Hossain F, Rigsby MA, Duncan CT, Milligan PL, Lord RL, Baik MH, Schultz FA. Synthesis, Structure, and Properties of Low-Spin Manganese(III)−Poly(pyrazolyl)borate Complexes.
Inorg Chem 2007;
46:2596-603. [PMID:
17330969 DOI:
10.1021/ic062224+]
[Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The manganese(III)-bis[poly(pyrazolyl)borate] complexes, Mn(pzb)2SbF6, where pzb- = tetrakis(pyrazolyl)borate (pzTp) (1), hydrotris(pyrazolyl)borate (Tp) (2), or hydrotris(3,5-dimethylpyrazolyl)borate (Tp*) (3), have been synthesized by oxidation of the corresponding Mn(pzb)2 compounds with NOSbF6. The Mn(III) complexes are low-spin in solution and the solid state (microeff = 2.9-3.8 microB). X-ray crystallography confirms their uncommon low-spin character. The close conformity of mean Mn-N distances of 1.974(4), 1.984(5), and 1.996(4) A in 1, 2, and 3, respectively, indicates absence of the characteristic Jahn-Teller distortion of a high-spin d4 center. N-Mn-N bite angles of slightly less than 90 degrees within the facially coordinated pzb- ligands produce a small trigonal distortion and effective D3d symmetry in 1 and 2. These angles increase to 90.0(4)degrees in 3, yielding an almost perfectly octahedral disposition of N donors in Mn(Tp*)2+. Examination of structural data from 23 metal-bis(pzb) complexes reveals systematic changes within the metal-(pyrazolyl)borate framework as the ligand is changed from pzTp to Tp to Tp*. These deformations consist of significant increases in M-N-N, N-B-N, and N-N-B angles and a minimal increase in Mn-N distance as a consequence of the steric demands of the 3-methyl groups. Less effective overlap of pyrazole lone pairs with metal atom orbitals resulting from the M-N-N angular displacement is suggested to contribute to the lower ligand field strength of Tp* complexes. Mn(pzb)2+ complexes undergo electrochemical reduction and oxidation in CH3CN. The electrochemical rate constant (ks,h) for reduction of t2g4 Mn(pzb)2+ to t2g3eg2 Mn(pzb)2 (a coupled electron-transfer and spin-crossover reaction) is 1-2 orders of magnitude smaller than that for oxidation of t2g4 Mn(pzb)2+ to t2g3 Mn(pzb)22+. ks,h values decrease as Tp* > pzTp > Tp for the Mn(pzb)2+/0 electrode reactions, which contrasts with the behavior of the comparable Fe(pzb)2+/0 and Co(pzb)2+/0 couples.
Collapse