1
|
Passadis SS, Gray M, Parac-Vogt TN, Keramidas AD, Miras HN, Kabanos TA. Revitalisation of group IV metal-oxo clusters: synthetic approaches, structural motifs and applications. Dalton Trans 2024. [PMID: 39446114 DOI: 10.1039/d4dt02417f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Group (IV) metal oxo clusters represent a unique family of molecular species that are increasingly being utilized in applications ranging from catalysis and materials chemistry to electronics, and sensors. These clusters exhibit distinctive structural features, chemical reactivity, and electronic structure. Nevertheless, their full potential has yet to be fully realized due to the lack of deeper understanding regarding their structure and formation mechanisms, inherent traits, and intricacies in their design, which could ultimately enable significant customization of their properties and overall behaviour. Considering the recently observed reignited interest in the chemistry of group IV molecular species, the scope of this article is to bring to the readers the main chemical characteristics of the family of titanium, zirconium, and hafnium-based clusters, their structural features and their potential in future applications.
Collapse
Affiliation(s)
- Stamatis S Passadis
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Mark Gray
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | - Themistoklis A Kabanos
- Section of Inorganic and Analytical Chemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
2
|
Maksimchuk NV, Marikovskaya SM, Larionov KP, Evtushok VY, Yanshole VV, Antonov AA, Kholdeeva OA. Effect of the Polyanion Structure on the Mechanism of Alcohol Oxidation with H 2O 2 Catalyzed by Zr-Substituted Polyoxotungstates. Inorg Chem 2024; 63:18043-18057. [PMID: 39300783 DOI: 10.1021/acs.inorgchem.4c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Zr-monosubstituted polyoxometalates (Zr-POMs) of the Lindqvist (Bu4N)6[{W5O18Zr(μ-OH)}2] (1), Keggin (Bu4N)8[{PW11O39Zr(μ-OH)}2] (2), and Wells-Dawson (Bu4N)11.3K2.5H0.2[{P2W17O61Zr}2(μ-OH)2] (3) structures catalyze oxidation of alcohols using aqueous hydrogen peroxide as an oxidant. With 1 equiv of H2O2 and 1 mol % of Zr-POM, selectivity toward aldehydes and ketones varied from good to excellent, depending on the alcohol nature. Catalytic activity and attainable substrate conversions strongly depended on the Zr-POM structure and most often decreased in the order 1 > 2 ≫ 3. The reaction mechanism was probed using a test substrate, cyclobutanol, radical and 1O2 scavengers, and kinetic and spectroscopic (attenuated total reflectance-Fourier transform infrared (ATR-FT-IR), 31P NMR and electrospray ionization-mass spectrometry (ESI-MS)) tools. The results point to heterolytic alcohol oxidation in the presence of 1 and 2 and homolytic alcohol oxidation in the presence of 3. Kinetic and spectroscopic studies implicated an oxidation mechanism that involves both alcohol and peroxide binding to 2 followed by an inner-sphere heterolytic H-abstraction from the α-C-H bond by the Zr-hydroperoxo group, leading to a carbonyl compound. The unique capability of 1 to generate 1O2 upon interaction with H2O2 complicates the reaction kinetics and improves the product yield. Spectroscopic studies coupled with stoichiometric experiments unveiled that dimeric monoperoxo {Zr2(μ-η2:η2-O2)} and monomeric hydroperoxo {Zr(η2-OOH)} species accomplish the transformation of alcohols to carbonyl compounds.
Collapse
Affiliation(s)
| | | | - Kirill P Larionov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Vasilii Yu Evtushok
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Artem A Antonov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Oxana A Kholdeeva
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Colliard I, Deblonde GJP. From +I to +IV, Alkalis to Actinides: Capturing Cations across the Periodic Table with Keggin Polyoxometalate Ligands. Inorg Chem 2024; 63:16293-16303. [PMID: 39173120 DOI: 10.1021/acs.inorgchem.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Coordination chemistry trends across the periodic table are often difficult to probe experimentally due to limitations in finding a versatile but consistent chelating platform that can accommodate various elements without changing its coordination mode. Herein, we present new metal/ligand systems covering a wide range of ionic radii, charges, and elements. Five different ligands derived from the Keggin structure (HBW11O398-, PW11O397-, SiW11O398-, GeW11O398-, and GaW11O399-) were successfully crystallized with six different cations (Na+, Sr2+, Ba2+, La3+, Ce4+, and Th4+) and characterized by single-crystal X-ray diffraction. Twenty-five new compounds were obtained by using Cs+ as the counterion, yielding a consistent base formula of Csx[M(XW11O39)2]·nH2O. Despite having a similar first-coordination sphere geometry (i.e., 8-coordinated), the nature of the central cation was found to impact the long-range geometry of the complexes. This unique crystallographic data set shows that, despite the traditional consensus, the local geometry of the cation (i.e., metal-oxygen bond distance) is not enough to depict the full impact of the complexed metal ion. The bending and twisting of the complexes, as well as ligand-ligand distances, were all impacted by the nature of the central cation. We also observed that counterions play a critical role by stabilizing the geometry of the M(XW11)2 complex and directing complex-complex interactions in the lattice. We also define certain structural limits for this type of complex, with the large Ba2+ ion seemingly approaching those limits. This study thus lays the foundation for capturing the coordination chemistry of other rarer elements across the periodic table such as Ra2+, Ac3+, Bk4+, Cf3+, etc.
Collapse
Affiliation(s)
- Ian Colliard
- Physical and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
4
|
Balcaen T, Benova A, de Jong F, de Oliveira Silva R, Cajka T, Sakellariou D, Tencerova M, Kerckhofs G, De Borggraeve WM. Exploring contrast-enhancing staining agents for studying adipose tissue through contrast-enhanced computed tomography. J Lipid Res 2024; 65:100572. [PMID: 38823780 PMCID: PMC11259937 DOI: 10.1016/j.jlr.2024.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
Contrast-enhanced computed tomography offers a nondestructive approach to studying adipose tissue in 3D. Several contrast-enhancing staining agents (CESAs) have been explored, whereof osmium tetroxide (OsO4) is the most popular nowadays. However, due to the toxicity and volatility of the conventional OsO4, alternative CESAs with similar staining properties were desired. Hf-WD 1:2 POM and Hexabrix have proven effective for structural analysis of adipocytes using contrast-enhanced computed tomography but fail to provide chemical information. This study introduces isotonic Lugol's iodine (IL) as an alternative CESA for adipose tissue analysis, comparing its staining potential with Hf-WD 1:2 POM and Hexabrix in murine caudal vertebrae and bovine muscle tissue strips. Single and sequential staining protocols were compared to assess the maximization of information extraction from each sample. The study investigated interactions, distribution, and reactivity of iodine species towards biomolecules using simplified model systems and assesses the potential of the CESA to provide chemical information. (Bio)chemical analyses on whole tissues revealed that differences in adipocyte gray values post-IL staining were associated with chemical distinctions between bovine muscle tissue and murine caudal vertebrae. More specific, a difference in the degree of unsaturation of fatty acids was identified as a likely contributor, though not the sole determinant of gray value differences. This research sheds light on the potential of IL as a CESA, offering both structural and chemical insights into adipose tissue composition.
Collapse
Affiliation(s)
- Tim Balcaen
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium; Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Andrea Benova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Science, Charles University, Prague, Czech Republic
| | - Flip de Jong
- Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Rodrigo de Oliveira Silva
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Tomas Cajka
- Laboratory of Translational Metabolism, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dimitrios Sakellariou
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Greet Kerckhofs
- Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium.
| | - Wim M De Borggraeve
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Davis S, Karali A, Balcaen T, Zekonyte J, Pétré M, Roldo M, Kerckhofs G, Blunn G. Comparison of two contrast-enhancing staining agents for use in X-ray imaging and digital volume correlation measurements across the cartilage-bone interface. J Mech Behav Biomed Mater 2024; 152:106414. [PMID: 38277908 DOI: 10.1016/j.jmbbm.2024.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE The pathogenesis of osteoarthritis (OA) is associated with subchondral bone changes, which is linked to abnormal strain distribution in the overlying articular cartilage. This highlights the importance of understanding mechanical interaction at the cartilage-bone interface. The aim of this study is to compare solutions of two contrast-enhancing staining agents (CESA) for combining high-resolution Contrast-Enhanced X-ray microfocus Computed Tomography (CECT) with Digital Volume Correlation (DVC) for full-field strain measurements at the cartilage-bone interface. DESIGN Bovine osteochondral plugs were stained with phosphotungstic acid (PTA) in 70% ethanol or 1:2 hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) in PBS. Mechanical properties were assessed using micromechanical probing and nanoindentation. Strain uncertainties (from CECT data) were evaluated following two consecutive unloaded scans. Residual strains were computed following unconfined compression (ex situ) testing. RESULTS PTA and Hf-WD POM enabled the visualisation of structural features in cartilage, allowing DVC computation on the CECT data. Residual strains up to ∼10,000 μɛ were detected up to the tidemark. Nanoindentation showed that PTA-staining caused an average ∼6-fold increase in articular cartilage stiffness, a ∼19-fold increase in reduced modulus and ∼7-fold increase in hardness, whereas Hf-WD POM-stained specimens had mechanical properties similar to pre-stain tissue. Micromechanical probing showed a 77% increase in cartilage surface stiffness after PTA-staining, in comparison to a 16% increase in stiffness after staining with Hf-WD POM. CONCLUSION Hf-WD POM is a more suitable CESA solution compared to PTA for CECT imaging combined with DVC as it allowed visualisation of structural features in the cartilage tissue whilst more closely maintaining tissue mechanical properties.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK; School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK.
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Tim Balcaen
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Maïté Pétré
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Heverlee, Belgium
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Materials Engineering, KU Leuven, Heverlee, Belgium; Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
6
|
Maksimchuk NV, Marikovskaya SM, Larionov KP, Antonov AA, Shashkov MV, Yanshole VV, Evtushok VY, Kholdeeva OA. Tuning Reactivity of Zr-Substituted Keggin Phosphotungstate in Alkene Epoxidation through Balancing H 2O 2 Activation Pathways: Unusual Effect of Base. Inorg Chem 2023; 62:18955-18969. [PMID: 37927081 DOI: 10.1021/acs.inorgchem.3c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The Zr-monosubstituted Keggin-type dimeric phosphotungstate (Bu4N)8[{PW11O39Zr(μ-OH)(H2O)}2] (1) efficiently catalyzes epoxidation of C═C bonds in various kinds of alkenes, including terminal ones, with aqueous H2O2 as oxidant. Less sterically hindered double bonds are preferably epoxidized despite their lower nucleophilicity. Basic additives (Bu4NOH) in the amount of 1 equiv per dimer 1 suppress H2O2 unproductive decomposition, increase substrate conversion, improve yield of heterolytic oxidation products and oxidant utilization efficiency, and also affect regioselectivity of epoxidation, enhancing oxygen transfer to sterically hindered electron-rich C═C bonds. Acid additives produce a reverse effect on the substrate conversion and H2O2 efficiency. The reaction mechanism was explored using a range of test substrates, kinetic, and spectroscopic tools. The opposite effects of acid and base additives on alkene epoxidation and H2O2 degradation have been rationalized in terms of their impact on hydrolysis of 1 to form monomeric species, [PW11O39Zr(OH)(H2O)x]4- (1-M, x = 1 or 2), which favors H2O2 homolytic decomposition. The interaction of 1 with H2O2 has been investigated by HR-ESI-MS, ATR-FT-IR, and 31P NMR spectroscopic techniques. The combination of spectroscopic studies and kinetic modeling implicated the existence of two types of dimeric peroxo complexes, [Zr2(μ-η2:η2-O2){PW11O39}2(H2O)x]]8- and [{Zr(μ-η2-O2)}2(PW11O39)2(H2O)y]10-, along with monomeric Zr (hydro)peroxo species that begin to dominate at a high excess of H2O2. Both dimeric μ-η2-peroxo intermediates are inert toward alkenes under stoichiometric conditions. V-shape Hammett plots obtained for epoxidation of p-substituted styrenes suggested a biphilic nature of the active oxidizing species, which are monomeric Zr-hydroperoxo and peroxo species. Small basic additives increase the electrophilicity of the catalyst and decrease its nucleophilicity. HR-ESI-MS has identified a dimeric, most likely, bridging hydroperoxo species [{PW11O39Zr}2(μ-O)(μ-OOH)]9-, which may account for the improved epoxidation selectivity and regioselectivity toward sterically hindered C═C bonds.
Collapse
Affiliation(s)
| | - Sofia M Marikovskaya
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Kirill P Larionov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Artem A Antonov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia
| | - Mikhail V Shashkov
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Vadim V Yanshole
- International Tomography Center SB RAS, Novosibirsk 630090, Russia
| | - Vasilii Yu Evtushok
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| | - Oxana A Kholdeeva
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Leyssens L, Balcaen T, Pétréa M, Ayllón NB, Aazmani WE, de Pierpont A, Pyka G, Lacroix V, Kerckhofs G. Non-destructive 3D characterization of the blood vessel wall microstructure in different species and blood vessel types using contrast-enhanced microCT and comparison with synthetic vascular grafts. Acta Biomater 2023; 164:303-316. [PMID: 37072066 DOI: 10.1016/j.actbio.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
To improve the current treatment for vascular diseases, such as vascular grafts, intravascular stents, and balloon angioplasty intervention, the evaluation of the native blood vessel microstructure in full 3D could be beneficial. For this purpose, we used contrast-enhanced X-ray microfocus computed tomography (CECT): a combination of X-ray microfocus computed tomography (microCT) and contrast-enhancing staining agents (CESAs) containing high atomic number elements. In this work, we performed a comparative study based on staining time and contrast-enhancement of 2 CESAs: Monolacunary and 1:2 Hafnium-substituted Wells-Dawson polyoxometalate (Mono-WD POM and Hf-WD POM, respectively) for imaging of the porcine aorta. After showing the advantages of Hf-WD POM in terms of contrast enhancement, we expanded our imaging to other species (rat, porcine, and human) and other types of blood vessels (porcine aorta, femoral artery, and vena cava), clearly indicating microstructural differences between different types of blood vessels and different species. We then showed the possibility to extract useful 3D quantitative information from the rat and porcine aortic wall, potentially to be used for computational modeling or for future design optimization of graft materials. Finally, a structural comparison with existing synthetic vascular grafts was made. This information will allow to better understand the in vivo functioning of native blood vessels and to improve the current disease treatments. STATEMENT OF SIGNIFICANCE: Synthetic vascular grafts, used as treatment for some cardiovascular diseases, still often fail clinically, potentially because of a mismatch in mechanical behaviour between the native blood vessel and the graft. To better understand the causes of this mismatch, we studied the full 3D microstructure of blood vessels. For this, we identified Hafnium-substituted Wells-Dawson polyoxometalate as contrast-enhancing staining agent to perform contrast-enhanced X-ray microfocus computed tomography. This technique allowed to show important differences in the microstructure of different types of blood vessels and in different species, as well as with that of synthetic grafts. This information can lead to a better understanding of the functioning of blood vessels and will allow to improve current disease treatments, such as vascular grafts.
Collapse
Affiliation(s)
- Lisa Leyssens
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Tim Balcaen
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Maïté Pétréa
- Department BioMechanics, KU Leuven, 3001 Leuven, Belgium
| | - Natalia Béjar Ayllón
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Walid El Aazmani
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Alix de Pierpont
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium
| | - Grzegorz Pyka
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Valérie Lacroix
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Cliniques Universitaires Saint-Luc, Service de chirurgie cardiovasculaire et thoracique, 1200 Woluwe-Saint-Lambert, Belgium
| | - Greet Kerckhofs
- Mechatronic, Electrical Energy and Dynamic Systems, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, 1348 Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, 1200 Woluwe-Saint-Lambert, Belgium; Department of Materials Engineering, KU Leuven, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Iijima J, Naruke H, Suzuki RX. Structural and Chemical Effects of the Surrounding Cations and Coexisting Compounds on [M(α-PW 11O 39) 2] n. ACS OMEGA 2023; 8:9673-9683. [PMID: 36936328 PMCID: PMC10018686 DOI: 10.1021/acsomega.3c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The effects of countercations and coexisting compounds on the molecular structure of the [M(α-PW11O39)2] n- polyanion were analyzed in terms of the repulsion and twisting of two [α-PW11O39]7- units. More specifically, it was found that two [α-PW11O39]7- ions approached one another upon reducing the ionic radius of M in [M(α-PW11O39)2] n-. The interactive twisting of the [α-PW11O39]7- units prevented mutual repulsion of the units containing terminal O atoms, and the tendency for approach and twisting of the [α-PW11O39]7- units varied as a function of the type of countercation and the presence of coexisting compounds. Overall, this study demonstrated that some interactions between the counteraction and coexisting compounds with [M(α-PW11O39)2] n- determined the molecular conformation and the isolated form of the polyanion.
Collapse
Affiliation(s)
- Jun Iijima
- Department
of Engineering, Tokyo University of Agriculture
and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| | - Haruo Naruke
- University
Research Administrator (URA), Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ryuta X. Suzuki
- Department
of Engineering, Tokyo University of Agriculture
and Technology, 2-24-16, Naka-cho, Koganei city, Tokyo 184-8588, Japan
| |
Collapse
|
9
|
Abstract
A novel Zr-added trimer, [H2N(CH3)2]10H14[(Zr2P2W16O61)3]·7H2O (1), has been made under hydrothermal conditions, and contains the highest number of Zr centers in known Dawson-type poly(POM)s. A remarkable feature of this study is the first discovery of a new type of divacant [α-5,10-P2W16O60]14- fragment, which assembles with Zr4+ ions to form a cyclic trimer. Furthermore, 1 as a heterogeneous catalyst exhibits high activity for the selective oxidative degradation of a sulfur mustard simulant CEES.
Collapse
Affiliation(s)
- Hai-Lou Li
- Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Chen Lian
- Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| | - Guo-Yu Yang
- Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China.
| |
Collapse
|
10
|
Balcaen T, Piens C, Mwema A, Chourrout M, Vandebroek L, Des Rieux A, Chauveau F, De Borggraeve WM, Hoffmann D, Kerckhofs G. Revealing the three-dimensional murine brain microstructure by contrast-enhanced computed tomography. Front Neurosci 2023; 17:1141615. [PMID: 37034159 PMCID: PMC10076597 DOI: 10.3389/fnins.2023.1141615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
To improve our understanding of the brain microstructure, high-resolution 3D imaging is used to complement classical 2D histological assessment techniques. X-ray computed tomography allows high-resolution 3D imaging, but requires methods for enhancing contrast of soft tissues. Applying contrast-enhancing staining agents (CESAs) ameliorates the X-ray attenuating properties of soft tissue constituents and is referred to as contrast-enhanced computed tomography (CECT). Despite the large number of chemical compounds that have successfully been applied as CESAs for imaging brain, they are often toxic for the researcher, destructive for the tissue and without proper characterization of affinity mechanisms. We evaluated two sets of chemically related CESAs (organic, iodinated: Hexabrix and CA4+ and inorganic polyoxometalates: 1:2 hafnium-substituted Wells-Dawson phosphotungstate and Preyssler anion), for CECT imaging of healthy murine hemispheres. We then selected the CESA (Hexabrix) that provided the highest contrast between gray and white matter and applied it to a cuprizone-induced demyelination model. Differences in the penetration rate, effect on tissue integrity and affinity for tissue constituents have been observed for the evaluated CESAs. Cuprizone-induced demyelination could be visualized and quantified after Hexabrix staining. Four new non-toxic and non-destructive CESAs to the field of brain CECT imaging were introduced. The added value of CECT was shown by successfully applying it to a cuprizone-induced demyelination model. This research will prove to be crucial for further development of CESAs for ex vivo brain CECT and 3D histopathology.
Collapse
Affiliation(s)
- Tim Balcaen
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Catherine Piens
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
| | - Ariane Mwema
- Advanced Drug Delivery and Biomaterials, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, UCLouvain, Brussels, Belgium
| | - Matthieu Chourrout
- Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche en Neurosciences de Lyon U1028 UMR 5292, Bron, France
| | - Laurens Vandebroek
- Laboratory of Biomolecular Modelling and Design (LBMD), Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Anne Des Rieux
- Advanced Drug Delivery and Biomaterials, UCLouvain, Brussels, Belgium
| | - Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche en Neurosciences de Lyon U1028 UMR 5292, Bron, France
| | - Wim M. De Borggraeve
- MolDesignS, Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Delia Hoffmann
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- ContrasT Team, Institute of Mechanics, Materials and Civil Engineering, Mechatronic, Electrical Energy and Dynamic Systems, UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department Materials Engineering, KU Leuven, Leuven, Belgium
- *Correspondence: Greet Kerckhofs,
| |
Collapse
|
11
|
Recent Advances of Ti/Zr-Substituted Polyoxometalates: From Structural Diversity to Functional Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248799. [PMID: 36557932 PMCID: PMC9788577 DOI: 10.3390/molecules27248799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Polyoxometalates (POMs), a large family of anionic polynuclear metal-oxo clusters, have received considerable research attention due to their structural versatility and diverse physicochemical properties. Lacunary POMs are key building blocks for the syntheses of functional POMs due to their highly active multidentate O-donor sites. In this review, we have addressed the structural diversities of Ti/Zr-substituted POMs based on the polymerization number of POM building blocks and the number of Ti and Zr centers. The synthetic strategies and relevant catalytic applications of some representative Ti/Zr-substituted POMs have been discussed in detail. Finally, the outlook on the future development of this area is also prospected.
Collapse
|
12
|
Savić ND, Salazar Marcano DE, Parac-Vogt TN. Expanding the Scope of Polyoxometalates as Artificial Proteases towards Hydrolysis of Insoluble Proteins. Chemistry 2021; 28:e202104224. [PMID: 34860460 DOI: 10.1002/chem.202104224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/08/2022]
Abstract
Despite the enormous importance of insoluble proteins in biological processes, their structural investigation remains a challenging task. The development of artificial enzyme-like catalysts would greatly facilitate the elucidation of their structure since currently used enzymes in proteomics largely lose activity in the presence of surfactants, which are necessary to solubilize insoluble proteins. In this study, the hydrolysis of a fully insoluble protein by polyoxometalate complexes as artificial proteases in surfactant solutions is reported for the first time. The hydrolysis of zein as a model protein was investigated in the presence of Zr(IV) and Hf(IV) substituted Keggin-type polyoxometalates (POMs), (Et2 NH2 )10 [M(α-PW11 O39 )2 ] (M = Zr or Hf), and different concentrations of the anionic surfactant sodium dodecyl sulfate (SDS). Selective hydrolysis of the protein upon incubation with the catalyst was observed, and the results indicate that the hydrolytic selectivity and activity of the POM catalysts strongly depends on the concentration of surfactant. The molecular interactions between the POM catalyst and zein in the presence of SDS were explored using a combination of spectroscopic techniques which indicated competitive binding between POM and SDS towards the protein. Furthermore, the formation of micellar superstructures in ternary POM/surfactant/protein solutions has been confirmed by conductivity and Dynamic Light Scattering measurements.
Collapse
Affiliation(s)
- Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | | | |
Collapse
|
13
|
Pandya DN, Henry KE, Day CS, Graves SA, Nagle VL, Dilling TR, Sinha A, Ehrmann BM, Bhatt NB, Menda Y, Lewis JS, Wadas TJ. Polyazamacrocycle Ligands Facilitate 89Zr Radiochemistry and Yield 89Zr Complexes with Remarkable Stability. Inorg Chem 2020; 59:17473-17487. [PMID: 33169605 DOI: 10.1021/acs.inorgchem.0c02722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last three decades, the chemistry of zirconium has facilitated antibody development and the clinical management of disease in the precision medicine era. Scientists have harnessed its reactivity, coordination chemistry, and nuclear chemistry to develop antibody-based radiopharmaceuticals incorporating zirconium-89 (89Zr: t1/2 = 78.4 h, β+: 22.8%, Eβ+max = 901 keV; EC: 77%, Eγ = 909 keV) to improve disease detection, identify patients for individualized therapeutic interventions. and monitor their response to those interventions. However, release of the 89Zr4+ ion from the radiopharmaceutical remains a concern, since it may confound the interpretation of clinical imaging data, negatively affect dosimetric calculations, and hinder treatment planning. In this report, we relate our novel observations involving the use of polyazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of zirconium 2,2',2″,2‴-(1,4,7,10-tetraazacyclotridecane-1,4,7,10-tetrayl)tetraacetic acid (Zr-TRITA), zirconium 3,6,9,15-Tetraazabicyclo[9.3.1] pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (Zr-PCTA), and zirconium 2,2',2″-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (Zr-NOTA). In addition, we elucidate the solid-state structure of each complex using single-crystal X-ray diffraction analysis. Finally, we found that [89Zr]Zr-PCTA and [89Zr]Zr-NOTA demonstrate excellent stability in vitro and in vivo and provide a rationale for these observations. These innovative findings have the potential to guide the development of safer and more robust immuno-PET agents to improve precision medicine applications.
Collapse
Affiliation(s)
- Darpan N Pandya
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Kelly E Henry
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Stephen A Graves
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Veronica L Nagle
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas R Dilling
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Akesh Sinha
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Brandie M Ehrmann
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nikunj B Bhatt
- Department of Radiology, Columbia University, New York, New York 10032, United States
| | - Yusuf Menda
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thaddeus J Wadas
- Department of Radiology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
14
|
Van Rompuy LS, Savić ND, Rodriguez A, Parac-Vogt TN. Selective Hydrolysis of Transferrin Promoted by Zr-Substituted Polyoxometalates. Molecules 2020; 25:E3472. [PMID: 32751602 PMCID: PMC7435656 DOI: 10.3390/molecules25153472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
The hydrolysis of the iron-binding blood plasma glycoprotein transferrin (Tf) has been examined at pH = 7.4 in the presence of a series of Zr-substituted polyoxometalates (Zr-POMs) including Keggin (Et2NH2)10[Zr(PW11O39)2]∙7H2O (Zr-K 1:2), (Et2NH2)8[{α-PW11O39Zr-(μ-OH) (H2O)}2]∙7H2O (Zr-K 2:2), Wells-Dawson K15H[Zr(α2-P2W17O61)2]·25H2O (Zr-WD 1:2), Na14[Zr4(α-P2W16O59)2(μ3-O)2(μ-OH)2(H2O)4]·57H2O (Zr-WD 4:2) and Lindqvist (Me4N)2[ZrW5O18(H2O)3] (Zr-L 1:1), (nBu4N)6[(ZrW5O18(μ-OH))2]∙2H2O (Zr-L 2:2)) type POMs. Incubation of transferrin with Zr-POMs resulted in formation of 13 polypeptide fragments that were observed on sodium dodecyl sulfate poly(acrylamide) gel electrophoresis (SDS-PAGE), but the hydrolysis efficiency varied depending on the nature of Zr-POMs. Molecular interactions between Zr-POMs and transferrin were investigated by using a range of complementary techniques such as tryptophan fluorescence, circular dichroism (CD), 31P-NMR spectroscopy, in order to gain better understanding of different efficiency of investigated Zr-POMs. A tryptophan fluorescence quenching study revealed that the most reactive Zr-WD species show the strongest interaction toward transferrin. The CD results demonstrated that interaction of Zr-POMs and transferrin in buffer solution result in significant secondary structure changes. The speciation of Zr-POMs has been followed by 31P-NMR spectroscopy in the presence and absence of transferrin, providing insight into stability of the catalysts under reaction condition.
Collapse
Affiliation(s)
| | | | | | - Tatjana N. Parac-Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium; (L.S.V.R.); (N.D.S.); (A.R.)
| |
Collapse
|
15
|
de Bournonville S, Vangrunderbeeck S, Ly HGT, Geeroms C, De Borggraeve WM, Parac-Vogt TN, Kerckhofs G. Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues. Acta Biomater 2020; 105:253-262. [PMID: 31996331 DOI: 10.1016/j.actbio.2020.01.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 01/22/2020] [Indexed: 11/28/2022]
Abstract
To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Despite being destructive towards the sample, conventional histology still is the gold standard for structural analysis of biological tissues. It is, however, limited by 2D sections of a 3D object, prohibiting full 3D structural analysis. MicroCT has proven to provide full 3D structural information of mineralized tissues and dense biomaterials. However, the intrinsic low X-ray absorption of soft tissues requires contrast-enhancing staining agents (CESAs). In a previous study, we showed that hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) allows simultaneous contrast-enhanced microCT (CE-CT) visualization of bone and its marrow vascularization and adiposity. In this study, other POM species have been examined for their potential as soft tissue CESAs. Four Wells-Dawson POMs, differing in structure and overall charge, were used to stain murine long bones and kidneys. Their staining potential and diffusion rate were compared to those of Hf-WD POM and phosphotungstic acid (PTA), a frequently used but destructive CESA. Monolacunary Wells-Dawson POM (Mono-WD POM) showed similar soft tissue enhancement as Hf-WD POM and PTA. Moreover, Mono-WD POM is less destructive, shows a better diffusion than PTA, and its synthesis requires less time and cost than Hf-WD POM. Finally, the solubility of Mono-WD POM was improved by addition of lithium chloride (LiCl) to the staining solution, enhancing further the soft tissue contrast. STATEMENT OF SIGNIFICANCE: To advance clinical translation of regenerative medicine, there is, amongst others, still need for better insights in tissue development and disease. For this purpose, more precise imaging of the 3D microstructure and spatial interrelationships of the different tissues within organs is crucial. Current standard structural analysis techniques (e.g. 2D histomorphometry), however, do not allow full 3D assessment. Contrast-enhanced X-ray computed tomography has emerged as a powerful 3D structural characterization tool of soft biological tissues. In this study, from a library of Wells Dawson polyoxometalates (WD POMs), we identified monolacunary WD POM together with lithium chloride, dissolved in phosphate buffered saline, as the most suitable contrast-enhancing staining agent solution for different biological tissues without tissue shrinkage.
Collapse
Affiliation(s)
- Sébastien de Bournonville
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Sarah Vangrunderbeeck
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
| | - Hong Giang T Ly
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium; Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Carla Geeroms
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Wim M De Borggraeve
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; IREC, Institute of Experimental and Clinical Research, UCLouvain, Woluwé-Saint-Lambert, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Li N, Zhang S, Zhao J, Pan Q, Xing B, Li J, Jiang S, Qu W. Synthesis of Two Monomeric Tri‐Substituted γ*‐Dawson‐Type Polyoxotungstates. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201900919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ning Li
- Institute of Carbon Materials Science Shanxi Datong University 037009 Datong China
| | - Sufang Zhang
- Institute of Carbon Materials Science Shanxi Datong University 037009 Datong China
| | - Jianguo Zhao
- Institute of Carbon Materials Science Shanxi Datong University 037009 Datong China
| | - Qiliang Pan
- Institute of Carbon Materials Science Shanxi Datong University 037009 Datong China
| | - Baoyan Xing
- Institute of Carbon Materials Science Shanxi Datong University 037009 Datong China
| | - Jingwei Li
- Institute of Carbon Materials Science Shanxi Datong University 037009 Datong China
| | - Shang Jiang
- Institute of Carbon Materials Science Shanxi Datong University 037009 Datong China
| | - Wenshan Qu
- Institute of Carbon Materials Science Shanxi Datong University 037009 Datong China
| |
Collapse
|
17
|
Ly HGT, Mihaylov TT, Proost P, Pierloot K, Harvey JN, Parac‐Vogt TN. Chemical Mimics of Aspartate‐Directed Proteases: Predictive and Strictly Specific Hydrolysis of a Globular Protein at Asp−X Sequence Promoted by Polyoxometalate Complexes Rationalized by a Combined Experimental and Theoretical Approach. Chemistry 2019; 25:14370-14381. [DOI: 10.1002/chem.201902675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Giang T. Ly
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tzvetan T. Mihaylov
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Paul Proost
- Laboratory of Molecular ImmunologyRega InstituteDepartment of Microbiology, Immunology, and TransplantationKU Leuven Herestraat 49 3000 Leuven Belgium
| | - Kristine Pierloot
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jeremy N. Harvey
- Laboratory of Computational Coordination ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tatjana N. Parac‐Vogt
- Laboratory of Bioinorganic ChemistryDepartment of ChemistryKU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
18
|
Zhang Z, Li HL, Wang YL, Yang GY. Syntheses, Structures, and Electrochemical Properties of Three New Acetate-Functionalized Zirconium-Substituted Germanotungstates: From Dimer to Tetramer. Inorg Chem 2019; 58:2372-2378. [PMID: 30680996 DOI: 10.1021/acs.inorgchem.8b02805] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under hydrothermal conditions, three new acetate-functionalized zirconium-substituted polyoxometalates, H4Na2[Na6(H2O)22][Zr4(μ3-O)2(OH)2(OAc)2(α-GeW10O37)2]·32H2O (1), H8K3Na5[Zr6(μ3-O)3(OH)3(OAc)(H2O)(β-GeW10O37)3]·20H2O (2), H6K4Na12[{Zr5(μ3-OH)4(OH)2}@{Zr2(OAc)2(α-GeW10O38)2}2]·22H2O (3), were synthesized and characterized. In 1, the sandwiched dimer [Zr4(μ3-O)2(OH)2(OAc)2(α-GeW10O37)2]12- was linked to a hexameric [Na6(H2O)22]6+ cluster to form a 1D chain. In 2, the trimer was constructed from three [β2-GeW10O37]10- units and a new [Zr6O3(OH)3(OAc)(H2O)]14+ cluster. In 3, the tetramer was built by two novel sandwich-type dimers [Zr2(OAc)2(α2-GeW10O38)2]18- and one unique [Zr5(μ3-OH)4(OH)2]14+ core in an approximately orthogonal fashion, showing a staggered tetrahedral polyanion. Also, the electrochemistry and electrocatalytic properties of 3 were studied, exhibiting good catalytic activities toward the reduction of H2O2, BrO3-, and NO2-.
Collapse
Affiliation(s)
- Zhong Zhang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Hai-Lou Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Yue-Lin Wang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
19
|
Kaledin AL, Troya D, Karwacki CJ, Balboa A, Gordon WO, Morris JR, Mitchell MB, Frenkel AI, Hill CL, Musaev DG. Key mechanistic details of paraoxon decomposition by polyoxometalates: Critical role of para-nitro substitution. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2018.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Anyushin AV, Sap A, Quanten T, Proost P, Parac-Vogt TN. Selective Hydrolysis of Ovalbumin Promoted by Hf(IV)-Substituted Wells-Dawson-Type Polyoxometalate. Front Chem 2018; 6:614. [PMID: 30619823 PMCID: PMC6305993 DOI: 10.3389/fchem.2018.00614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022] Open
Abstract
The reactivity and selectivity of Wells-Dawson type polyoxometalate (POM), K16[Hf(α2-P2W17O61)2]·19H2O (Hf1-WD2), have been examined with respect to the hydrolysis of ovalbumin (OVA), a storage protein consisting of 385 amino acids. The exact cleavage sites have been determined by Edman degradation experiments, which indicated that Hf1-WD2 POM selectively cleaved OVA at eight peptide bonds: Phe13-Asp14, Arg85-Asp86, Asn95-Asp96, Ala139-Asp140, Ser148-Trp149, Ala361-Asp362, Asp362-His363, and Pro364-Phe365. A combination of spectroscopic methods including 31P NMR, Circular Dichroism (CD), and Tryptophan (Trp) fluorescence spectroscopy were employed to gain better understanding of the observed selective cleavage and the underlying hydrolytic mechanism. 31P NMR spectra have shown that signals corresponding to Hf1-WD2 gradually broaden upon addition of OVA and completely disappear when the POM-protein molar ratio becomes 1:1, indicating formation of a large POM/protein complex. CD demonstrated that interactions of Hf1-WD2 with OVA in the solution do not result in protein unfolding or denaturation even upon adding an excess of POM. Trp fluorescence spectroscopy measurements revealed that the interaction of Hf1-WD2 with OVA (Kq = 1.1 × 105 M−1) is both quantitatively and qualitatively slightly weaker than the interaction of isostructural Zr-containing Wells-Dawson POM (Zr1-WD2) with human serum albumin (HAS) (Kq = 5.1 × 105 M−1).
Collapse
Affiliation(s)
- Alexander V Anyushin
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Annelies Sap
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Thomas Quanten
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bio-Inorganic Chemistry, Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Vandebroek L, Mampaey Y, Antonyuk S, Van Meervelt L, Parac-Vogt TN. Noncovalent Complexes Formed between Metal-Substituted Polyoxometalates and Hen Egg White Lysozyme. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201801113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Laurens Vandebroek
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F box 2404 3001 Heverlee (Leuven) Belgium
| | - Yentl Mampaey
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F box 2404 3001 Heverlee (Leuven) Belgium
| | - Svetlana Antonyuk
- Institute of Integrative Biology; University of Liverpool; Life Sciences Building, Crown Street L69 7ZB Liverpool UK
| | - Luc Van Meervelt
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F box 2404 3001 Heverlee (Leuven) Belgium
| | - Tatjana N. Parac-Vogt
- Department of Chemistry; KU Leuven; Celestijnenlaan 200F box 2404 3001 Heverlee (Leuven) Belgium
| |
Collapse
|
22
|
Effect of [Zr(α-PW11O39)2]10− Polyoxometalate on the Self-Assembly of Surfactant Molecules in Water Studied by Fluorescence and DOSY NMR Spectroscopy. INORGANICS 2018. [DOI: 10.3390/inorganics6040112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic fragmentation of hydrophobic proteins by polyoxometalates (POMs) requires the presence of surfactants in order to increase the solubility of the protein. Depending on the nature of the surfactant, different effects on the kinetics of protein hydrolysis are observed. As the molecular interactions between the POMs and surfactants in solutions have been scarcely explored, in this study, the interaction between the catalytically active Keggin polyoxometalate [Zr(α-PW11O39)2]10− and four different surfactants—sodium dodecyl sulfate (SDS), dodecyldimethyl(3-sulfopropyl)ammonium (Zw3-12), dodecyldimethyl(3-sulfopropyl) ammonium (CHAPS), and polyethylene glycol tert-octylphenyl ether (TX-100)—have been studied in aqueous media. The effect of polyoxometalate on the self-assembly of surfactant molecules into micelles and on the critical micellar concentration (CMC) has been examined by fluorescence spectroscopy and diffusion ordered NMR spectroscopy (DOSY).
Collapse
|
23
|
Vandebroek L, De Zitter E, Ly HGT, Conić D, Mihaylov T, Sap A, Proost P, Pierloot K, Van Meervelt L, Parac-Vogt TN. Protein-Assisted Formation and Stabilization of Catalytically Active Polyoxometalate Species. Chemistry 2018; 24:10099-10108. [PMID: 29797738 DOI: 10.1002/chem.201802052] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/17/2018] [Indexed: 01/24/2023]
Abstract
The effect of the protein environment on the formation and stabilization of an elusive catalytically active polyoxometalate (POM) species, K6 [Hf(α2 -P2 W17 O61 )] (1), is reported. In the co-crystal of hen egg-white lysozyme (HEWL) with 1, the catalytically active monomeric species is observed, originating from the dimeric 1:2 POM form, while it is intrinsically unstable under physiological pH conditions. The protein-assisted dissociation of the dimeric POM was rationalized by means of DFT calculations. The dissociation process is unfavorable in bulk water, but becomes favorable in the protein-POM complex due to the low dielectric response at the protein surface. The crystal structure shows that the monomeric form is stabilized by electrostatic and water-mediated hydrogen bonding interactions with the protein. It interacts at three distinct sites, close to the aspartate-containing hydrolysis sites, demonstrating high selectivity towards peptide bonds containing this residue.
Collapse
Affiliation(s)
- Laurens Vandebroek
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Hong Giang Thi Ly
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Dragan Conić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Tzvetan Mihaylov
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Annelies Sap
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Paul Proost
- Department of Microbiology and Immunology, Rega Institute, Herestraat 49 box 1042, 3000, Leuven, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001, Leuven, Belgium
| |
Collapse
|
24
|
Collins-Wildman DL, Kim M, Sullivan KP, Plonka AM, Frenkel AI, Musaev DG, Hill CL. Buffer-Induced Acceleration and Inhibition in Polyoxometalate-Catalyzed Organophosphorus Ester Hydrolysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | | | - Anna M. Plonka
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Anatoly I. Frenkel
- Department of Material Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | | | | |
Collapse
|
25
|
Zeng L, Xiao L, Long Y, Shi X. Trichloroacetic acid-modulated synthesis of polyoxometalate@UiO-66 for selective adsorption of cationic dyes. J Colloid Interface Sci 2018; 516:274-283. [DOI: 10.1016/j.jcis.2018.01.070] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 11/25/2022]
|
26
|
Abstract
The interest in zirconium-89 (89Zr) as a positron-emitting radionuclide has grown considerably over the last decade due to its standardized production, long half-life of 78.2 h, favorable decay characteristics for positron emission tomography (PET) imaging and its successful use in a variety of clinical and preclinical applications. However, to be utilized effectively in PET applications it must be stably bound to a targeting ligand, and the most successfully used 89Zr chelator is desferrioxamine B (DFO), which is commercially available as the iron chelator Desferal®. Despite the prevalence of DFO in 89Zr-immuno-PET applications, the development of new ligands for this radiometal is an active area of research. This review focuses on recent advances in zirconium-89 chelation chemistry and will highlight the rapidly expanding ligand classes that are under investigation as DFO alternatives.
Collapse
Affiliation(s)
- Nikunj B Bhatt
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Darpan N Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Thaddeus J Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
27
|
Ly HGT, Parac-Vogt TN. Spectroscopic Study of the Interaction between Horse Heart Myoglobin and Zirconium(IV)-Substituted Polyoxometalates as Artificial Proteases. Chemphyschem 2017; 18:2451-2458. [PMID: 28675658 DOI: 10.1002/cphc.201700680] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 01/19/2023]
Abstract
A recent study [Angew. Chem. Int. Ed. 2015, 54, 7391-7394] has shown that horse heart myoglobin (HHM) is selectively hydrolyzed by a range of zirconium(IV)-substituted polyoxometalates (POMs) under mild conditions. In this study, the molecular interactions between the Zr-POM catalysts and HHM are investigated by using a range of complementary techniques, including circular dichroism (CD), UV/Vis spectroscopy, tryptophan fluorescence spectroscopy, and 1 H and 31 P NMR spectroscopy. A tryptophan fluorescence quenching study reveals that, among all examined Zr-POMs, the most reactive POM, 2:2 ZrIV -Keggin, exhibits the strongest interaction with HHM. 31 P NMR spectroscopy studies show that this POM dissociates in solution, resulting in the formation of a monomeric 1:1 ZrIV -Keggin structure, which is likely to be a catalytically active species. In the presence of ZrIV -POMs, HHM does not undergo complete denaturation, as evidenced by CD, UV/Vis, tryptophan fluorescence, and 1 H NMR spectroscopy. CD spectroscopy shows a gradual decrease in the α-helical content of HHM upon addition of ZrIV -POMs. The largest effect is observed in the presence of a large ZrIV -Wells-Dawson structure, whereas small ZrIV -Lindqvist POM has the least influence on the decrease in the α-helical content of HHM. In all cases, the Soret band at λ=409 nm is maintained in the presence of all examined Zr-POMs, which indicates that no conformational changes in the protein occur near the heme group.
Collapse
Affiliation(s)
- Hong Giang T Ly
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | | |
Collapse
|
28
|
Kato CN, Ogasawara T, Kondo A, Kato D. Heterogeneous esterification of fatty acids with methanol catalyzed by Lewis acidic organozirconium complexes with Keggin-type mono-aluminum-substituted polyoxotungstates. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
29
|
Sap A, Vandebroek L, Goovaerts V, Martens E, Proost P, Parac-Vogt TN. Highly Selective and Tunable Protein Hydrolysis by a Polyoxometalate Complex in Surfactant Solutions: A Step toward the Development of Artificial Metalloproteases for Membrane Proteins. ACS OMEGA 2017; 2:2026-2033. [PMID: 30023653 PMCID: PMC6044816 DOI: 10.1021/acsomega.7b00168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/28/2017] [Indexed: 05/17/2023]
Abstract
This study represents the first example of protein hydrolysis at pH = 7.4 and 60 °C by a metal-substituted polyoxometalate (POM) in the presence of a zwitterionic surfactant. Edman degradation results show that in the presence of 0.5% w/v 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) detergent, a Zr(IV)-substituted Wells-Dawson-type POM, K15H[Zr(α2-P2W17O61)2]·25H2O (Zr1-WD2), selectively hydrolyzes human serum albumin exclusively at peptide bonds involving Asp or Glu residues, which contain carboxyl groups in their side chains. The selectivity and extent of protein cleavage are tuned by the CHAPS surfactant by an unfolding mechanism that provides POM access to the hydrolyzed peptide bonds.
Collapse
Affiliation(s)
- Annelies Sap
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Laurens Vandebroek
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Vincent Goovaerts
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| | - Erik Martens
- Department
of Microbiology and Immunology, KU Leuven, Herestraat 49,
Box 1042, 3000 Leuven, Belgium
| | - Paul Proost
- Department
of Microbiology and Immunology, KU Leuven, Herestraat 49,
Box 1042, 3000 Leuven, Belgium
| | - Tatjana N. Parac-Vogt
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001 Leuven, Belgium
| |
Collapse
|
30
|
Pandya DN, Bhatt N, Yuan H, Day CS, Ehrmann BM, Wright M, Bierbach U, Wadas TJ. Zirconium tetraazamacrocycle complexes display extraordinary stability and provide a new strategy for zirconium-89-based radiopharmaceutical development. Chem Sci 2017; 8:2309-2314. [PMID: 28451334 PMCID: PMC5363373 DOI: 10.1039/c6sc04128k] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/12/2016] [Indexed: 11/21/2022] Open
Abstract
We report our initial investigations into the use of tetraazamacrocycles as zirconium-89 chelators. We describe the synthesis and complete characterization of several Zr tetraazamacrocycle complexes, and definitively describe the first crystal structure of zirconium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (Zr-DOTA) using single crystal X-ray diffraction analysis. After evaluating several radioactive analogs, we found that 89Zr-DOTA is superior to 89Zr-DFO, the only 89Zr-complex to be used clinically in 89Zr-radiopharmaceutical applications. Finally, we provide a rationale for the unanticipated and extraordinary stability of these complexes in vitro and in vivo. These results may inform the development of safer and more robust immuno-PET agents for precision medicine applications.
Collapse
Affiliation(s)
- Darpan N Pandya
- Department of Cancer Biology , Wake Forest School of Medicine , Winston-Salem , NC 27157 , USA . ;
| | - Nikunj Bhatt
- Department of Cancer Biology , Wake Forest School of Medicine , Winston-Salem , NC 27157 , USA . ;
| | - Hong Yuan
- Department of Radiology , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Cynthia S Day
- Department of Chemistry , Wake Forest University , Winston-Salem , NC 27109 , USA
| | - Brandie M Ehrmann
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , NC 27599 , USA
| | - Marcus Wright
- Department of Chemistry , Wake Forest University , Winston-Salem , NC 27109 , USA
| | - Ulrich Bierbach
- Department of Chemistry , Wake Forest University , Winston-Salem , NC 27109 , USA
| | - Thaddeus J Wadas
- Department of Cancer Biology , Wake Forest School of Medicine , Winston-Salem , NC 27157 , USA . ;
| |
Collapse
|
31
|
Sap A, Van Tichelen L, Mortier A, Proost P, Parac-Vogt TN. Tuning the Selectivity and Reactivity of Metal-Substituted Polyoxometalates as Artificial Proteases by Varying the Nature of the Embedded Lewis Acid Metal Ion. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601098] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Annelies Sap
- KU Leuven; Celestijnenlaan 200F 3001 Leuven Belgium
| | | | - Anneleen Mortier
- Department of Microbiology and Immunology; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | - Paul Proost
- Department of Microbiology and Immunology; KU Leuven; Minderbroedersstraat 10 3000 Leuven Belgium
| | | |
Collapse
|
32
|
Mihaylov TT, Ly HGT, Pierloot K, Parac-Vogt TN. Molecular Insight from DFT Computations and Kinetic Measurements into the Steric Factors Influencing Peptide Bond Hydrolysis Catalyzed by a Dimeric Zr(IV)-Substituted Keggin Type Polyoxometalate. Inorg Chem 2016; 55:9316-28. [DOI: 10.1021/acs.inorgchem.6b01461] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tzvetan T. Mihaylov
- Laboratory of Computational Coordination
Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Hong Giang T. Ly
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Kristine Pierloot
- Laboratory of Computational Coordination
Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tatjana N. Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
33
|
Luong TKN, Absillis G, Shestakova P, Parac-Vogt TN. Hydrolysis of the RNA model substrate catalyzed by a binuclear Zr(IV)-substituted Keggin polyoxometalate. Dalton Trans 2016; 44:15690-6. [PMID: 26256057 DOI: 10.1039/c5dt02077h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The reactivity and solution behaviour of the binuclear Zr(IV)-substituted Keggin polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (ZrK 2 : 2) towards phosphoester bond hydrolysis of the RNA model substrate 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP) was investigated at different reaction conditions (pD, temperature, concentration, and ionic strength). The hydrolysis of the phosphoester bond of HPNP, followed by means of (1)H NMR spectroscopy, proceeded with an observed rate constant, kobs = 11.5(±0.42) × 10(-5) s(-1) at pD 6.4 and 50 °C, representing a 530-fold rate enhancement in comparison with the spontaneous hydrolysis of HPNP. (1)H and (31)P NMR spectra indicate that at these reaction conditions the only products of hydrolysis are p-nitrophenol and the corresponding cyclic phosphate ester. The pD dependence of kobs exhibits a bell-shaped profile, with the fastest rate observed at pD 6.4. The formation constant (Kf = 455 M(-1)) and catalytic rate constant (kc = 42 × 10(-5) s(-1)) for the HPNP-ZrK 2 : 2 complex, activation energy (Ea) of 63.35 ± 1.82 kJ mol(-1), enthalpy of activation (ΔH(‡)) of 60.60 ± 2.09 kJ mol(-1), entropy of activation (ΔS(‡)) of -133.70 ± 6.13 J mol(-1) K(-1), and Gibbs activation energy (ΔG(‡)) of 102.05 ± 0.13 kJ mol(-1) at 37 °C were calculated from kinetic experiments. Binding between ZrK 2 : 2 and the P-O bond of HPNP was evidenced by the change in the (31)P chemical shift and signal line-broadening of the (31)P atom in HPNP upon addition of ZrK 2 : 2. Based on (31)P NMR experiments and isotope effect studies, a mechanism for HPNP hydrolysis in the presence of ZrK 2 : 2 was proposed.
Collapse
Affiliation(s)
- Thi Kim Nga Luong
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | | | |
Collapse
|
34
|
Luong TKN, Shestakova P, Absillis G, Parac-Vogt TN. Detailed Mechanism of Phosphoanhydride Bond Hydrolysis Promoted by a Binuclear Zr(IV)-Substituted Keggin Polyoxometalate Elucidated by a Combination of (31)P, (31)P DOSY, and (31)P EXSY NMR Spectroscopy. Inorg Chem 2016; 55:4864-73. [PMID: 27111398 DOI: 10.1021/acs.inorgchem.6b00385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A detailed reaction mechanism is proposed for the hydrolysis of the phosphoanhydride bonds in adenosine triphosphate (ATP) in the presence of the binuclear Zr(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]·7H2O (ZrK 2:2). The full reaction mechanism of ATP hydrolysis in the presence of ZrK 2:2 at pD 6.4 was elucidated by a combination of (31)P, (31)P DOSY, and (31)P EXSY NMR spectroscopy, demonstrating the potential of these techniques for the analysis of complex reaction mixtures involving polyoxometalates (POMs). Two possible parallel reaction pathways were proposed on the basis of the observed reaction intermediates and final products. The 1D (31)P and (31)P DOSY spectra of a mixture of 20.0 mM ATP and 3.0 mM ZrK 2:2 at pD 6.4, measured immediately after sample preparation, evidenced the formation of two types of complexes, I1A and I1B, representing different binding modes between ATP and the Zr(IV)-substituted Keggin type polyoxometalate (ZrK). Analysis of the NMR data shows that at pD 6.4 and 50 °C ATP hydrolysis in the presence of ZrK proceeds in a stepwise fashion. During the course of the hydrolytic reaction various products, including adenosine diphosphate (ADP), adenosine monophosphate (AMP), pyrophosphate (PP), and phosphate (P), were detected. In addition, intermediate species representing the complexes ADP/ZrK (I2) and PP/ZrK (I5) were identified and the potential formation of two other intermediates, AMP/ZrK (I3) and P/ZrK (I4), was demonstrated. (31)P EXSY NMR spectra evidenced slow exchange between ATP and I1A, ADP and I2, and PP and I5, thus confirming the proposed reaction pathways.
Collapse
Affiliation(s)
- Thi Kim Nga Luong
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Pavletta Shestakova
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium.,NMR Laboratory, Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences , Acad. G. Bontchev Str., Bl.9, 1113 Sofia, Bulgaria
| | - Gregory Absillis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
35
|
Quanten T, Shestakova P, Van Den Bulck D, Kirschhock C, Parac-Vogt TN. Interaction Study and Reactivity of Zr(IV) -Substituted Wells-Dawson Polyoxometalate towards Hydrolysis of Peptide Bonds in Surfactant Solutions. Chemistry 2016; 22:3775-84. [PMID: 26833582 DOI: 10.1002/chem.201503976] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/09/2022]
Abstract
The interaction between the 1:2 Zr(IV) :Wells-Dawson complex, K15 H[Zr(α2 -P2 W17 O61 )2] (1), and a range of surfactants was studied in detail with the aim of developing metal-substituted POMs as potential artificial proteases for membrane proteins. The surfactants include the positively charged cetyl(trimethyl)ammonium bromide (CTAB), the negatively charged sodium dodecyl sulfate (SDS), the neutral Triton X-100 (TX-100), and zwitterionic 3-[dodecyl(dimethyl)ammonio]-1-propanesulfonate (Zw3-13) and 3-[dimethyl(3-{[(3α,5β,7α,12α)-3,7,12-trihydroxy-24-oxocholan-24-yl]amino}propyl)ammonio]-1-propanesulfonate (CHAPS). A combination of multinuclear (1)H, (13)C, and (31) P NMR spectroscopy, (1)H diffusion-ordered NMR spectroscopy ((1)H DOSY), and nuclear Overhauser effect spectroscopy (NOESY) was used to examine the interaction between 1 and each surfactant on the molecular level. Cationic surfactant CTAB caused precipitation of 1 due to strong electrostatic interactions, while the anionic SDS and neutral TX-100 surfactants did not exhibit any interaction at neutral pD. (1)H DOSY NMR spectroscopy indicated an interaction between 1 and zwitterionic surfactants Zw3-12 and CHAPS, which occurs via the positively charged ammonium group in the surfactant molecule. In the presence of anionic, neutral, and zwitterionic surfactants, 1 preserves its catalytic activity towards the hydrolysis of the peptide bond in the dipeptide glycyl-l-histidine (GH). The fastest hydrolysis was observed at pD 7.0 and could be rationalized by taking into account pD-dependent speciation of 1 and coordination properties of GH.
Collapse
Affiliation(s)
- Thomas Quanten
- Department Of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Pavletta Shestakova
- NMR Laboratory, Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchef Str., B1.9, Sofia, 1113, Bulgaria
| | - Dries Van Den Bulck
- Department Of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Christine Kirschhock
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tatjana N Parac-Vogt
- Department Of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.
| |
Collapse
|
36
|
Ly HGT, Absillis G, Parac-Vogt TN. Influence of the amino acid side chain on peptide bond hydrolysis catalyzed by a dimeric Zr(iv)-substituted Keggin type polyoxometalate. NEW J CHEM 2016. [DOI: 10.1039/c5nj00561b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structurally different dipeptides were hydrolyzed by [{α-PW11O39Zr-(μ-OH)(H2O)}2]8−. The rate constants were dependent on bulkiness and chemical nature of the dipeptide.
Collapse
|
37
|
Sap A, Absillis G, Parac-Vogt TN. Selective hydrolysis of oxidized insulin chain B by a Zr(IV)-substituted Wells-Dawson polyoxometalate. Dalton Trans 2015; 44:1539-48. [PMID: 25216342 DOI: 10.1039/c4dt01477d] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report for the first time on the selective hydrolysis of a polypeptide system by a metal-substituted polyoxometalate (POM). Oxidized insulin chain B, a 30 amino acid polypeptide, was selectively cleaved by the Zr(IV)-substituted Wells-Dawson POM, K15H[Zr(α2-P2W17O61)2]·25H2O, under physiological pH and temperature conditions in aqueous solution. HPLC-ESI-MS, LC-MS/MS, MALDI-TOF and MALDI-TOF MS/MS data indicate hydrolysis at the Phe1-Val2, Gln4-His5, Leu6-Cys(SO3H)7, and Gly8-Ser9 peptide bonds. The rate of oxidized insulin chain B hydrolysis (0.45 h(-1) at pH 7.0 and 60 °C) was calculated by fitting the integration values of its HPLC-UV signal to a first-order exponential decay function. (1)H NMR measurements show significant line broadening and shifting of the polypeptide resonances upon addition of the Zr(IV)-POM, indicating that interaction between the Zr(IV)-POM and the polypeptide takes place in solution. Circular dichroism (CD) measurements clearly prove that the flexible unfolded nature of the polypeptide was retained in the presence of the Zr(IV)-POM. The thermal stability of the Zr(IV)-POM in the presence of the polypeptide chain during the hydrolytic reaction was confirmed by (31)P NMR spectroscopy. Despite the highly negative charge of the Zr(IV)-POM, the mechanism of interaction appears to be dominated by a strong metal-directed binding between the positively charged Zr(IV) center and negatively charged amino acid side chains.
Collapse
Affiliation(s)
- Annelies Sap
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | | | | |
Collapse
|
38
|
Duval S, Béghin S, Falaise C, Trivelli X, Rabu P, Loiseau T. Stabilization of Tetravalent 4f (Ce), 5d (Hf), or 5f (Th, U) Clusters by the [α-SiW9O34](10-) Polyoxometalate. Inorg Chem 2015; 54:8271-80. [PMID: 26301948 DOI: 10.1021/acs.inorgchem.5b00786] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction of Na10[α-SiW9O34] with tetravalent metallic cations such as 4f ((NH4)2Ce(NO3)6), 5d (HfCl4), or 5f (UCl4 and Th(NO3)4) in a pH 4.7 sodium acetate buffer solution leads to the formation of four sandwich-type polyoxometalates [Ce4(μ(3)-O)2(SiW9O34)2(CH3COO)2](10-) (1), [U4(μ(3)-O)2(SiW9O34)2(CH3COO)2](10-) (2), [Th3(μ(3)-O)(μ(2)-OH)3(SiW9O34)2](13-) (3), and [Hf3(μ(2)-OH)3(SiW9O34)2](11-) (4). All four compounds consist of a polynuclear cluster fragment stabilized by two [α-SiW9O34](10-) polyanions. Compounds 1 and 2 are isostructural with a tetranuclear core (Ce4, U4), while compound 3 presents a trinuclear Th3 core bearing a μ(3)-O-centered bridge. It is an unprecedented configuration in the case of the thorium(IV) cluster. Compound 4 also possesses a trinuclear Hf3 core but with the absence of the μ(3)-O bridge. The molecules have been characterized by single-crystal X-ray diffraction, (183)W and (29)Si nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) analysis.
Collapse
Affiliation(s)
- Sylvain Duval
- Unité de Catalyse et Chimie du Solide (UCCS)-UMR CNRS 8181, Université de Lille Nord de France , USTL-ENSCL, Bat C7, BP 90108, 59652 Villeneuve d'Ascq, France
| | - Sébastien Béghin
- Unité de Catalyse et Chimie du Solide (UCCS)-UMR CNRS 8181, Université de Lille Nord de France , USTL-ENSCL, Bat C7, BP 90108, 59652 Villeneuve d'Ascq, France
| | - Clément Falaise
- Unité de Catalyse et Chimie du Solide (UCCS)-UMR CNRS 8181, Université de Lille Nord de France , USTL-ENSCL, Bat C7, BP 90108, 59652 Villeneuve d'Ascq, France
| | - Xavier Trivelli
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF)-UMR CNRS 8576, Université de Lille Nord de France , Bat C9, BP 90108, 59652 Villeneuve d'Ascq, France
| | - Pierre Rabu
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS-University of Strasbourg , 67034 Strasbourg cedex 2, France.,International Center for Frontier Research in Chemistry (icFRC), 8, Allée Gaspard Monge, F-67000, Strasbourg, France
| | - Thierry Loiseau
- Unité de Catalyse et Chimie du Solide (UCCS)-UMR CNRS 8181, Université de Lille Nord de France , USTL-ENSCL, Bat C7, BP 90108, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
39
|
Sap A, De Zitter E, Van Meervelt L, Parac-Vogt TN. Structural Characterization of the Complex between Hen Egg-White Lysozyme and Zr(IV) -Substituted Keggin Polyoxometalate as Artificial Protease. Chemistry 2015; 21:11692-5. [PMID: 26179600 DOI: 10.1002/chem.201501998] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/11/2022]
Abstract
Successful co-crystallization of a noncovalent complex between hen egg-white lysozyme (HEWL) and the monomeric Zr(IV) -substituted Keggin polyoxometalate (POM) (Zr1 K1), (Et2 NH2)3 [Zr(PW11 O39)] (1), has been achieved, and its single-crystal X-ray structure has been determined. The dimeric Zr(IV) -substituted Keggin-type polyoxometalate (Zr1 K2), (Et2 NH2)10 [Zr(PW11 O39 )2] (2), has been previously shown to exhibit remarkable selectivity towards HEWL hydrolysis. The reported X-ray structure shows that the hydrolytically active Zr(IV) -substituted Keggin POM exists as a monomeric species. Prior to hydrolysis, this monomer interacts with HEWL in the vicinity of the previously identified cleavage sites found at Trp28-Val29 and Asn44-Arg45, through water-mediated H-bonding and electrostatic interactions. Three binding sites are observed at the interface of the negatively charged Keggin POM and the positively charged regions of HEWL at: 1) Gly16, Tyr20, and Arg21; 2) Asn44, Arg45, and Asn46; and 3) Arg128.
Collapse
Affiliation(s)
- Annelies Sap
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001 Leuven, Heverlee (Belgium)
| | - Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001 Leuven, Heverlee (Belgium)
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001 Leuven, Heverlee (Belgium)
| | - Tatjana N Parac-Vogt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F box 2404, 3001 Leuven, Heverlee (Belgium).
| |
Collapse
|
40
|
Understanding the Regioselective Hydrolysis of Human Serum Albumin by Zr(IV)-Substituted Polyoxotungstates Using Tryptophan Fluorescence Spectroscopy. INORGANICS 2015. [DOI: 10.3390/inorganics3020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
41
|
Luong TKN, Shestakova P, Mihaylov TT, Absillis G, Pierloot K, Parac-Vogt TN. Multinuclear diffusion NMR spectroscopy and DFT modeling: a powerful combination for unraveling the mechanism of phosphoester bond hydrolysis catalyzed by metal-substituted polyoxometalates. Chemistry 2015; 21:4428-39. [PMID: 25652658 DOI: 10.1002/chem.201405810] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 02/04/2023]
Abstract
A detailed reaction mechanism is proposed for the hydrolysis of the phosphoester bonds in the DNA model substrate bis(4-nitrophenyl) phosphate (BNPP) in the presence of the Zr(IV)-substituted Keggin type polyoxometalate (Et2NH2)8[{α-PW11O39Zr(μ-OH)(H2O)}2]⋅7 H2O (ZrK 2:2) at pD 6.4. Low-temperature (31)P DOSY spectra at pD 6.4 gave the first experimental evidence for the presence of ZrK 1:1 in fast equilibrium with ZrK 2:2 in purely aqueous solution. Moreover, theoretical calculations identified the ZrK 1:1 form as the potentially active species in solution. The reaction intermediates involved in the hydrolysis were identified by means of (1)H/(31)P NMR studies, including EXSY and DOSY NMR spectroscopy, which were supported by DFT calculations. This experimental/theoretical approach enabled the determination of the structures of four intermediate species in which the starting compound BNPP, nitrophenyl phosphate (NPP), or the end product phosphate (P) is coordinated to ZrK 1:1. In the proposed reaction mechanism, BNPP initially coordinates to ZrK 1:1 in a monodentate fashion, which results in hydrolysis of the first phosphoester bond in BNPP and formation of NPP. EXSY NMR studies showed that the bidentate complex between NPP and ZrK 1:1 is in equilibrium with monobound and free NPP. Subsequently, hydrolysis of NPP results in P, which is in equilibrium with its monobound form.
Collapse
Affiliation(s)
- Thi Kim Nga Luong
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium) http://www.chem.kuleuven.be/lbc/
| | | | | | | | | | | |
Collapse
|
42
|
Wang X, Liu S, Liu Y, He D, Li N, Miao J, Ji Y, Yang G. Planar {Ni6} Cluster-Containing Polyoxometalate-based Inorganic–Organic Hybrid Compound and Its Extended Structure. Inorg Chem 2014; 53:13130-5. [PMID: 25426537 DOI: 10.1021/ic502321v] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xingquan Wang
- Key
Laboratory of Polyoxometalate Science of the Ministry of Education,
College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shuxia Liu
- Key
Laboratory of Polyoxometalate Science of the Ministry of Education,
College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yiwei Liu
- Key
Laboratory of Polyoxometalate Science of the Ministry of Education,
College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Danfeng He
- Key
Laboratory of Polyoxometalate Science of the Ministry of Education,
College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Ning Li
- Key
Laboratory of Polyoxometalate Science of the Ministry of Education,
College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jun Miao
- Key
Laboratory of Polyoxometalate Science of the Ministry of Education,
College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yujuan Ji
- Key
Laboratory of Polyoxometalate Science of the Ministry of Education,
College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Guoyu Yang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
43
|
Zirconium(IV)- and hafnium(IV)-containing polyoxometalates as oxidation precatalysts: Homogeneous catalytic epoxidation of cyclooctene by hydrogen peroxide. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Luong TKN, Absillis G, Shestakova P, Parac-Vogt TN. Solution Speciation of the Dinuclear ZrIV-Substituted Keggin Polyoxometalate [{α-PW11O39Zr(μ-OH)(H2O)}2]8-and Its Reactivity towards DNA-Model Phosphodiester Hydrolysis. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Stroobants K, Saadallah D, Bruylants G, Parac-Vogt TN. Thermodynamic study of the interaction between hen egg white lysozyme and Ce(IV)-Keggin polyoxotungstate as artificial protease. Phys Chem Chem Phys 2014; 16:21778-87. [PMID: 25199500 DOI: 10.1039/c4cp03183k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular interactions of the Keggin polyoxometalate [Me2NH2]10[Ce(PW11O39)2] (1), which promotes selective hydrolysis of hen egg white lysozyme (HEWL) under physiological conditions, were investigated in detail by isothermal titration calorimetry (ITC), (31)P NMR and circular dichroism (CD) spectroscopy. ITC experiments showed that mixing of 1 and HEWL at pH 7.4 and 25 or 37 °C resulted in complexes having 1 : 1 and 2 : 1 POM : HEWL stoichiometries, respectively, and thermodynamic profiles are in agreement with binding in the vicinity of the Trp28-Val29 and Asn44-Arg45 peptide bonds, which were previously shown to undergo selective hydrolysis by 1. Mixing of HEWL with (NH4)4Ce(SO4)4·4H2O salt indicated the absence of any binding accentuating the importance of the polyoxometalate scaffold for selective interaction with the HEWL surface. In contrast, the lacunary Na9[A-α-PW9O34] polyoxometalate showed an increased binding stoichiometry as compared to 1. Increasing the ionic strength resulted in thermodynamic signatures which indicate preservation of the interaction at the Trp28-Val29 site, while interaction at the Asn44-Arg45 appears disrupted due to competition with the salt ions. Decreasing the pH to 4.4 at 37 °C resulted in energetic contributions which suggest that binding at the Trp28-Val29 site is favored, while more pronounced binding at the Asn44-Arg45 site was anticipated when the pH was increased to 9.2. The absence of binding between 1 and α-lactalbumin (α-LA), a protein which is highly isostructural to HEWL but with an overall negative charge, was confirmed at pH 7.4 and 37 °C. The influence of the pH on the binding between 1 and α-LA was investigated, demonstrating that at lower pH values, where α-LA becomes more positively charged, a 1 : 1 interaction with 1 is observed.
Collapse
Affiliation(s)
- K Stroobants
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | | | | | | |
Collapse
|
46
|
Stroobants K, Goovaerts V, Absillis G, Bruylants G, Moelants E, Proost P, Parac-Vogt TN. Molecular origin of the hydrolytic activity and fixed regioselectivity of a Zr(IV) -substituted polyoxotungstate as artificial protease. Chemistry 2014; 20:9567-77. [PMID: 24958622 DOI: 10.1002/chem.201402683] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Indexed: 01/07/2023]
Abstract
A multitechnique approach has been applied in order to identify the thermodynamic and kinetic parameters related to the regioselective hydrolysis of human serum albumin (HSA) promoted by the Wells-Dawson polyoxometalate (POM), K15 H[Zr(α2 -P2 W17 O61 )2 ]. Isothermal titration calorimetry (ITC) studies indicate that up to four POM molecules interact with HSA. While the first interaction site is characterized by a 1:1 binding and an affinity constant of 2×10(8) M(-1) , the three remaining sites are characterized by a lower global affinity constant of 7×10(5) M(-1) . The higher affinity constant at the first site is in accordance with a high quenching constant of 2.2×10(8) M(-1) obtained for fluorescence quenching of the Trp214 residue located in the only positively charged cleft of HSA, in the presence of K15 H[Zr(α2 -P2 W17 O61 )2 ]. In addition, Eu(III) luminescence experiments with an Eu(III) -substituted POM analogue have shown the replacement of water molecules in the first coordination sphere of Eu(III) due to binding of the metal ion to amino acid side chain residues of HSA. All three interaction studies are in accordance with a stronger POM dominated binding at the positive cleft on the one hand, and interaction mainly governed by metal anchoring at the three remaining positions, on the other hand. Hydrolysis experiments in the presence of K15 H[Zr(α2 -P2 W17 O61 )2 ] have demonstrated regioselective cleavage of HSA at the Arg114Leu115, Ala257Asp258, Lys313Asp314 or Cys392Glu393 peptide bonds. This is in agreement with the interaction studies as the Arg114Leu115 peptide bond is located in the positive cleft of HSA and the three remaining peptide bonds are each located near an upstream acidic residue, which can be expected to coordinate to the metal ion. A detailed kinetic study has evidenced the formation of additional fragments upon prolonged reaction times. Edman degradation of the additional reaction products has shown that these fragments result from further hydrolysis at the initially observed cleavage positions, indicating a fixed selectivity for K15 H[Zr(α2 -P2 W17 O61 )2 ].
Collapse
Affiliation(s)
- Karen Stroobants
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium)
| | | | | | | | | | | | | |
Collapse
|
47
|
Stroobants K, Absillis G, Moelants E, Proost P, Parac-Vogt TN. Regioselective hydrolysis of human serum albumin by Zr(IV)-substituted polyoxotungstates at the interface of positively charged protein surface patches and negatively charged amino acid residues. Chemistry 2014; 20:3894-7. [PMID: 24596298 DOI: 10.1002/chem.201303622] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/20/2014] [Indexed: 12/17/2022]
Abstract
Complexes comprising the Lewis acidic Zr(IV) metal and protein binding polyoxotungstate ligands of Lindqvist-, Keggin- and Wells-Dawson-type were found to region selectively hydrolyze human serum albumin at four distinct positions. Higher reactivities were found for structures with higher polyoxometalate charges and the cleavage positions were found in protein regions of mixed charge. Both findings suggest an electrostatic nature of the observed reactivity.
Collapse
Affiliation(s)
- Karen Stroobants
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven (Belgium)
| | | | | | | | | |
Collapse
|
48
|
Stroobants K, Absillis G, Shestakova PS, Willem R, Parac-Vogt TN. Hydrolysis of Tetraglycine by a Zr(IV)-Substituted Wells–Dawson Polyoxotungstate Studied by Diffusion Ordered NMR Spectroscopy. J CLUST SCI 2013. [DOI: 10.1007/s10876-013-0664-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Ly HGT, Absillis G, Bajpe SR, Martens JA, Parac-Vogt TN. Hydrolysis of Dipeptides Catalyzed by a Zirconium(IV)-Substituted Lindqvist Type Polyoxometalate. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201300270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Nomiya K, Ohta K, Sakai Y, Hosoya TA, Ohtake A, Takakura A, Matsunaga S. Tetranuclear Hafnium(IV) and Zirconium(IV) Cationic Complexes Sandwiched between Two Di-Lacunary Species of α-Keggin Polyoxometalates: Lewis Acid Catalysis of the Mukaiyama–Aldol Reaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20130016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kenji Nomiya
- Department of Chemistry, (formerly Department of Materials Science), Faculty of Science, Kanagawa University
| | - Kazuaki Ohta
- Department of Chemistry, (formerly Department of Materials Science), Faculty of Science, Kanagawa University
| | - Yoshitaka Sakai
- Department of Chemistry, (formerly Department of Materials Science), Faculty of Science, Kanagawa University
| | - Taka-aki Hosoya
- Department of Chemistry, (formerly Department of Materials Science), Faculty of Science, Kanagawa University
| | - Atsushi Ohtake
- Department of Chemistry, (formerly Department of Materials Science), Faculty of Science, Kanagawa University
| | - Akira Takakura
- Department of Chemistry, (formerly Department of Materials Science), Faculty of Science, Kanagawa University
| | - Satoshi Matsunaga
- Department of Chemistry, (formerly Department of Materials Science), Faculty of Science, Kanagawa University
| |
Collapse
|