivotal Role of Geometry Regulation on O-O Bond Formation Mechanism of Bimetallic Water Oxidation Catalysts. Angew Chem Int Ed Engl 2024; 63:e202317514. [PMID: 38179807 DOI: 10.1002/anie.202317514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
In this study, we highlight the impact of catalyst geometry on the formation of O-O bonds in Cu2 and Fe2 catalysts. A series of Cu2 complexes with diverse linkers are designed as electrocatalysts for water oxidation. Interestingly, the catalytic performance of these Cu2 complexes is enhanced as their molecular skeletons become more rigid, which contrasts with the behavior observed in our previous investigation with Fe2 analogs. Moreover, mechanistic studies reveal that the reactivity of the bridging O atom results in distinct pathways for O-O bond formation in Cu2 and Fe2 catalysts. In Cu2 systems, the coupling takes place between a terminal CuIII -OH and a bridging μ-O⋅ radical. Whereas in Fe2 systems, it involves the coupling of two terminal Fe-oxo entities. Furthermore, an in-depth structure-activity analysis uncovers the spatial geometric prerequisites for the coupling of the terminal OH with the bridging μ-O⋅ radical, ultimately leading to the O-O bond formation. Overall, this study emphasizes the critical role of precisely adjusting the spatial geometry of catalysts to align with the O-O bonding pathway.
Collapse
Affiliation(s)
- Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Ke-Lin Xian
- Key Laboratory for Large-Format Battery Materials and System, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xiao-Jun Su
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
10
|
Bhattacharya P, Bag R, Butcher RJ, Behera S, Mondal B, Goswami S. Chemistry of a series of heterobimetallic complexes MnIII2(Ca II/Sr II)X 2 (X = Cl -, Br -). Dalton Trans 2024; 53:2324-2332. [PMID: 38205727 DOI: 10.1039/d3dt01858j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This manuscript describes the syntheses, structures and magnetism of MnIII-CaII/SrII complexes which are compositionally relevant in the context of the oxygen evolving complex (OEC) of photosystem II (PS II). A series of trimetallic tetraoxo complexes containing redox-inactive metal ions CaII or SrII were synthesized using a tetranucleating ligand framework. The structural characteristics of these complexes, with the oxido ligands bridging the redox-inactive metals and the manganese centres, make them particularly relevant to biological and heterogeneous metal-oxido clusters. Electrochemical studies of these compounds show that the reduction potentials are highly dependent upon the Lewis acidity of the redox-inactive metal, identifying the chemical basis for the observed differences in electrochemistry. This correlation provides insights into the role of the CaII/SrII ion in modulating the redox potential of the OEC and of other redox-inactive ions in tuning the redox potentials of other metal-oxide electrocatalysts. Temperature dependent magnetic measurements have also been performed for the complexes.
Collapse
Affiliation(s)
| | - Riya Bag
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| | - Ray J Butcher
- Chemistry Department, Howard University, Washington, D.C. 20059, USA
| | - Snehanjali Behera
- Discipline of Chemistry, IIT Gandhinagar, Palaj, Gujarat - 382055, India
| | - Biswajit Mondal
- Discipline of Chemistry, IIT Gandhinagar, Palaj, Gujarat - 382055, India
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, India.
| |
Collapse
|
11
|
Schmitt A, Thompson BC. Relating Structure to Properties in Non-Conjugated Pendant Electroactive Polymers. Macromol Rapid Commun 2024; 45:e2300219. [PMID: 37277618 DOI: 10.1002/marc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Indexed: 06/07/2023]
Abstract
Non-conjugated pendant electroactive polymers (NCPEPs) are an emerging class of polymers that offer the potential of combining the desirable optoelectronic properties of conjugated polymers with the superior synthetic methodologies and stability of traditional non-conjugated polymers. Despite an increasing number of studies focused on NCPEPs, particularly on understanding fundamental structure-property relationships, no attempts have been made to provide an overview on established relationships to date. This review showcases selected reports on NCPEP homopolymers and copolymers that demonstrate how optical, electronic, and physical properties of the polymers are affected by tuning of key structural variables such as the chemical structure of the polymer backbone, molecular weight, tacticity, spacer length, the nature of the pendant group, and in the case of copolymers the ratios between different comonomers and between individual polymer blocks. Correlation of structural features with improved π-stacking and enhanced charge carrier mobility serve as the primary figures of merit in evaluating impact on NCPEP properties. While this review is not intended to serve as a comprehensive summary of all reports on tuning of structural parameters in NCPEPs, it highlights relevant established structure-property relationships that can serve as a guideline for more targeted design of novel NCPEPs in the future.
Collapse
Affiliation(s)
- Alexander Schmitt
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| | - Barry C Thompson
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA, 90089-1661, USA
| |
Collapse
|
12
|
Maeda A, Tokumoto JY, Kojima S, Fujimori K, Moriuchi-Kawakami T, Hirahara M. Binding of Stimuli-Responsive Ruthenium Aqua Complexes with 9-Ethylguanine. ACS OMEGA 2023; 8:37391-37401. [PMID: 37841177 PMCID: PMC10569010 DOI: 10.1021/acsomega.3c05343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Stimuli-responsive ruthenium complexes proximal- and distal-[Ru(C10tpy)(C10pyqu) OH2]2+ (proximal-1 and distal-1; C10tpy = 4'-decyloxy-2,2':6',2″-terpyridine and C10pyqu = 2-[2'-(6'-decyloxy)-pyridyl]quinoline) were experimentally studied for adduct formation with a model DNA base. At 303 K, proximal-1 exhibited 1:1 adduct formation with 9-ethylguanine (9-EtG) to yield proximal-[Ru(C10tpy)(C10pyqu)(9-EtG)]2+ (proximal-RuEtG). Rotation of the guanine ligand on the ruthenium center was sterically hindered by the presence of an adjacent quinoline moiety at 303 K. Results from 1H NMR measurements indicated that photoirradiation of a proximal-RuEtG solution caused photoisomerization to distal-RuEtG, whereas heating of proximal-RuEtG caused ligand substitution to proximal-1. The distal isomer of the aqua complex, distal-1, was observed to slowly revert to proximal-1 at 303 K. In the presence of 9-EtG, distal-1 underwent thermal back-isomerization to proximal-1 and adduct formation to distal-RuEtG. Kinetic analysis of 1H NMR measurements showed that adduct formation between proximal-1 and 9-EtG was 8-fold faster than that between distal-1 and 9-EtG. This difference may be attributed to intramolecular hydrogen bonding and steric repulsion between the aqua ligand and the pendant moiety of the bidentate ligand..
Collapse
Affiliation(s)
- Atsuki Maeda
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Jun-ya Tokumoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Soichiro Kojima
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Keiichi Fujimori
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Takayo Moriuchi-Kawakami
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| | - Masanari Hirahara
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan
| |
Collapse
|
13
|
Kuramochi Y, Suzuki Y, Asai S, Suzuki T, Iwama H, Asano MS, Satake A. Significance of the connecting position between Zn(ii) porphyrin and Re(i) bipyridine tricarbonyl complex units in dyads for room-temperature phosphorescence and photocatalytic CO 2 reduction: unexpected enhancement by triethanolamine in catalytic activity. Chem Sci 2023; 14:8743-8765. [PMID: 37621430 PMCID: PMC10445468 DOI: 10.1039/d3sc02430j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
We synthesized three new dyads composed of a Zn porphyrin and fac-Re(bpy)(CO)3Br (bpy = 2,2'-bipyridine) units, ZnP-nBpy[double bond, length as m-dash]ReBr (n = 4, 5, and 6), in which the porphyrin is directly connected at the meso-position through the 4-, 5-, or 6-position of the bpy. We investigated the relationships between the connecting positions and the photophysical properties as well as catalytic activity in the CO2 reduction reaction. The dyad connected through the 6-position, ZnP-6Bpy[double bond, length as m-dash]ReBr, showed obvious phosphorescence with a lifetime of 280 μs at room temperature, in N,N-dimethylacetamide (DMA), whereas the other two dyads showed almost no phosphorescence under the same conditions. The photocatalytic CO2 reduction reactions in DMA using 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the electron donor and the three dyads ZnP-nBpy[double bond, length as m-dash]ReBr selectively produced CO with similar initial rates, but the durabilities were low. The addition of triethanolamine (TEOA) suppressed the decomposition of dyads, improving their durabilities and reaction efficiencies. In particular, ZnP-5Bpy[double bond, length as m-dash]ReBr was remarkably improved-it gave the highest durability and reaction efficiency among the three dyads; the reaction quantum yield reached 24%. The reason for this significant activity is no accumulation of electrons on the Zn porphyrin in ZnP-5Bpy[double bond, length as m-dash]ReBr, which would be caused by dual interactions of TEOA with the Re and Zn ions in the dyad. As the highest catalytic activity was observed in ZnP-5Bpy[double bond, length as m-dash]ReBr among the three dyads, which had no room-temperature phosphorescence (RTP), the catalytic activities and RTP properties are considered independent, but they are greatly influenced by the connecting positions on the bpy ligand in ZnP-nBpy[double bond, length as m-dash]ReBr.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Department of Chemistry, Graduate School of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
| | - Yuto Suzuki
- Department of Chemistry, Graduate School of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
| | - Somyo Asai
- Division of Molecular Science, School of Science and Technology, Gunma University 1-5-1 Tenjin-cho Kiryu Gunma 376-8515 Japan
| | - Tomohiro Suzuki
- Division of Molecular Science, School of Science and Technology, Gunma University 1-5-1 Tenjin-cho Kiryu Gunma 376-8515 Japan
| | - Hiroki Iwama
- Department of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
| | - Motoko S Asano
- Division of Molecular Science, School of Science and Technology, Gunma University 1-5-1 Tenjin-cho Kiryu Gunma 376-8515 Japan
| | - Akiharu Satake
- Department of Chemistry, Graduate School of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8621 Japan
| |
Collapse
|
14
|
Richerme P, Revelle MC, Yale CG, Lobser D, Burch AD, Clark SM, Saha D, Lopez-Ruiz MA, Dwivedi A, Smith JM, Norrell SA, Sabry A, Iyengar SS. Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra. J Phys Chem Lett 2023; 14:7256-7263. [PMID: 37555761 DOI: 10.1021/acs.jpclett.3c01601] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Calculating observable properties of chemical systems is often classically intractable and widely viewed as a promising application of quantum information processing. Here, we introduce a new framework for solving generic quantum chemical dynamics problems using quantum logic. We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer, where we experimentally drive the ion-trap system to emulate the quantum wavepacket dynamics corresponding to the shared-proton within an anharmonic hydrogen bonded system. Following the experimental creation and propagation of the shared-proton wavepacket on the ion-trap, we extract measurement observables such as its time-dependent spatial projection and its characteristic vibrational frequencies to spectroscopic accuracy (3.3 cm-1 wavenumbers, corresponding to >99.9% fidelity). Our approach introduces a new paradigm for studying the chemical dynamics and vibrational spectra of molecules and opens the possibility to describe the behavior of complex molecular processes with unprecedented accuracy.
Collapse
Affiliation(s)
- Philip Richerme
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
- Quantum Science and Engineering Center, Indiana University, Bloomington, Indiana 47405, United States
| | - Melissa C Revelle
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Christopher G Yale
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Daniel Lobser
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Ashlyn D Burch
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Susan M Clark
- Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Debadrita Saha
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Anurag Dwivedi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sam A Norrell
- Department of Physics, Indiana University, Bloomington, Indiana 47405, United States
| | - Amr Sabry
- Quantum Science and Engineering Center, Indiana University, Bloomington, Indiana 47405, United States
- Department of Computer Science, Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Quantum Science and Engineering Center, Indiana University, Bloomington, Indiana 47405, United States
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Ma X, He J, Liu Y, Bai X, Leng J, Zhao Y, Chen D, Wang J. Plant Photocatalysts: Photoinduced Oxidation and Reduction Abilities of Plant Leaf Ashes under Solar Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2260. [PMID: 37570577 PMCID: PMC10421452 DOI: 10.3390/nano13152260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Plant leaf ashes were obtained via the high temperature calcination of the leaves of various plants, such as sugarcane, couchgrass, bracteata, garlic sprout, and the yellowish leek. Although the photosynthesis systems in plant leaves cannot exist after calcination, minerals in these ashes were found to exhibit photochemical activities. The samples showed solar light photocatalytic oxidation activities sufficient to degrade methylene blue dye. They were also shown to possess intrinsic dehydrogenase-like activities in reducing the colorless electron acceptor 2,3,5-triphenyltetrazolium chloride to a red formazan precipitate under solar light irradiation. The possible reasons behind these two unreported phenomena were also investigated. These ashes were characterized using a combination of physicochemical techniques. Moreover, our findings exemplify how the soluble and insoluble minerals in plant leaf ashes can be synergistically designed to yield next-generation photocatalysts. It may also lead to advances in artificial photosynthesis and photocatalytic dehydrogenase.
Collapse
Affiliation(s)
- Xiaoqian Ma
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Jiao He
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yu Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xiaoli Bai
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Junyang Leng
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Yi Zhao
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
| | - Daomei Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jiaqiang Wang
- School of Chemical Sciences & Technology, Yunnan University, Kunming 650091, China
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
16
|
Kinoshita Y, Deromachi N, Kajiwara T, Koizumi TA, Kitagawa S, Tamiaki H, Tanaka K. Photoinduced Catalytic Organic-Hydride Transfer to CO 2 Mediated with Ruthenium Complexes as NAD + /NADH Redox Couple Models. CHEMSUSCHEM 2023; 16:e202300032. [PMID: 36639358 DOI: 10.1002/cssc.202300032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The catalytic organic-hydride transfer to CO2 was first achieved through the photoinduced two-electron reduction of the [Ru(bpy)2 (pbn)]2+ /[Ru(bpy)2 (pbnHH)]2+ (bpy=2,2'-bipyridine, pbn=2-(pyridin-2-yl)benzo[b]-1,5-naphthyridine, and pbnHH=2-(pyridin-2-yl)-5,10-dihydrobenzo[b]-1,5-naphthyridine) redox couple in the presence of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH). The active species for the catalytic hydride transfer to carbon dioxide giving formate is [Ru(bpy)(bpy⋅- )(pbnHH)]+ formed by one-electron reduction of [Ru(bpy)2 (pbnHH)]2+ with BI⋅.
Collapse
Affiliation(s)
- Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
| | - Nagisa Deromachi
- Graduate School of Life Sciences, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Take-Aki Koizumi
- Advanced Instrumental Analysis Center, Shizuoka Institute of Science and Technology, 437-8555, Fukuroi, Shizuoka, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
| | - Koji Tanaka
- Graduate School of Life Sciences, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| |
Collapse
|
17
|
Yu W, Zeng Y, Wang Z, Xia S, Yang Z, Chen W, Huang Y, Lv F, Bai H, Wang S. Solar-powered multi-organism symbiont mimic system for beyond natural synthesis of polypeptides from CO 2 and N 2. SCIENCE ADVANCES 2023; 9:eadf6772. [PMID: 36921057 PMCID: PMC10017035 DOI: 10.1126/sciadv.adf6772] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Developing artificial symbionts beyond natural synthesis limitations would bring revolutionary contributions to agriculture, medicine, environment, etc. Here, we initiated a solar-driven multi-organism symbiont, which was assembled by the CO2 fixation module of Synechocystis sp., N2 fixation module of Rhodopseudomonas palustris, biofunctional polypeptides synthesis module of Bacillus licheniformis, and the electron transfer module of conductive cationic poly(fluorene-co-phenylene) derivative. The modular design broke the pathway to synthesize γ-polyglutamic acid (γ-PGA) using CO2 and N2, attributing to the artificially constructed direct interspecific substance and electron transfer. So, the intracellular ATP and NADPH were enhanced by 69 and 30%, respectively, and the produced γ-PGA was enhanced by 104%. The strategy was further extended to produce a commercial antibiotic of bacitracin A. These achievements improve the selectivity and yield of functional polypeptides with one click by CO2 and N2, and also provide an innovative strategy for creating photosynthetic systems on demand.
Collapse
Affiliation(s)
- Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Zeng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zenghao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengpeng Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiwen Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weijian Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
18
|
Abstract
The theory of electron transfer reactions establishes the conceptual foundation for redox solution chemistry, electrochemistry, and bioenergetics. Electron and proton transfer across the cellular membrane provide all energy of life gained through natural photosynthesis and mitochondrial respiration. Rates of biological charge transfer set kinetic bottlenecks for biological energy storage. The main system-specific parameter determining the activation barrier for a single electron-transfer hop is the reorganization energy of the medium. Both harvesting of light energy in natural and artificial photosynthesis and efficient electron transport in biological energy chains require reduction of the reorganization energy to allow fast transitions. This review article discusses mechanisms by which small values of the reorganization energy are achieved in protein electron transfer and how similar mechanisms can operate in other media, such as nonpolar and ionic liquids. One of the major mechanisms of reorganization energy reduction is through non-Gibbsian (nonergodic) sampling of the medium configurations on the reaction time. A number of alternative mechanisms, such as electrowetting of active sites of proteins, give rise to non-parabolic free energy surfaces of electron transfer. These mechanisms, and nonequilibrium population of donor-acceptor vibrations, lead to a universal phenomenology of separation between the Stokes shift and variance reorganization energies of electron transfer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, USA.
| |
Collapse
|
19
|
Taseska T, Yu W, Wilsey MK, Cox CP, Meng Z, Ngarnim SS, Müller AM. Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Top Catal 2023; 66:338-374. [PMID: 37025115 PMCID: PMC10007685 DOI: 10.1007/s11244-023-01799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
AbstractWe analyzed the enormous scale of global human needs, their carbon footprint, and how they are connected to energy availability. We established that most challenges related to resource security and sustainability can be solved by providing distributed, affordable, and clean energy. Catalyzed chemical transformations powered by renewable electricity are emerging successor technologies that have the potential to replace fossil fuels without sacrificing the wellbeing of humans. We highlighted the technical, economic, and societal advantages and drawbacks of short- to medium-term decarbonization solutions to gauge their practicability, economic feasibility, and likelihood for widespread acceptance on a global scale. We detailed catalysis solutions that enhance sustainability, along with strategies for catalyst and process development, frontiers, challenges, and limitations, and emphasized the need for planetary stewardship. Electrocatalytic processes enable the production of solar fuels and commodity chemicals that address universal issues of the water, energy and food security nexus, clothing, the building sector, heating and cooling, transportation, information and communication technology, chemicals, consumer goods and services, and healthcare, toward providing global resource security and sustainability and enhancing environmental and social justice.
Collapse
Affiliation(s)
- Teona Taseska
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
| | | | - Connor P. Cox
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
| | - Soraya S. Ngarnim
- Department of Chemistry, University of Rochester, 14627 Rochester, NY USA
| | - Astrid M. Müller
- Department of Chemical Engineering, University of Rochester, 14627 Rochester, NY USA
- Materials Science Program, University of Rochester, 14627 Rochester, NY USA
- Department of Chemistry, University of Rochester, 14627 Rochester, NY USA
| |
Collapse
|
20
|
Chih YR, Lin YT, Yin CW, Chen YJ. High Intrinsic Phosphorescence Efficiency and Density Functional Theory Modeling of Ru(II)-Bipyridine Complexes with π-Aromatic-Rich Cyclometalated Ligands: Attributions of Spin-Orbit Coupling Perturbation and Efficient Configurational Mixing of Singlet Excited States. ACS OMEGA 2022; 7:48583-48599. [PMID: 36591186 PMCID: PMC9798779 DOI: 10.1021/acsomega.2c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
A series of π-aromatic-rich cyclometalated ruthenium(II)-(2,2'-bipyridine) complexes ([Ru(bpy)2(πAr-CM)]+) in which πAr-CM is diphenylpyrazine or 1-phenylisoquinoline were prepared. The [Ru(bpy)2(πAr-CM)]+ complexes had remarkably high phosphorescence rate constants, k RAD(p), and the intrinsic phosphorescence efficiencies (ιem(p) = k RAD(p)/(νem(p))3) of these complexes were found to be twice the magnitudes of simply constructed cyclometalated ruthenium(II) complexes ([Ru(bpy)2(sc-CM)]+), where νem(p) is the phosphorescence frequency and sc-CM is 2-phenylpyridine, benzo[h]quinoline, or 2-phenylpyrimidine. Density functional theory (DFT) modeling of the [Ru(bpy)2(CM)]+ complexes indicated numerous singlet metal-to-ligand charge transfers for 1MLCT-(Ru-bpy) and 1MLCT-(Ru-CM), excited states in the low-energy absorption band and 1ππ*-(aromatic ligand) (1ππ*-LAr) excited states in the high-energy band. DFT modeling of these complexes also indicated phosphorescence-emitting state (Te) configurations with primary MLCT-(Ru-bpy) characteristics. The variation in ιem(p) for the spin-forbidden Te (3MLCT-(Ru-bpy)) excited state of the complex system that was examined in this study can be understood through the spin-orbit coupling (SOC)-mediated sum of intensity stealing (∑SOCM-IS) contribution from the primary intensity of the low-energy 1MLCT states and second-order intensity perturbation from the significant configuration between the low-energy 1MLCT and high-energy intense 1ππ*-LAr states. In addition, the observation of unusually high ιem(p) magnitudes for these [Ru(bpy)2(πAr-CM)]+ complexes can be attributed to the values for both intensity factors in the ∑SOCM-IS formalism being individually greater than those for [Ru(bpy)2(sc-CM)]+ ions.
Collapse
Affiliation(s)
| | | | | | - Yuan Jang Chen
- Department of Chemistry, Fu-Jen Catholic University, New Taipei City 24205, Taiwan, R.O.C.
| |
Collapse
|
21
|
Schmid L, Fokin I, Brändlin M, Wagner D, Siewert I, Wenger OS. Accumulation of Four Electrons on a Terphenyl (Bis)disulfide. Chemistry 2022; 28:e202202386. [PMID: 36351246 PMCID: PMC10098965 DOI: 10.1002/chem.202202386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/11/2022]
Abstract
The activation of N2 , CO2 or H2 O to energy-rich products relies on multi-electron transfer reactions, and consequently it seems desirable to understand the basics of light-driven accumulation of multiple redox equivalents. Most of the previously reported molecular acceptors merely allow the storage of up to two electrons. We report on a terphenyl compound including two disulfide bridges, which undergoes four-electron reduction in two separate electrochemical steps, aided by a combination of potential compression and inversion. Under visible-light irradiation using the organic super-electron donor tetrakis(dimethylamino)ethylene, a cascade of light-induced reaction steps is observed, leading to the cleavage of both disulfide bonds. Whereas one of them undergoes extrusion of sulfur to result in a thiophene, the other disulfide is converted to a dithiolate. These insights seem relevant to enhance the current fundamental understanding of photochemical energy storage.
Collapse
Affiliation(s)
- Lucius Schmid
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Igor Fokin
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Mathis Brändlin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Dorothee Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Inke Siewert
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
22
|
McCool JD, Zhang S, Cheng I, Zhao X. Rational development of molecular earth-abundant metal complexes for electrocatalytic hydrogen production. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Estevão BM, Vilela RRC, Geremias IP, Zanoni KPS, de Camargo ASS, Zucolotto V. Mesoporous silica nanoparticles incorporated with Ir(III) complexes: From photophysics to photodynamic therapy. Photodiagnosis Photodyn Ther 2022; 40:103052. [PMID: 35934182 DOI: 10.1016/j.pdpdt.2022.103052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Organically modified mesoporous silica nanoparticles (MSNs) containing Ir complexes (Ir1, Ir2 and Ir3) were successfully synthesized. These Ir-entrapped MCM41-COOH nanoparticles have shown relevant photophysical characteristics including high efficiency in the photoproduction and delivery of singlet oxygen (1O2), which is particularly promising for photodynamic therapy (PDT) applications. In vitro tests have evidenced that complex@MCM41-COOH are able to reduce cell proliferation after 10 min of blue-light irradiation in Hep-G2 liver cancer cells.
Collapse
Affiliation(s)
- Bianca M Estevão
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil.
| | - Raquel R C Vilela
- Laboratory of Spectroscopy of Functional Materials, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil.
| | - Isabella P Geremias
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Kassio P S Zanoni
- Laboratory of Spectroscopy of Functional Materials, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil; Molecular Optoelectronic Devices, Instituto de Ciencia Molecular (ICMol), University of Valencia, Catedrático J. Beltrán 2, Paterna, Valencia 46980, Spain
| | - Andrea S S de Camargo
- Laboratory of Spectroscopy of Functional Materials, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13566-590, Brazil
| |
Collapse
|
24
|
Ayare PJ, Watson N, Helton MR, Warner MJ, Dilbeck T, Hanson K, Vannucci AK. Molecular Z-Scheme for Solar Fuel Production via Dual Photocatalytic Cycles. J Am Chem Soc 2022; 144:21568-21575. [DOI: 10.1021/jacs.2c08462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Pooja J. Ayare
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Noelle Watson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Maizie R. Helton
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Matthew J. Warner
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| | - Tristan Dilbeck
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida32306, United States
| | - Aaron K. Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina29208, United States
| |
Collapse
|
25
|
Ramzy E, Ibrahim MM, El-Mehasseb IM, Ramadan AEMM, Elshami FI, Shaban SY, van Eldik R. Synthesis, Biophysical Interaction of DNA/BSA, Equilibrium and Stopped-Flow Kinetic Studies, and Biological Evaluation of bis(2-Picolyl)amine-Based Nickel(II) Complex. Biomimetics (Basel) 2022; 7:172. [PMID: 36412701 PMCID: PMC9680484 DOI: 10.3390/biomimetics7040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Reaction of bis(2-picolyl)amine (BPA) with Ni(II) salt yielded [(BPA)NiCl2(H2O)] (NiBPA). The Ni(II) in NiBPA bound to a BPA ligand, two chloride, and one aqua ligands. Because most medications inhibit biological processes by binding to a specific protein, the stopped-flow technique was used to investigate DNA/protein binding in-vitro, and a mechanism was proposed. NiBPA binds to DNA/protein more strongly than BPA via a static quenching mechanism. Using the stopped-flow technique, a mechanism was proposed. BSA interacts with BPA via a fast reversible step followed by a slow irreversible step, whereas NiBPA interacts via two reversible steps. DNA, on the other hand, binds to BPA and NiBPA via the same mechanism through two reversible steps. Although BSA interacts with NiBPA much faster, NiBPA has a much higher affinity for DNA (2077 M) than BSA (30.3 M). Compared to NiBPA, BPA was found to form a more stable BSA complex. When BPA and NiBPA bind to DNA, the Ni(II) center was found to influence the rate but not the mechanism, whereas, for BSA, the Ni(II) center was found to change both the mechanism and the rate. Additionally, NiBPA exhibited significant cytotoxicity and antibacterial activity, which is consistent with the binding constants but not the kinetic stability. This shows that in our situation, biological activity is significantly more influenced by binding constants than by kinetic stability. Due to its selectivity and cytotoxic activity, complex NiBPA is anticipated to be used in medicine.
Collapse
Affiliation(s)
- Esraa Ramzy
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mohamed M. Ibrahim
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim M. El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | | | - Fawzia I. Elshami
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Rudi van Eldik
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
26
|
Ming M, Yuan H, Yang S, Wei Z, Lei Q, Lei J, Han Z. Efficient Red-Light-Driven Hydrogen Evolution with an Anthraquinone Organic Dye. J Am Chem Soc 2022; 144:19680-19684. [PMID: 36260355 DOI: 10.1021/jacs.2c08171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The direct utilization of the full solar spectrum to obtain renewable fuels remains a challenge because the conversion of the low-energy light (red and near-infrared) is difficult. Current light-driven systems show activity for hydrogen generation with the high-energy part of sunlight. Here we report the use of a simple anthraquinone organic dye in an artificial photosynthetic system that promotes efficient red-light-driven production of hydrogen. The system contains no noble metal and exhibits a turnover number greater than 0.78 million and a quantum yield of 30.6% at 630 nm. A mechanistic study revealed that the excited-state and redox properties of the chromophore are critical to achieving high activity and stability.
Collapse
Affiliation(s)
- Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zuting Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinqin Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingxiang Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
27
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
28
|
Zhang X, Chen QF, Deng J, Xu X, Zhan J, Du HY, Yu Z, Li M, Zhang MT, Shao Y. Identifying Metal-Oxo/Peroxo Intermediates in Catalytic Water Oxidation by In Situ Electrochemical Mass Spectrometry. J Am Chem Soc 2022; 144:17748-17752. [PMID: 36149317 DOI: 10.1021/jacs.2c07026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular catalysis of water oxidation has been intensively investigated, but its mechanism is still not yet fully understood. This study aims at capturing and identifying key short-lived intermediates directly during the water oxidation catalyzed by a cobalt-tetraamido macrocyclic ligand complex using a newly developed an in situ electrochemical mass spectrometry (EC-MS) method. Two key ligand-centered-oxidation intermediates, [(L2-)CoIIIOH] and [(L2-)CoIIIOOH], were directly observed for the first time, and further confirmed by 18O-labeling and collision-induced dissociation studies. These experimental results further confirmed the rationality of the water nucleophilic attack mechanism for the single-site water oxidation catalysis. This work also demonstrated that such an in situ EC-MS method is a promising analytical tool for redox catalytic processes, not only limited to water oxidation.
Collapse
Affiliation(s)
- Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jintao Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyu Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jirui Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao-Yi Du
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
29
|
Ito A, Iwamura M, Sakuda E. Excited-state dynamics of luminescent transition metal complexes with metallophilic and donor–acceptor interactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Kobayashi A, Takizawa SY, Hirahara M. Photofunctional molecular assembly for artificial photosynthesis: Beyond a simple dye sensitization strategy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Gupta D, Lakraychi AE, Boruah BD, De Kreijger S, Troian‐Gautier L, Elias B, De Volder M, Vlad A. Visible‐Light Augmented Lithium Storage Capacity in a Ruthenium(II) Photosensitizer Conjugated with a Dione‐Catechol Redox Couple. Chemistry 2022; 28:e202201220. [DOI: 10.1002/chem.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Deepak Gupta
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Alae E. Lakraychi
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Buddha D. Boruah
- Department of Engineering University of Cambridge Cambridge CB3 0FS United Kingdom
- Institute for Materials Discovery University College London London WC1E 7JE United Kingdom
| | - Simon De Kreijger
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Ludovic Troian‐Gautier
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Benjamin Elias
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Michael De Volder
- Department of Engineering University of Cambridge Cambridge CB3 0FS United Kingdom
| | - Alexandru Vlad
- Institute de la Matière Condense et des Nanosciences (IMCN) Université catholique de Louvain Place L. Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
32
|
DuBose JT, Kamat PV. Energy Versus Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal-Molecular Hybrids. Chem Rev 2022; 122:12475-12494. [PMID: 35793168 DOI: 10.1021/acs.chemrev.2c00172] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Energy and electron transfer processes in light harvesting assemblies dictate the outcome of the overall light energy conversion process. Halide perovskite nanocrystals such as CsPbBr3 with relatively high emission yield and strong light absorption can transfer singlet and triplet energy to surface-bound acceptor molecules. They can also induce photocatalytic reduction and oxidation by selectively transferring electrons and holes across the nanocrystal interface. This perspective discusses key factors dictating these excited-state pathways in perovskite nanocrystals and the fundamental differences between energy and electron transfer processes. Spectroscopic methods to decipher between these complex photoinduced pathways are presented. A basic understanding of the fundamental differences between the two excited deactivation processes (charge and energy transfer) and ways to modulate them should enable design of more efficient light harvesting assemblies with semiconductor and molecular systems.
Collapse
Affiliation(s)
- Jeffrey T DuBose
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
33
|
Wang Y, Song D, Li J, Shi Q, Zhao J, Hu Y, Zeng F, Wang N. Covalent Metalloporphyrin Polymer Coated on Carbon Nanotubes as Bifunctional Electrocatalysts for Water Splitting. Inorg Chem 2022; 61:10198-10204. [PMID: 35737475 DOI: 10.1021/acs.inorgchem.2c01415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metalloporphyrins have exhibited excellent electrocatalytic activities for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In order to improve the efficiency and conductivity, these molecular catalysts need to be immobilized on conductive electrode materials. Herein, a facile "one-pot" strategy was developed to coat a covalent metalloporphyrin polymer on a carbon nanotube (CNT) as bifunctional catalysts [denoted as MTIPP@CNTs, H2TIPP = 5,10,15,20-tetra(4-(imidazole-1-yl)phenyl)porphyrin)] for water splitting in alkaline solution. MTIPP@CNTs have shown excellent electrocatalytic activities for both the HER and OER when metalloporphyrin's central metal is optimized as well as the amount of catalysts that is loaded on the CNT. The overpotential (η10) of NiTIPP@CNT-2 for the OER is only 320 mV at a current density of 10 mA cm-2 in 1.0 M KOH, and CoTIPP@CNT-1 exhibited an excellent electrocatalytic activity for the HER (η10 = 450 mV for 10 mA cm-2). Furthermore, the remarkable bifunctional electrocatalytic performance (a cell voltage of 2.04 V with a current density of 10 mA cm-2) was also explored in the overall water splitting test.
Collapse
Affiliation(s)
- Yujia Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Qing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Jiale Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Yanping Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710069 Xi'an, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
34
|
Itagaki R, Takizawa SY, Chang HC, Nakada A. Light-induced electron transfer/phase migration of a redox mediator for photocatalytic C-C coupling in a biphasic solution. Dalton Trans 2022; 51:9467-9476. [PMID: 35678270 DOI: 10.1039/d2dt01334g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic molecular conversions that lead to value-added chemicals are of considerable interest. To achieve highly efficient photocatalytic reactions, it is equally important as it is challenging to construct systems that enable effective charge separation. Here, we demonstrate that the rational construction of a biphasic solution system with a ferrocenium/ferrocene (Fc+/Fc) redox couple enables efficient photocatalysis by spatial charge separation using the liquid-liquid interface. In a single-phase system, exposure of a 1,2-dichloroethane (DCE) solution containing a Ru(II)- or Ir(III)-based photosensitizer, Fc, and benzyl bromide (Bn-Br) to visible-light irradiation failed to generate any product. However, the photolysis in a H2O/DCE biphasic solution, where the compounds are initially distributed in the DCE phase, facilitated the reductive coupling of Bn-Br to dibenzyl (Bn2) using Fc as an electron donor. The key result of this study is that Fc+, generated by photooxidation of Fc in the DCE phase, migrates to the aqueous phase due to the drastic change in its partition coefficient compared to that of Fc. This liquid-liquid phase migration of the mediator is essential for facilitating the reduction of Bn-Br in the DCE phase as it suppresses backward charge recombination. The co-existence of anions can further modify the driving force of phase migration of Fc+ depending on their hydrophilicity; the best photocatalytic activity was obtained with a turnover frequency of 79.5 h-1 and a quantum efficiency of 0.2% for the formation of Bn2 by adding NBu4+Br- to the biphasic solution. This study showcases a potential approach for rectifying electron transfer with suppressed charge recombination to achieve efficient photocatalysis.
Collapse
Affiliation(s)
- Ren Itagaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Ho-Chol Chang
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
| | - Akinobu Nakada
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
35
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
36
|
Solution Equilibria Formation of Manganese(II) Complexes with Ethylenediamine, 1,3-Propanediamine and 1,4-ButanediaMine in Methanol. MOLBANK 2022. [DOI: 10.3390/m1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Manganese is an abundant element that plays critical roles and is at the reaction center of several enzymes. In order to promote an understanding of the behavior of manganese(II) ion with several aliphatic ligands, in this work, the stability and spectral behavior of the complexes with manganese(II) and ethylenediamine, 1,3-propanediamine or 1,4-butanediamine were explored. A spectrophotometric study of its speciation in methanol was performed at 293 K. The formation constants obtained for these systems were: manganese(II)-ethylenediamine log β110 = 3.98 and log β120 = 7.51; for the manganese(II)-1,3-propanediamine log β110 = 5.08 and log β120 = 8.66; and for manganese(II)-1,4-butanediamine log β110 = 4.36 and log β120 = 8.46. These results were obtained by fitting the experimental spectrophotometric data using the HypSpec software. The complexes reported in this study show a spectral pattern that could be related to a chelate effect in which the molar absorbance is not directly related to the increase in the carbon chain of the ligands.
Collapse
|
37
|
Activation effect of nickel phosphate co-catalysts on the photoelectrochemical water oxidation performance of TiO2 nanotubes. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Schwarz J, Ilic A, Johnson C, Lomoth R, Wärnmark K. High turnover photocatalytic hydrogen formation with an Fe(III) N-heterocyclic carbene photosensitiser. Chem Commun (Camb) 2022; 58:5351-5354. [PMID: 35373799 DOI: 10.1039/d2cc01016j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the first high turnover photocatalytic hydrogen formation reaction based on an earth-abundant FeIII-NHC photosensitiser. The reaction occurs via reductive quenching of the 2LMCT excited state that can be directly excited with green light and employs either Pt-colloids or [Co(dmgH)2pyCl] as proton reduction catalysts and [HNEt3][BF4] and triethanolamine/triethylamine as proton and electron donors. The outstanding photostability of the FeIII-NHC complex enables turnover numbers >1000 without degradation.
Collapse
Affiliation(s)
- Jesper Schwarz
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Aleksandra Ilic
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| | - Catherine Johnson
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.
| | - Reiner Lomoth
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, SE-22100 Lund, Sweden.
| |
Collapse
|
39
|
Wu H, Miao T, Deng Q, Xu Y, Shi H, Huang Y, Fu X. Accelerating Nickel-Based Molecular Construction via DFT Guidance for Advanced Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17486-17499. [PMID: 35389211 DOI: 10.1021/acsami.2c02107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the nickel-based molecular catalyst structure and functional relationship is crucial for catalytic hydrogen production in aqueous solutions. Density functional theory (DFT) provides mature theoretical knowledge for efficient catalyst design, significantly reducing catalyst synthesis time and energy consumption. In the present work, three molecular catalysts, Ni(qbz)(pys)2 (qbz = 2-quinoline benzimidazole) (NQP 1), Ni(qbo)(pys)2 (qbo = 2-quinoline benzothiazole) (NQP 2), and Ni(pbz)(pys)2 (pbz = 4-chloro-2,2-pyridylbenzimidazole) (NQP 3) (pys = 2-mercaptopyridine), were designed and synthesized and exhibit a high performance for H2 generation in aqueous solution with a lamp (λ ≥ 400 nm) under visible light irradiation. Under the optimal conditions, a H2 evolution rate as high as 1190 μmol h-1 can be obtained over 25 mg of NQP 1 with the best catalytic performance. DFT has been adopted in this study to unveil the relationship between the ligand qbz and catalyst NQP 1─an efficient step in the design of catalysts with an excellent catalytic performance. We show that, in addition to the presence of the triphenyl ring increasing the overall electron density, rapid electron transfer (ET) from excited fluorescein (Fl) to NQP 1 significantly improves the chance of photogenerated electrons transferring to the active site, ultimately increasing the catalytic activity for H2 production. This work on understanding the correlation between structures and properties of complexes provides a new idea for manufacturing high-performance photocatalysts.
Collapse
Affiliation(s)
- Haisu Wu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Tifang Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Qinghua Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yun Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Haixia Shi
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Ying Huang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| | - Xianliang Fu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Department of Chemistry, Huaibei Normal University, Huaibei 235000, P. R. China
| |
Collapse
|
40
|
Kuramochi Y, Sato R, Sakuma H, Satake A. Photocatalytic CO 2 reduction sensitized by a special-pair mimic porphyrin connected with a rhenium( i) tricarbonyl complex. Chem Sci 2022; 13:9861-9879. [PMID: 36128228 PMCID: PMC9430738 DOI: 10.1039/d2sc03251a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
Zn porphyrins with an imidazolyl group at the meso position generate a highly stable porphyrin dimer by complementary coordination from the imidazolyl to the Zn ion in noncoordinating solvents such as chloroform, which mimics the natural special pair in photosynthesis. In this work, we have synthesized an imidazolyl-substituted Zn porphyrin connected with a Re 2,2-bipyridine tricarbonyl complex as a CO2 reduction catalyst via a p-phenylene linker, affording a homodimer with two Re complexes on both sides (ReDRe). The dimeric structure is easily dissociated into the corresponding monomers in coordinating solvents. Therefore, we prepared a mixture containing a heterodimer with the Re carbonyl complex on one side (ReD) by simple mixing with an imidazolyl Zn porphyrin and evaporating the solvent. Using the Grubbs catalyst, the subsequent olefin metathesis reaction of the mixture gave covalently linked porphyrin dimers through the allyloxy side chains, enabling the isolation of the stable hetero- (ReD′) and homo-dimers (ReD′Re) with gel permeation chromatography. The Zn porphyrin dimers have intense absorption bands in the visible light region and acted as good photosensitizers in photocatalytic CO2 reduction in a mixture of N,N-dimethylacetamide and triethanolamine (5 : 1 v/v) containing 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the electron donor, giving CO with high selectivity and durability. Under irradiation with strong light intensity, the reaction rate in ReD′ exceeded that of the previous porphyrin
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
Re complex dyad, ZnP-phen=Re. For instance, after irradiation at 560 nm for 18 h, the turnover number (TONCO) of ReD′ reached 2800, whereas the TONCO of ZnP-phen=Re was 170. The high activity in the system using the porphyrin dimer originates from no accumulation of the one-electron reduced species of the porphyrin that inhibit light absorption due to the inner-filter effect. An artificial special pair was connected with a Re 2,2-bipyridine tricarbonyl complex. The special pair derivative acted as a good photosensitizer in photocatalytic CO2 reduction, giving CO with high selectivity and durability.![]()
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Japan
| | - Ren Sato
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| | - Hiroki Sakuma
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Japan
| | - Akiharu Satake
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, Japan
| |
Collapse
|
41
|
Catalytic systems mimicking the [FeFe]-hydrogenase active site for visible-light-driven hydrogen production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Phelan BT, Mara MW, Chen LX. Excited-state structural dynamics of nickel complexes probed by optical and X-ray transient absorption spectroscopies: insights and implications. Chem Commun (Camb) 2021; 57:11904-11921. [PMID: 34695174 DOI: 10.1039/d1cc03875c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excited states of nickel complexes undergo a variety of photochemical processes, such as charge transfer, ligation/deligation, and redox reactions, relevant to solar energy conversion and photocatalysis. The efficiencies of the aforementioned processes are closely coupled to the molecular structures in the ground and excited states. The conventional optical transient absorption spectroscopy has revealed important excited-state pathways and kinetics, but information regarding the metal center, in particular transient structural and electronic properties, remains limited. These deficiencies are addressed by X-ray transient absorption (XTA) spectroscopy, a detailed probe of 3d orbital occupancy, oxidation state and coordination geometry. The examples of excited-state structural dynamics of nickel porphyrin and nickel phthalocyanine have been described from our previous studies with highlights on the unique structural information obtained by XTA spectroscopy. We close by surveying prospective applications of XTA spectroscopy to active areas of Ni-based photocatalysis based on the knowledge gained from our previous studies.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
43
|
Hosseinmardi S, Scheurer A, Heinemann FW, Kuepper K, Senft L, Waldschmidt P, Ivanović‐Burmazović I, Meyer K. Evaluation of Manganese Cubanoid Clusters for Water Oxidation Catalysis: From Well-Defined Molecular Coordination Complexes to Catalytically Active Amorphous Films. CHEMSUSCHEM 2021; 14:4741-4751. [PMID: 34409745 PMCID: PMC8596818 DOI: 10.1002/cssc.202101451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Indexed: 06/05/2023]
Abstract
With a view to developing multimetallic molecular catalysts that mimic the oxygen-evolving catalyst (OEC) in Nature's photosystem II, the synthesis of various dicubanoid manganese clusters is described and their catalytic activity investigated for water oxidation in basic, aqueous solution. Pyridinemethanol-based ligands are known to support polynuclear and cubanoid structures in manganese coordination chemistry. The chelators 2,6-pyridinedimethanol (H2 L1 ) and 6-methyl-2-pyridinemethanol (HL2 ) were chosen to yield polynuclear manganese complexes; namely, the tetranuclear defective dicubanes [MnII 2 MnIII 2 (HL1 )4 (OAc)4 (OMe)2 ] and [MnII 2 MnIII 2 (HL1 )6 (OAc)2 ] (OAc)2 ⋅2 H2 O, as well as the octanuclear-dicubanoid [MnII 6 MnIII 2 (L2 )4 (O)2 (OAc)10 (HOMe/OH2 )2 ]⋅3MeOH⋅MeCN. In freshly prepared solutions, polynuclear species were detected by electrospray ionization mass spectrometry, whereas X-band electron paramagnetic resonance studies in dilute, liquid solution suggested the presence of divalent mononuclear Mn species with g values of 2. However, the magnetochemical investigation of the complexes' solutions by the Evans technique confirmed a haphazard combination of manganese coordination complexes, from mononuclear to polynuclear species. Subsequently, the newly synthesized and characterized manganese molecular complexes were employed as precursors to prepare electrode-deposited films in a buffer-free solution to evaluate and compare their stability and catalytic activity for water oxidation electrocatalysis.
Collapse
Affiliation(s)
- Soosan Hosseinmardi
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Andreas Scheurer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Frank W. Heinemann
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Karsten Kuepper
- Department of PhysicsUniversity of OsnabrückBarbarastraße 749069OsnabrückGermany
| | - Laura Senft
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
- Present address: Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Pablo Waldschmidt
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
- Present address: Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MunichGermany
| | - Karsten Meyer
- Department of Chemistry and PharmacyInorganic ChemistryFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Egerlandstraße 191058ErlangenGermany
| |
Collapse
|
44
|
Cho I, Mozer AJ. Effect of Molecular Structure on Interfacial Electron Transfer Kinetics in the Framework of Classical Marcus Theory. Isr J Chem 2021. [DOI: 10.1002/ijch.202100084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inseong Cho
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute Innovation Campus Squires Way North Wollongong NSW 2500
| | - Attila J. Mozer
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute Innovation Campus Squires Way North Wollongong NSW 2500
| |
Collapse
|
45
|
Wang S, Chuang YT, Hsu LY. Simple but accurate estimation of light-matter coupling strength and optical loss for a molecular emitter coupled with photonic modes. J Chem Phys 2021; 155:134117. [PMID: 34624977 DOI: 10.1063/5.0060171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Light-matter coupling strength and optical loss are two key physical quantities in cavity quantum electrodynamics (CQED), and their interplay determines whether light-matter hybrid states can be formed or not in chemical systems. In this study, by using macroscopic quantum electrodynamics (MQED) combined with a pseudomode approach, we present a simple but accurate method, which allows us to quickly estimate the light-matter coupling strength and optical loss without free parameters. Moreover, for a molecular emitter coupled with photonic modes (including cavity modes and plasmon polariton modes), we analytically and numerically prove that the dynamics derived from the MQED-based wavefunction approach is mathematically equivalent to the dynamics governed by the CQED-based Lindblad master equation when the Purcell factor behaves like Lorentzian functions.
Collapse
Affiliation(s)
- Siwei Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Yi-Ting Chuang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
46
|
Affiliation(s)
- Aditi Vatsa
- Artificial Photosynthesis Laboratory Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - Sumanta Kumar Padhi
- Artificial Photosynthesis Laboratory Department of Chemistry Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| |
Collapse
|
47
|
Yang H, Du J, Wang CL, Zhan SZ. Synthesis, structure, characterization and catalytic behavior of a bis(thiosemicarbazonato)-nickel complex. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1943742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hao Yang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Juan Du
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Chun-Li Wang
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Shu-Zhong Zhan
- College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
48
|
Liu Y, Bian Y, Zhang Y, Hang C, Zhang X, Lou S, Jin Q. Fluorescence of CoTPP Mediated by the Plasmon-Exciton Coupling Effect in the Tunneling Junction. J Phys Chem Lett 2021; 12:5349-5356. [PMID: 34076440 DOI: 10.1021/acs.jpclett.1c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
CoTPP, as a common hypsoporphyrin, is usually not a luminescent molecule because of the open-shell Co ion. In this paper, well-defined multilayer CoTPP molecules self-assembled on Au(111) surface are characterized layer by layer with scanning tunneling microscope (STM) induced luminescence. By using the highly localized STM tunneling current, we not only investigate the influence of bias polarity on the amplitude of distinct plasmonic emission resulted from the interaction between the metal substrate and the metal ions but also first obtain the light emission from the hypsoporphyrins in the tunneling junction. The density-matrix method and the combined approach of classical electrodynamics and first-principles calculation are used to explain the mechanism of the light emission. These findings may expand the underlying physics of plasmon-exciton coupling in STM nanocavity and reveal a new possible path to overcome the fluorescent potential of hypsoporphyrins by the intense localized electric fields.
Collapse
Affiliation(s)
- Yiting Liu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Yajie Bian
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Yuyi Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Chao Hang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Xiaolei Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Shitao Lou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
| | - Qingyuan Jin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, P. R. China
- Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
49
|
Wang C, Yang H, Du J, Zhan S. Effects of halogen ligands of complexes supported by bis(methylthioether)pyridine on catalytic activities for electrochemical and photochemical driven hydrogen evolution. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chun‐Li Wang
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Hao Yang
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Juan Du
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Shu‐Zhong Zhan
- College of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| |
Collapse
|
50
|
Zhang H, Su X, Xie F, Liao R, Zhang M. Iron‐Catalyzed Water Oxidation: O–O Bond Formation via Intramolecular Oxo–Oxo Interaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hong‐Tao Zhang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiao‐Jun Su
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Fei Xie
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Rong‐Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Ming‐Tian Zhang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|