1
|
Martirosyan GG, Hovhannisyan AA, Harutyunyan LS, Aleksanyan AG, Iretskii AV, Ford PC. Nitrite Reduction with H 2S/Thiol Mediated by Cobalt and Manganese Porphyrins in the Solid State. Inorg Chem 2025; 64:741-750. [PMID: 39748670 DOI: 10.1021/acs.inorgchem.4c02733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The endogenous reduction of nitrite to nitrosyl is drawing increasing attention as a protective mechanism against hypoxic injury in mammalian physiology and as an alternative source of NO, which is involved in a wide variety of biological activities. Thus, chemical mechanisms for this transformation, which are mediated by metallo proteins, are of considerable interest. The study described here examines the reactions of the biomimetic models Co(TTP)(NO2) (TTP = meso-tetratolylporphyrinato dianion) and Mn(TPP)(ONO) (TPP = meso-tetraphenyl-porphyrinato dianion) in sublimated solid films with hydrogen sulfide (H2S) and with ethanethiol (EtSH) at various temperatures from 77 K to room temperature using in situ infrared and optical spectroscopy. In both cases, the coordinated nitrite complex is eventually converted to the respective nitrosyl Co(TTP)(NO) and Mn(TPP)(NO); however, reaction at low temperature first gave a novel six-coordinate complex M(Por)(RSH)(nitrite). Warming these films in the presence of excess thiol resulted in the formation of the two nitrosyl complexes. Mass spectrometric analysis of volatile products and DFT computations of possible intermediates are reported, and potential mechanisms for reduction of the coordinated nitrite ions are discussed.
Collapse
Affiliation(s)
- Garik G Martirosyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, Molecule Structure Research Centre, 26 Azatutyan Av., Yerevan 0014, Armenia
| | - Astghik A Hovhannisyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, Molecule Structure Research Centre, 26 Azatutyan Av., Yerevan 0014, Armenia
| | - Lusine S Harutyunyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, Molecule Structure Research Centre, 26 Azatutyan Av., Yerevan 0014, Armenia
| | - Ashkharuhi G Aleksanyan
- The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA, Molecule Structure Research Centre, 26 Azatutyan Av., Yerevan 0014, Armenia
| | - Alexei V Iretskii
- Lake Superior State University, Department of Chemistry, 650 W. Easterday Ave., Sault Ste. Marie, Michigan 49783, United States
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Ren Q, He Y, Wang H, Sun Y, Dong F. Photo-Switchable Oxygen Vacancy as the Dynamic Active Site in the Photocatalytic NO Oxidation Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qin Ren
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| | - Ye He
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| | - Hong Wang
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| | - Fan Dong
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan611731, China
| |
Collapse
|
3
|
Gallego CM, Mazzeo A, Gaviglio C, Pellegrino J, Doctorovich F. Structure and Reactivity of NO/NO
+
/NO
−
Pincer and Porphyrin Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Cecilia Mariel Gallego
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Agostina Mazzeo
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Carina Gaviglio
- Departamento de Física de la Materia Condensada Comisión Nacional de Energía Atómica, CAC-GIyANN Avenida General Paz 1499, San Martín Buenos Aires Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| | - Fabio Doctorovich
- Departamento de Química Inorgánica, Analítica y Química Física Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria Buenos Aires Argentina
| |
Collapse
|
4
|
Sun C, Yang L, Ortuño MA, Wright AM, Chen T, Head AR, López N, Dincă M. Spectroscopic Evidence of Hyponitrite Radical Intermediate in NO Disproportionation at a MOF-Supported Mononuclear Copper Site. Angew Chem Int Ed Engl 2021; 60:7845-7850. [PMID: 33645907 DOI: 10.1002/anie.202015359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Indexed: 12/11/2022]
Abstract
Dianionic hyponitrite (N2 O2 2- ) is often proposed, based on model complexes, as the key intermediate in reductive coupling of nitric oxide to nitrous oxide at the bimetallic active sites of heme-copper oxidases and nitric oxide reductases. In this work, we examine the gas-solid reaction of nitric oxide with the metal-organic framework CuI -ZrTpmC* with a suite of in situ spectroscopies and density functional theory simulations, and identify an unusual chelating N2 O2 .- intermediate. These results highlight the advantage provided by site-isolation in metal-organic frameworks (MOFs) for studying important reaction intermediates, and provide a mechanistic scenario compatible with the proposed one-electron couple in these enzymes.
Collapse
Affiliation(s)
- Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Luming Yang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Manuel A Ortuño
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Ashley M Wright
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Ashley R Head
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Núria López
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
5
|
Sun C, Yang L, Ortuño MA, Wright AM, Chen T, Head AR, López N, Dincă M. Spectroscopic Evidence of Hyponitrite Radical Intermediate in NO Disproportionation at a MOF‐Supported Mononuclear Copper Site. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chenyue Sun
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Luming Yang
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Manuel A. Ortuño
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Ashley M. Wright
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Tianyang Chen
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Ashley R. Head
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY 11973 USA
| | - Núria López
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
6
|
Wijeratne GB, Bhadra M, Siegler MA, Karlin KD. Copper(I) Complex Mediated Nitric Oxide Reductive Coupling: Ligand Hydrogen Bonding Derived Proton Transfer Promotes N 2O (g) Release. J Am Chem Soc 2019; 141:17962-17967. [PMID: 31621325 DOI: 10.1021/jacs.9b07286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A cuprous chelate bearing a secondary sphere hydrogen bonding functionality, [(PV-tmpa)CuI]+, transforms •NO(g) to N2O(g) in high-yields in methanol. Ligand derived proton transfer facilitates N-O bond cleavage of a putative hyponitrite intermediate releasing N2O(g), underscoring the crucial balance between H-bonding capabilities and acidities in (bio)chemical •NO(g) coupling systems.
Collapse
Affiliation(s)
- Gayan B Wijeratne
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Mayukh Bhadra
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Maxime A Siegler
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kenneth D Karlin
- Department of Chemistry , The Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
7
|
Gwak J, Ahn S, Baik MH, Lee Y. One metal is enough: a nickel complex reduces nitrate anions to nitrogen gas. Chem Sci 2019; 10:4767-4774. [PMID: 31160953 PMCID: PMC6510316 DOI: 10.1039/c9sc00717b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022] Open
Abstract
A stepwise reduction sequence from nitrate to dinitrogen gas at a single nickel center was discovered. A PNP nickel scaffold (PNP- = N[2-P i Pr2-4-Me-C6H3]2) emerged as a universal platform for the deoxygenation of NO x substrates. In these reactions carbon monoxide acts as the oxygen acceptor and forms CO2 to provide the necessary chemical driving force. Whereas the first two oxygens are removed from the Ni-nitrate and Ni-nitrite complexes with CO, the deoxygenation of NO requires a disproportionation reaction with another NO molecule to form NO2 and N2O. The final deoxygenation of nitrous oxide is accomplished by the Ni-NO complex and generates N2 and Ni-NO2 in a relatively slow, but clean reaction. This sequence of reactions is the first example of the complete denitrification of nitrate at a single metal-site and suggests a new paradigm of connecting CO and NO x as an effective reaction pair for NO x removal.
Collapse
Affiliation(s)
- Jinseong Gwak
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea . ;
| | - Seihwan Ahn
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea . ;
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , South Korea
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations , Institute for Basic Science (IBS) , Daejeon 34141 , South Korea
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea . ;
| | - Yunho Lee
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea . ;
| |
Collapse
|
8
|
Xiong T, Wang H, Zhou Y, Sun Y, Cen W, Huang H, Zhang Y, Dong F. KCl-mediated dual electronic channels in layered g-C 3N 4 for enhanced visible light photocatalytic NO removal. NANOSCALE 2018; 10:8066-8074. [PMID: 29671458 DOI: 10.1039/c8nr01433g] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Limited by relatively fast charge carrier recombination, the performance of g-C3N4 photocatalysts is still far below what is expected. Herein, we tackle this challenge by introducing K and Cl ions into the interlayer of graphitic carbon nitride (KCl-doped g-C3N4). It is found that K and Cl ions coexisting in g-C3N4 could function as a dual channel for electron and hole transfer, respectively. As-prepared KCl-doped g-C3N4 shows a narrow bandgap, positive-shifted valence band edge and lower barriers for charge transfer between layers. Under visible light irradiation, the electrons created in the g-C3N4 layer are transferred by K ions, while the holes are transferred via Cl ions to induce photocatalysis. As expected, the enhanced visible light absorption, strong oxidization ability of the valence band holes and the prolonged lifetime of the charge carriers benefiting from the dual electronic channel endow KCl-doped g-C3N4 with a superior photocatalytic performance for NOx removal, exceeding the performances of both bare g-C3N4 and K doped g-C3N4. An in situ DRIFTS investigation reveals the reaction mechanism of the photocatalytic NO oxidation. The perspective of the dual channel for charge transfer could present a new design concept to effectively steer the efficiency of photocatalysts.
Collapse
Affiliation(s)
- Ting Xiong
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Xie D, Sun Y, Zhu T, Hou L, Hong X. Nitric Oxide Oxidation and Its Removal in Mist by Nonthermal Plasma: Effects of Discharge Conditions. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deyuan Xie
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Ye Sun
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Liyuan Hou
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Xiaowei Hong
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| |
Collapse
|
10
|
Rahman MH, Ryan MD. Redox and Spectroscopic Properties of Iron Porphyrin Nitroxyl in the Presence of Weak Acids. Inorg Chem 2017; 56:3302-3309. [DOI: 10.1021/acs.inorgchem.6b02665] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Md. Hafizur Rahman
- Marquette University Chemistry Department, PO Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Michael D. Ryan
- Marquette University Chemistry Department, PO Box 1881, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
11
|
Gaviglio C, Pellegrino J, Milstein D, Doctorovich F. NO˙ disproportionation by a {RhNO}9 pincer-type complex. Dalton Trans 2017; 46:16878-16884. [DOI: 10.1039/c7dt03944a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NO˙ disproportionation by the pincer-type complex [Rh(PCPtBu)(NO)]˙ (1˙) results in the formation of Rh(PCPtBu)(NO)(NO2) (2) with coordinated nitrite and quantitative release of N2O.
Collapse
Affiliation(s)
- Carina Gaviglio
- Comisión Nacional de Energía Atómica
- CAC-GIyANN
- Departamento de Física de la Materia Condensada
- Buenos Aires
- Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica
- Analítica
- y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires. INQUIMAE-CONICET
| | - David Milstein
- Department of Organic Chemistry
- The Weizmann Institute of Science
- Rehovot
- Israel
| | - Fabio Doctorovich
- Departamento de Química Inorgánica
- Analítica
- y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires. INQUIMAE-CONICET
| |
Collapse
|
12
|
Kurtikyan TS, Hovhannisyan AA, Ford PC. Six-Coordinate Ferrous Nitrosyl Complex Fe II(TTP)(PMe 3)(NO) (TTP = meso-Tetra-p-tolylporphyrinato Dianion). Inorg Chem 2016; 55:9517-9520. [PMID: 27643944 DOI: 10.1021/acs.inorgchem.6b01744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Low-temperature in situ Fourier transform infrared and UV-vis measurements show that trimethylphosphine (PMe3) reacts with microporous layers of FeII(TTP)(NO) (TTP = meso-tetra-p-tolylporphyrinato dianion; NO = nitric oxide) to form the previously unknown six-coordinate complex FeII(TTP)(PMe3)(NO). Upon warming this compound to room temperature in the presence of excess phosphine, the NO ligand is completely replaced by phosphine, resulting in formation of the bis(trimethylphosphine) complex FeII(TTP)(PMe3)2. Simultaneously, the NO released oxidizes free PMe3 to the corresponding phosphine oxide (OPMe3) with concomitant formation of nitrous oxide (N2O).
Collapse
Affiliation(s)
- Tigran S Kurtikyan
- Molecule Structure Research Centre of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS , 0014 Yerevan, Armenia
| | - Astghik A Hovhannisyan
- Molecule Structure Research Centre of the Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS , 0014 Yerevan, Armenia
| | - Peter C Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara , Santa Barbara, California 93106-9510, United States
| |
Collapse
|
13
|
Papastergiou M, Stathi P, Milaeva E, Deligiannakis Y, Louloudi M. Comparative study of the catalytic thermodynamic barriers for two homologous Mn- and Fe-non-heme oxidation catalysts. J Catal 2016. [DOI: 10.1016/j.jcat.2016.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Brozek CK, Miller JT, Stoian SA, Dincă M. NO Disproportionation at a Mononuclear Site-Isolated Fe2+ Center in Fe2+-MOF-5. J Am Chem Soc 2015; 137:7495-501. [DOI: 10.1021/jacs.5b03761] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carl K. Brozek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey T. Miller
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department
of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, Indiana 47907, United States
| | - Sebastian A. Stoian
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Thermoanalytical study of linkage isomerism in coordination compounds. Part 5: A DSC and DFT study on the linkage isomerization of the dinitrito and dinitro isomers of cis-tetraamminecobalt(III) complexes. Polyhedron 2015. [DOI: 10.1016/j.poly.2014.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
|
17
|
Kal S, Ayensu-Mensah L, Dinolfo PH. Evidence for catalytic water oxidation by a dimanganese tetrakis-Schiff base macrocycle. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Eslami A, Hasani N, Yeganegi S. A Differential Scanning Calorimetry and Theoretical Study on the Isomerization oftrans-[Co(cyclam)(ONO)2]X (X = PF6-, ClO4-). Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Reaction of nitrogen dioxide with iron tetraphenylporphyrinate nitro complex containing the trans-1-methylimidazole ligand. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0236-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Wright AM, Zaman HT, Wu G, Hayton TW. Mechanistic Insights into the Formation of N2O by a Nickel Nitrosyl Complex. Inorg Chem 2014; 53:3108-16. [DOI: 10.1021/ic403038e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ashley M. Wright
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Homaira T. Zaman
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
21
|
Weak coordination of neutral S- and O-donor proximal ligands to a ferrous porphyrin nitrosyl. Characterization of 6-coordinate complexes at low T. J Inorg Biochem 2013; 121:129-33. [PMID: 23376554 DOI: 10.1016/j.jinorgbio.2012.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 11/23/2022]
Abstract
The interaction of the S- and O-donor ligands tetrahydrothiophen (THT) and tetrahydrofuran (THF) with the ferrous nitrosyl complex Fe(TTP)(NO) (TTP(2-) is meso-tetra-p-tolyl-porphyrinatodianion) was studied at various temperatures both in solid state and solution using electronic and infrared absorption spectroscopy. Upon addition of these ligands to a cryostat containing sublimed layers of Fe(TTP)(NO), no complex formation was detected at room temperature. However, upon lowering the temperature, spectral changes were observed that are consistent with ligand binding in axial position trans to the NO (the proximal site) and formation of the six-coordinate adducts. Analogous behavior was observed in solution. In both media, the six-coordinate adducts are stable only at low temperature and dissociate to the 5-coordinate nitrosyl complexes upon warming. The NO stretching frequencies of the six-coordinate thioether and ether complexes were recorded and binding constants for the weak bonding of proximal THF and THT ligands were determined from the spectral changes. These parameters are compared with those obtained for the N-donor ligand pyrrolidine.
Collapse
|
22
|
Arulsamy N, Bohle DS, Holman CL, Perepichka I. E versus Z diazeniumdiolation of acetoacetate-derived carbanions. J Org Chem 2012; 77:7313-8. [PMID: 22852822 DOI: 10.1021/jo301025k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nitric oxide adds to methyl acetoacetate in the presence of KOH in methanol at room temperature to form potassium acetylsydnonate N-oxide (K1) with an (E)-diazeniumdiolation and potassium acetate diazenium diolate (K(2)2) from a (Z)-diazeniumdiolation. A study of the reaction with LiOH, NaOH, and NMe(4)OH and with ethyl acetate substrate reveals that the temperature of the reaction greatly influences the nitric oxide reactivity. At 23 °C, nitric oxide adds to give both E and Z products, whereas at -5 °C the gas reacts almost exclusively to give Z addition. The (Z)-diazeniumdiolation products, namely, the alkali metal and NMe(4)(+) salts of methyl and ethylbutenoate-2-diazeniumdiolate-3-hydroxylate (3(2-) and 4(2-)), are isolated in good yields. The alkali metal salts are not amenable for recrystallization because of their ready decomposition in aqueous solutions. However, [NMe(4)](2)[MeC(O)C(N(2)O(2))CO(2)Me] is readily recrystallized from a methanol/acetonitrile solvent mixture. The crystals are unambiguously characterized by X-ray crystallography. NMR spectra for all of the 3(2-) and 4(2-) salts reveal the presence of two isomers in aq solutions. But the structure of the NMe(4)(+) salt contains only one of the isomers. Our attempts to cyclize the isolated and purified butenoatediazeniumdiolates from the (Z)-diazeniumdiolation to the E-containing sydnonate products were unsuccessful. TGA/DSC data for all of the products demonstrate the thermal instability of the salts at high temperatures. The salts decompose exothermally possibly with the release of N(2)O among other gases.
Collapse
Affiliation(s)
- Navamoney Arulsamy
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming 82072-2000, USA.
| | | | | | | |
Collapse
|
23
|
Kurtikyan TS, Hovhannisyan AA, Iretskii AV, Ford PC. Six-Coordinate Nitro Complexes of Iron(III) Porphyrins with trans S-Donor Ligands. Oxo-Transfer Reactivity in the Solid State. Inorg Chem 2009; 48:11236-41. [DOI: 10.1021/ic901722g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Alexei V. Iretskii
- Department of Chemistry, Environmental Sciences, Geology and Physics, Lake Superior State University, Sault Ste Marie, Michigan 49783
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510
| |
Collapse
|
24
|
Filipović MR, Duerr K, Mojović M, Simeunović V, Zimmermann R, Niketić V, Ivanović-Burmazović I. NO dismutase activity of seven-coordinate manganese(II) pentaazamacrocyclic complexes. Angew Chem Int Ed Engl 2009; 47:8735-9. [PMID: 18924192 DOI: 10.1002/anie.200801325] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Filipović M, Duerr K, Mojović M, Simeunović V, Zimmermann R, Niketić V, Ivanović-Burmazović I. NO-Dismutase-Aktivität siebenfach koordinierter Mangan(II)- Komplexe von Pentaazamakrocyclen. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
FTIR and optical spectroscopic studies of the reactions of heme models with nitric oxide and other NOx in porous layered solids. Coord Chem Rev 2008. [DOI: 10.1016/j.ccr.2007.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Heterogenization of ruthenium porphyrin complexes in polymeric membranes: Catalytic aziridination of styrenes. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcata.2007.11.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
28
|
Kurtikyan TS, Hovhannisyan AA, Gulyan GM, Ford PC. Interaction of nitrogen bases with iron-porphyrin nitrito complexes Fe(Por)(ONO) in sublimed solids. Inorg Chem 2007; 46:7024-31. [PMID: 17636900 DOI: 10.1021/ic700846x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of the nitrogen Lewis bases (B) 1-methylimidazole (1-MeIm), pyridine (Py), and NH3 as gases with sublimed layers containing the 5-coordinate nitrito iron(III)-porphyrinato complexes Fe(Por)(eta1-ONO) (1) are described (Por = meso-tetraphenyl-porphyrinato or meso-tetra-p-tolyl-porphyrinato dianions). In situ FTIR and optical spectra are used to characterize the formation of the 6-coordinate nitro complexes formed by the reaction of 1 with B = 1-MeIm, Py, or NH3. These represent the first examples of 6-coordinate amino-nitro complexes with sterically unprotected iron-porphyrins. The interaction of ammonia with Fe(Por)(ONO) at 140 K initially led to the nitrito species Fe(Por)(NH3)(eta1-ONO), and this species isomerized to the nitro complexes Fe(Por)(NH3)(eta1-NO2) upon warming to 180 K. When the latter were warmed to room temperature under intense pumping, the initial nitrito complexes Fe(Por)(eta1-ONO) were restored. Assignments of vibrational frequencies for the coordinated nitro group in 6-coordinate iron-porphyrin complexes are given and confirmed using 15N-labeled nitrogen dioxide to identify characteristic infrared bands. For M(Por)(B)(NO2) complexes (M = Fe or Co), an inverse correlation between the net charge transfer from the axial ligand B to the nitro group and the value of Deltanu = nua(NO2) - nus(NO2) is proposed. These observations are discussed in the context of growing interest in potential physiological roles of nitrite ion reactions with ferro- and ferri-heme proteins.
Collapse
Affiliation(s)
- Tigran S Kurtikyan
- Molecule Structure Research Centre (MSRC) NAS, 375014, Yerevan, Armenia.
| | | | | | | |
Collapse
|