1
|
Jones TE, Teschner D, Piccinin S. Toward Realistic Models of the Electrocatalytic Oxygen Evolution Reaction. Chem Rev 2024; 124:9136-9223. [PMID: 39038270 DOI: 10.1021/acs.chemrev.4c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The electrocatalytic oxygen evolution reaction (OER) supplies the protons and electrons needed to transform renewable electricity into chemicals and fuels. However, the OER is kinetically sluggish; it operates at significant rates only when the applied potential far exceeds the reversible voltage. The origin of this overpotential is hidden in a complex mechanism involving multiple electron transfers and chemical bond making/breaking steps. Our desire to improve catalytic performance has then made mechanistic studies of the OER an area of major scientific inquiry, though the complexity of the reaction has made understanding difficult. While historically, mechanistic studies have relied solely on experiment and phenomenological models, over the past twenty years ab initio simulation has been playing an increasingly important role in developing our understanding of the electrocatalytic OER and its reaction mechanisms. In this Review we cover advances in our mechanistic understanding of the OER, organized by increasing complexity in the way through which the OER is modeled. We begin with phenomenological models built using experimental data before reviewing early efforts to incorporate ab initio methods into mechanistic studies. We go on to cover how the assumptions in these early ab initio simulations─no electric field, electrolyte, or explicit kinetics─have been relaxed. Through comparison with experimental literature, we explore the veracity of these different assumptions. We summarize by discussing the most critical open challenges in developing models to understand the mechanisms of the OER.
Collapse
Affiliation(s)
- Travis E Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
| | - Detre Teschner
- Department of Inorganic Chemistry, Fritz-Haber-Institute of the Max-Planck-Society, Berlin 14195, Germany
- Department of Heterogeneous Reactions, Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr 45470, Germany
| | - Simone Piccinin
- Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Trieste 34136, Italy
| |
Collapse
|
2
|
Schwiedrzik L, Rajkovic T, González L. Regeneration and Degradation in a Biomimetic Polyoxometalate Water Oxidation Catalyst. ACS Catal 2023; 13:3007-3019. [PMID: 36910868 PMCID: PMC9990072 DOI: 10.1021/acscatal.2c06301] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Complete understanding of catalytic cycles is required to advance the design of water oxidation catalysts, but it is difficult to attain, due to the complex factors governing their reactivity and stability. In this study, we investigate the regeneration and degradation pathways of the highly active biomimetic water oxidation catalyst [Mn3+ 2Mn4+ 2V4O17(OAc)3]3-, thereby completing its catalytic cycle. Beginning with the deactivated species [Mn3+ 4V4O17(OAc)2]4- left over after O2 evolution, we scrutinize a network of reaction intermediates belonging to two alternative water oxidation cycles. We find that catalyst regeneration to the activated species [Mn4+ 4V4O17(OAc)2(OH)(H2O)]- proceeds via oxidation of each Mn center, with one water ligand being bound during the first oxidation step and a second water ligand being bound and deprotonated during the final oxidation step. ΔΔG values for this last oxidation are consistent with previous experimental results, while regeneration within an alternative catalytic cycle was found to be thermodynamically unfavorable. Extensive in silico sampling of catalyst structures also revealed two degradation processes: cubane opening and ligand dissociation, both of which have low barriers at highly reduced states of the catalyst due to the presence of Jahn-Teller effects. These mechanistic insights are expected to spur the development of more efficient and stable Mn cubane water oxidation catalysts.
Collapse
Affiliation(s)
- Ludwig Schwiedrzik
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Vienna
Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Tina Rajkovic
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
3
|
Oh L, Ji Y, Li W, Varki A, Chen X, Wang LP. O-Acetyl Migration within the Sialic Acid Side Chain: A Mechanistic Study Using the Ab Initio Nanoreactor. Biochemistry 2022; 61:2007-2013. [PMID: 36054099 DOI: 10.1021/acs.biochem.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many disease-causing viruses target sialic acids on the surface of host cells. Some viruses bind preferentially to sialic acids with O-acetyl modification at the hydroxyl group of C7, C8, or C9 on the glycerol-like side chain. Studies of proteins binding to sialosides containing O-acetylated sialic acids are crucial in understanding the related diseases but experimentally difficult due to the lability of the ester group. We recently showed that O-acetyl migration among hydroxyl groups of C7, C8, and C9 in sialic acids occurs in all directions in a pH-dependent manner. In the current study, we elucidate a full mechanistic pathway for the migration of O-acetyl among C7, C8, and C9. We used an ab initio nanoreactor to explore potential reaction pathways and density functional theory, pKa calculations, and umbrella sampling to investigate elementary steps of interest. We found that when a base is present, migration is easy in any direction and involves three key steps: deprotonation of the hydroxyl group, cyclization between the two carbons, and the migration of the O-acetyl group. This dynamic equilibrium may play a defensive role against pathogens that evolve to gain entry to the cell by binding selectively to one acetylation state.
Collapse
Affiliation(s)
- Lisa Oh
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Yang Ji
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Wanqing Li
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, California 92093, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
4
|
Gorantla KR, Mallik BS. Non-heme oxoiron complexes as active intermediates in the water oxidation process with hydrogen/oxygen atom transfer reactions. Dalton Trans 2022; 51:11899-11908. [PMID: 35876181 DOI: 10.1039/d2dt01295b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we explore the water oxidation process with the help of density functional theory. The formation of an oxygen-oxygen bond is crucial in the water oxidation process. Here, we report the formation of the oxygen-oxygen bond by the N5-coordinate oxoiron species with a higher oxidation state of FeIV and FeV. This bond formation is studied through the nucleophilic addition of water molecules and the transfer of the oxygen atom from meta-chloroperbenzoic acid (mCPBA). Our study reveals that the oxygen-oxygen bond formation by reacting mCPBA with FeVO requires less activation barrier (13.7 kcal mol-1) than the other three pathways. This bond formation by the oxygen atom transfer (OAT) pathway is more favorable than that achieved by the hydrogen atom transfer (HAT) pathway. In both cases, the oxygen-oxygen bond formation occurs by interacting the σ*dz2-2pz molecular orbital of the iron-oxo intermediate with the 2px orbital of the oxygen atom. From this study, we understand that the oxygen-oxygen bond formation by FeIVO with the OAT process is also feasible (16 kcal mol-1), suggesting that FeVO may not always be required for the water oxidation process by non-heme N5-oxoiron. After the oxygen-oxygen bond formation, the release of the dioxygen molecule occurs with the addition of the water molecule. The release of dioxygen requires a barrier of 7.0 kcal mol-1. The oxygen-oxygen bond formation is found to be the rate-determining step.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, Telangana, India.
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy-502285, Telangana, India.
| |
Collapse
|
5
|
Gorantla KR, Mallik BS. Mechanistic Insights into Cobalt-Based Water Oxidation Catalysis by DFT-Based Molecular Dynamics Simulations. J Phys Chem A 2022; 126:3301-3310. [PMID: 35593706 DOI: 10.1021/acs.jpca.2c01043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the mechanistic details of the water oxidation process by the complex, [CoII(bpbH2)Cl2], where bpbH2 = N, N'-bis(2'-pyridinecarboxamide)-1,2-benzene. An experimental study reported the complex as the efficient catalyst for the water oxidation process. We performed density functional theory calculations at the M06-L level and first-principles molecular dynamics simulations to study the catalytic nature of the complex. We investigated the energetics of the total catalytic cycle, which combines the oxygen-oxygen bond formation, proton-coupled electron transfer (PCET) steps, and release of oxygen molecule. The formed peroxide and superoxide intermediates in the catalytic cycle were characterized with the help of the Mulliken spin density parameters. Mulliken spin densities of the metal-oxo bond reveal that the triplet state of CoV═O has a double-bond nature, but the quintet state of the complex has a radical nature (CoIV-O•-). In an alternative way, the deprotonation of the amide groups of the ligand is also considered. The deprotonation and formation of higher oxidation metal-oxo intermediates are also possible. In addition to this, we have considered the effect of phosphate buffer on water nucleophilic addition. The oxygen-oxygen bond formation is favorable by the catalyst with the deprotonated form of the ligand, with the addition of water as the nucleophile. In the oxidation process, the C═O bonds of the ligand transfer the electron density to nitrogen atoms, stabilizing the higher order oxo, peroxide, and superoxide bonds. The oxygen-oxygen bond formation is the rate-determining step in the overall water oxidation process. This bond was further investigated using first-principles molecular dynamics at the PBE-D2 level. The dynamics of proton, hydroxide ion, and the nature of the ligand structure on the oxygen-oxygen bond were examined. We find that the oxygen molecule is released from the superoxide complex with the addition of water molecules.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, India
| |
Collapse
|
6
|
Harper DR, Kulik HJ. Computational Scaling Relationships Predict Experimental Activity and Rate-Limiting Behavior in Homogeneous Water Oxidation. Inorg Chem 2022; 61:2186-2197. [PMID: 35037756 DOI: 10.1021/acs.inorgchem.1c03376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While computational screening with first-principles density functional theory (DFT) is essential for evaluating candidate catalysts, limitations in accuracy typically prevent the prediction of experimentally relevant activities. Exemplary of these challenges are homogeneous water oxidation catalysts (WOCs) where differences in experimental conditions or small changes in ligand structure can alter rate constants by over an order of magnitude. Here, we compute mechanistically relevant electronic and energetic properties for 19 mononuclear Ru transition-metal complexes (TMCs) from three experimental water oxidation catalysis studies. We discover that 15 of these TMCs have experimental activities that correlate with a single property, the ionization potential of the Ru(II)-O2 catalytic intermediate. This scaling parameter allows the quantitative understanding of activity trends and provides insight into the rate-limiting behavior. We use this approach to rationalize differences in activity with different experimental conditions, and we qualitatively analyze the source of distinct behavior for different electronic states in the other four catalysts. Comparison to closely related single-atom catalysts and modified WOCs enables rationalization of the source of rate enhancement in these WOCs.
Collapse
Affiliation(s)
- Daniel R Harper
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Amthor S, Hernández‐Castillo D, Maryasin B, Seeber P, Mengele AK, Gräfe S, González L, Rau S. Strong Ligand Stabilization Based on π-Extension in a Series of Ruthenium Terpyridine Water Oxidation Catalysts. Chemistry 2021; 27:16871-16878. [PMID: 34705303 PMCID: PMC9299156 DOI: 10.1002/chem.202102905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/23/2022]
Abstract
The substitution behavior of the monodentate Cl ligand of a series of ruthenium(II) terpyridine complexes (terpyridine (tpy)=2,2':6',2''-terpyridine) has been investigated. 1 H NMR kinetic experiments of the dissociation of the chloro ligand in D2 O for the complexes [Ru(tpy)(bpy)Cl]Cl (1, bpy=2,2'-bipyridine) and [Ru(tpy)(dppz)Cl]Cl (2, dppz=dipyrido[3,2-a:2',3'-c]phenazine) as well as the binuclear complex [Ru(bpy)2 (tpphz)Ru(tpy)Cl]Cl3 (3 b, tpphz=tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were conducted, showing increased stability of the chloride ligand for compounds 2 and 3 due to the extended π-system. Compounds 1-5 (4=[Ru(tbbpy)2 (tpphz)Ru(tpy)Cl](PF6 )3 , 5=[Ru(bpy)2 (tpphz)Ru(tpy)(C3 H8 OS)/(H2 O)](PF6 )3 , tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine) are tested for their ability to run water oxidation catalysis (WOC) using cerium(IV) as sacrificial oxidant. The WOC experiments suggest that the stability of monodentate (chloride) ligand strongly correlates to catalytic performance, which follows the trend 1>2>5≥3>4. This is also substantiated by quantum chemical calculations, which indicate a stronger binding for the chloride ligand based on the extended π-systems in compounds 2 and 3. Additionally, a theoretical model of the mechanism of the oxygen evolution of compounds 1 and 2 is presented; this suggests no differences in the elementary steps of the catalytic cycle within the bpy to the dppz complex, thus suggesting that differences in the catalytic performance are indeed based on ligand stability. Due to the presence of a photosensitizer and a catalytic unit, binuclear complexes 3 and 4 were tested for photocatalytic water oxidation. The bridging ligand architecture, however, inhibits the effective electron-transfer cascade that would allow photocatalysis to run efficiently. The findings of this study can elucidate critical factors in catalyst design.
Collapse
Affiliation(s)
- Sebastian Amthor
- Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - David Hernández‐Castillo
- Institute of Theoretical Chemistry Faculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Boris Maryasin
- Institute of Theoretical Chemistry Faculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
- Institute of Organic Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 381090ViennaAustria
| | - Phillip Seeber
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
| | | | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Leticia González
- Institute of Theoretical Chemistry Faculty of ChemistryUniversity of ViennaWähringer Str. 171090ViennaAustria
| | - Sven Rau
- Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
8
|
Schwiedrzik L, Brieskorn V, González L. Flexibility Enhances Reactivity: Redox Isomerism and Jahn-Teller Effects in a Bioinspired Mn 4O 4 Cubane Water Oxidation Catalyst. ACS Catal 2021; 11:13320-13329. [PMID: 34777908 PMCID: PMC8576808 DOI: 10.1021/acscatal.1c03566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/28/2021] [Indexed: 12/25/2022]
Abstract
Understanding how water oxidation to molecular oxygen proceeds in molecular metal-oxo catalysts is a challenging endeavor due to their structural complexity. In this report, we unravel the water oxidation mechanism of the highly active water oxidation catalyst [Mn4V4O17(OAc)3]3-, a polyoxometalate catalyst with a [Mn4O4]6+ cubane core reminiscent of the natural oxygen-evolving complex. Starting from the activated species [Mn4 4+V4O17(OAc)2(H2O)(OH)]1-, we scrutinized multiple pathways to find that water oxidation proceeds via a sequential proton-coupled electron transfer (PCET), O-O bond formation, another PCET, an intramolecular electron transfer, and another PCET resulting in O2 evolution, with a predicted thermodynamic overpotential of 0.71 V. An in-depth investigation of the O-O bond formation process revealed an essential interplay between redox isomerism and Jahn-Teller effects, responsible for enhancing reactivity in the catalytic cycle. This is achieved by redistributing electrons between metal centers and weakening relevant bonds through Jahn-Teller distortions, introducing flexibility to the otherwise rigid cubane core of the catalyst. These mechanistic insights are expected to advance the design of efficient bioinspired Mn cubane water-splitting catalysts.
Collapse
Affiliation(s)
- Ludwig Schwiedrzik
- Institute of Theoretical
Chemistry, Faculty of Chemistry, University
of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Vera Brieskorn
- Institute of Theoretical
Chemistry, Faculty of Chemistry, University
of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical
Chemistry, Faculty of Chemistry, University
of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
9
|
Mechanistic Insight into the O–O Bond Activation by Manganese Corrole Complexes. Top Catal 2021. [DOI: 10.1007/s11244-021-01525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Zhang XP, Wang HY, Zheng H, Zhang W, Cao R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63681-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Isolation of a Ru(IV) side-on peroxo intermediate in the water oxidation reaction. Nat Chem 2021; 13:800-804. [PMID: 34059808 DOI: 10.1038/s41557-021-00702-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/12/2021] [Indexed: 11/08/2022]
Abstract
The electrons that nature uses to reduce CO2 during photosynthesis come from water oxidation at the oxygen-evolving complex of photosystem II. Molecular catalysts have served as models to understand its mechanism, in particular the O-O bond-forming reaction, which is still not fully understood. Here we report a Ru(IV) side-on peroxo complex that serves as a 'missing link' for the species that form after the rate-determining O-O bond-forming step. The Ru(IV) side-on peroxo complex (η2-1iv-OO) is generated from the isolated Ru(IV) oxo complex (1iv=O) in the presence of an excess of oxidant. The oxidation (IV) and spin state (singlet) of η2-1iv-OO were determined by a combination of experimental and theoretical studies. 18O- and 2H-labelling studies evidence the direct evolution of O2 through the nucleophilic attack of a H2O molecule on the highly electrophilic metal-oxo species via the formation of η2-1iv-OO. These studies demonstrate water nucleophilic attack as a viable mechanism for O-O bond formation, as previously proposed based on indirect evidence.
Collapse
|
12
|
Gorantla KR, Mallik BS. Mechanism and Dynamics of Formation of Bisoxo Intermediates and O-O Bond in the Catalytic Water Oxidation Process. J Phys Chem A 2021; 125:279-290. [PMID: 33370125 DOI: 10.1021/acs.jpca.0c09943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work elucidates the reactivity of water molecules toward the tridentate nitrogen-containing iron complex in the water oxidation process. Here, we consider the FeV-bisoxo complex {[FeV(Me3tacn)(OH2)(═O)2]+} to be responsible for the oxygen-oxygen bond formation. This O-O bond formation happens through the addition of water as a nucleophile. The transition state was determined by the synchronous transit-guided quasi-Newton method using reactants and products and verified by intrinsic reaction coordinates (IRCs). From the IRC calculations, we observe that the FeV═O moiety is attacked by water and assisted by the H-bonded interaction with the oxygen atom of the bisoxo complex. The hydrogen atom is transferred to the oxygen atom of the bisoxo complex through the transition state, and subsequently, the hydroxide is transferred to another oxygen of the bisoxo complex, resulting in the formation of the oxygen-oxygen bond. This work also explains the effect of explicit water molecules on the oxygen-oxygen bond formation. Our results also show how the formation of superoxide plays an essential role in O2 evolution. We used the potential energy scan method to compute the transition state in the oxygen evolution step. In the present work, we study the effect of chlorine on the formation of the oxygen-oxygen bond formation. In this study, the changes in the oxidation state, spin density, and spin multiplicity of the complexes are investigated for each successive step. Apart from these static theoretical calculations, we also studied the oxygen-oxygen bond formation through first-principles molecular dynamics with the aid of the well-tempered metadynamics sampling technique. From the observation of the free energy surfaces from metadynamics simulations, it is evident that the hydroxide transfer has a lesser free energetic reaction as compared to the proton transfer. This complete mechanistic study may give an idea to design a suitable water oxidation catalyst.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285 Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285 Telangana, India
| |
Collapse
|
13
|
Su XF, Guan W, Yan LK, Su ZM. Tricopper-polyoxometalate catalysts for water oxidation: Redox-inertness of copper center. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Zhang HT, Zhang MT. The Application of Pincer Ligand in Catalytic Water Splitting. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Shahadat HM, Younus HA, Ahmad N, Zhang S, Zhuiykov S, Verpoort F. Macrocyclic cyanocobalamin (vitamin B12) as a homogeneous electrocatalyst for water oxidation under neutral conditions. Chem Commun (Camb) 2020; 56:1968-1971. [DOI: 10.1039/c9cc08838e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Homogeneous electrochemical water oxidation under neutral conditions using impressively stable vitamin B12.
Collapse
Affiliation(s)
- Hossain M. Shahadat
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| | - Hussein A. Younus
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University
- Changsha 410082
- China
- Chemistry Department, Faculty of Science, Fayoum University
- Fayoum 63514
| | - Nazir Ahmad
- Department of Chemistry, GC University Lahore
- Lahore 54000
- Pakistan
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University
- Changsha 410082
- China
| | - Serge Zhuiykov
- Ghent University, Global Campus Songdo, 119 Songdomunhwa-Ro, Yeonsu-Gu
- Incheon
- Korea
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- China
- School of Material Science and Engineering
| |
Collapse
|
16
|
Su XF, Yan LK, Su ZM. Theoretical Insight into the Performance of Mn II/III-Monosubstituted Heteropolytungstates as Water Oxidation Catalysts. Inorg Chem 2019; 58:15751-15757. [PMID: 31710211 DOI: 10.1021/acs.inorgchem.9b01806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The performance of MnII/III-monosubstituted heteropolytungstates [MnIII(H2O)GeW11O39]5- ([GT-MnIII-OH2]5-, where GT = GeW11O39) and [MnII(H2O)GeW11O39]6- ([GT-MnII-OH2]6-) as water oxidation catalysts at pH 9 was explored using density functional theory calculations. The counterion effect was fully considered, in which five and six Na+ ions were included in the calculations for water oxidation catalyzed by [GT-MnIII-OH2]5- and [GT-MnII-OH2]6-, respectively. The process of water oxidation catalysis was divided into three elemental stages: (i) oxidative activation, (ii) O-O bond formation, and (iii) O2 evolution. In the oxidative activation stage, two electrons and two protons are removed from [Na5-GT-MnIII-OH2] and three electrons and two protons are removed from [Na6-GT-MnII-OH2]. Therefore, the MnIV-O• species [Na5-GT-MnIV-O•] is obtained. Two mechanisms, (i) water nucleophilic attack and (ii) oxo-oxo coupling, were demonstrated to be competitive in O-O bond formation triggered from [Na5-GT-MnIV-O•]. In the last stage, the O2 molecule could be readily evolved from the peroxo or dinuclear species and the catalyst returns to the ground state after the coordination of a water molecule(s).
Collapse
Affiliation(s)
- Xiao-Fang Su
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Li-Kai Yan
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Zhong-Min Su
- Faculty of Chemistry, National & Local United Engineering Lab for Power Battery, Key Laboratory of Polyoxometalate Science of Ministry of Education , Northeast Normal University , Changchun 130024 , People's Republic of China
| |
Collapse
|
17
|
|
18
|
Ikeda K, Hori Y, Mahyuddin MH, Shiota Y, Staykov A, Matsumoto T, Yoshizawa K, Ogo S. Dual Catalytic Cycle of H2 and H2O Oxidations by a Half-Sandwich Iridium Complex: A Theoretical Study. Inorg Chem 2019; 58:7274-7284. [DOI: 10.1021/acs.inorgchem.9b00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kei Ikeda
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuta Hori
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Aleksandar Staykov
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Takahiro Matsumoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Seiji Ogo
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Center for Small Molecule Energy, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Matias TA, Rein FN, Rocha RC, Formiga ALB, Toma HE, Araki K. Effects of a strong π-accepting ancillary ligand on the water oxidation activity of weakly coupled binuclear ruthenium catalysts. Dalton Trans 2019; 48:3009-3017. [PMID: 30747931 DOI: 10.1039/c8dt04963g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significant differences were found in the proton-coupled redox chemistry and catalytic behavior of the binuclear [{Ru(H2O)(bpz)}2(tpy2ph)](PF6)4 complex [bpz = 2,2'-bipyrazine; tpy2ph = 1,3-bis(4'-2,2':6',2''-terpyridin-4-yl)benzene] as compared with the structurally analogous derivative with 2,2'-bipyridine (bpy) instead of bpz. The differences were assigned to the stronger π-accepting character of bpz relative to bpy as the ancillary ligand. The expectation of a positive shift for the Ru-centered redox potentials was confirmed for the lower oxidation state species, but that trend was reversed in the formation of the high-valence catalytic active species as shown by a negative shift of 0.14 V for the potential of the [RuIV/V[double bond, length as m-dash]O] process. Moreover, DFT calculations indicated a significant decrease of about 15% on the spin density and oxyl character of the [RuV[double bond, length as m-dash]O]3+ fragment. The significantly lower kcat(O2) for the bpz system was attributed to these combined electronic effects.
Collapse
Affiliation(s)
- Tiago A Matias
- Department of Chemistry, Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
20
|
Chen G, Lam WWY, Lo P, Man W, Chen L, Lau K, Lau T. Mechanism of Water Oxidation by Ferrate(VI) at pH 7–9. Chemistry 2018; 24:18735-18742. [DOI: 10.1002/chem.201803757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Gui Chen
- School of Environment and Civil EngineeringDongguan University of Technology Guangdong 523808 P.R. China
| | - William W. Y. Lam
- Department of Chemistry and Institute of Molecular Functional MaterialsCity University of Hong Kong Tat Chee Avenue Hong Kong P.R. China
- Department of Food and Health SciencesTechnological and Higher Education Institute of Hong Kong Tsing Yi Road, New Territories Hong Kong P.R. China
| | - Po‐Kam Lo
- Department of Chemistry and Institute of Molecular Functional MaterialsCity University of Hong Kong Tat Chee Avenue Hong Kong P.R. China
| | - Wai‐Lun Man
- Department of Chemistry and Institute of Molecular Functional MaterialsCity University of Hong Kong Tat Chee Avenue Hong Kong P.R. China
- Department of ChemistryHong Kong Baptist University Waterloo Road Kowloon Tong Kowloon, Hong Kong P.R. China
| | - Lingjing Chen
- School of Environment and Civil EngineeringDongguan University of Technology Guangdong 523808 P.R. China
| | - Kai‐Chung Lau
- Department of Chemistry and Institute of Molecular Functional MaterialsCity University of Hong Kong Tat Chee Avenue Hong Kong P.R. China
| | - Tai‐Chu Lau
- Department of Chemistry and Institute of Molecular Functional MaterialsCity University of Hong Kong Tat Chee Avenue Hong Kong P.R. China
| |
Collapse
|
21
|
Pushkar Y, Pineda-Galvan Y, Ravari AK, Otroshchenko T, Hartzler DA. Mechanism for O-O Bond Formation via Radical Coupling of Metal and Ligand Based Radicals: A New Pathway. J Am Chem Soc 2018; 140:13538-13541. [PMID: 30296067 DOI: 10.1021/jacs.8b06836] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Artificial photosynthesis carries promise to deliver abundant clean energy for the needs of a growing population. Deep mechanistic understanding is required to achieve rational design of fast and durable water oxidation catalysts. Here we provided first evidence for a new mechanism of the O-O bond formation via radical coupling of the oxidized metal═oxo of radicaloid character (RuIV═O) and ligand based radical ([ligand-NO]+• cation radical). O-O bond formation is facilitated via spin alignment and takes place via a virtually barrier less pathway inside the single metal complex. In situ reactive intermediate conversion was monitored by mass spectrometry, resonance Raman (RR) and EPR. Computational analysis have shown that the formation of [ligand-NO]+• happens at a lower overpotential than the formation of the [RuV═O(ligand)]3+ intermediate. Overall, the presented paradigm for O-O bond formation opens new opportunities for rational catalyst design.
Collapse
Affiliation(s)
- Yulia Pushkar
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Yuliana Pineda-Galvan
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Alireza K Ravari
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Tatiana Otroshchenko
- Leibniz-Institute for Catalysis at the University of Rostock , Albert-Einstein-Strasse 29a , D-18059 Rostock , Germany
| | - Daniel A Hartzler
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
22
|
Revisiting O–O Bond Formation through Outer‐Sphere Water Molecules versus Bimolecular Mechanisms in Water‐Oxidation Catalysis (WOC) by Cp*Ir Based Complexes. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Garand E. Spectroscopy of Reactive Complexes and Solvated Clusters: A Bottom-Up Approach Using Cryogenic Ion Traps. J Phys Chem A 2018; 122:6479-6490. [DOI: 10.1021/acs.jpca.8b05712] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Etienne Garand
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Li YY, Tong LP, Liao RZ. Mechanism of Water Oxidation Catalyzed by a Mononuclear Iron Complex with a Square Polypyridine Ligand: A DFT Study. Inorg Chem 2018; 57:4590-4601. [PMID: 29600856 DOI: 10.1021/acs.inorgchem.8b00333] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mononuclear [Cl-FeIII(dpa)-Cl]+ (1Cl) complex containing a square planar tetradentate polypyridine ligand has been reported to catalyze water oxidation in pH = 1 aqueous medium with ceric ammonium nitrate (CAN) as a chemical oxidant. The reaction mechanism of the oxygen evolution driven by this catalyst was investigated by means of density functional calculations. The results showed that one chloride ligand of 1Cl has to exchange with a water molecule to generate 1, [Cl-FeIII(dpa)-OH2]2+, as the starting species of the catalytic cycle. The initial one-electron oxidation of 1 is coupled with the release of two protons, generating [Cl-FeIV(dpa)═O]+ (2). Another one-electron transfer from 2 leads to the formation of an FeV═O complex [Cl-FeV(dpa)═O]2+ (3), which triggers the critical O-O bond formation. The electronic structure of 3 was found to be very similar to that of the high-valent heme-iron center of P450 enzymes, termed Compound I, in which a π-cation radical ligand is believed to support a formal iron(IV)-oxo core. More importantly, 3 and Compound I share the same tendency toward electrophilic reactions. Two competing pathways were suggested for the O-O bond formation based on the present calculations. One is the nitrate nucleophilic attack on the iron(V)-oxo moiety with a total barrier of 12.3 kcal mol-1. In this case, nitrate functions as a co-catalyst for the dioxygen formation. The other is the water nucleophilic attack on iron(V)-oxo with a greater barrier of 16.5 kcal mol-1. In addition, ligand degradation via methyl hydrogen abstraction was found to have a barrier similar to that of the O-O bond formation, while the aromatic carbon hydroxylation has a higher barrier.
Collapse
Affiliation(s)
- Ying-Ying Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Lian-Peng Tong
- School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|
25
|
Viere EJ, Kuhn AE, Roeder MH, Piro NA, Kassel WS, Dudley TJ, Paul JJ. Spectroelectrochemical studies of a ruthenium complex containing the pH sensitive 4,4'-dihydroxy-2,2'-bipyridine ligand. Dalton Trans 2018; 47:4149-4161. [PMID: 29473071 DOI: 10.1039/c7dt04554a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attaining high oxidation states at the metal center of transition metal complexes is a key design principle for many catalytic processes. One way to support high oxidation state chemistry is to utilize ligands that are electron-donating in nature. Understanding the structural and electronic changes of metal complexes as higher oxidation states are reached is critical towards designing more robust catalysts that are able to turn over at high rates without decomposing. To this end, we report herein the changes in structural and electronic properties as [Ru(bpy)2(44'bpy(OH)2)]2+ is oxidized to [Ru(bpy)2(44'bpy(OH)2)]3+ (bpy = 2,2'-bipyridine; 44'bpy(OH)2 = 4,4'-dihydroxy-2,2'-bipyridine). The 44'bpy(OH)2 ligand is a pH-dependent ligand where deprotonation of the hydroxyl groups leads to significant electronic donation to the metal center. A Pourbaix Diagram of the complex reveals a pH independent reduction potential below pH = 2.0 for the Ru3+/2+ process at 0.91 V vs. Ag/AgCl. Above pH = 2.0, pH dependence is observed with a decrease in reduction potential until pH = 6.8 where the complex is completely deprotonated, resulting in a reduction potential of 0.62 V vs. Ag/AgCl. Spectroelectrochemical studies as a function of pH reveal the disappearance of the Metal to Ligand Charge Transfer (MLCT) or Mixed Metal-Ligand to Charge Transfer bands upon oxidation and the appearance of a new low energy band. DFT calculations for this low energy band were carried out using both B3LYP and M06-L functionals for all protonation states and suggest that numerous new transition types occur upon oxidation to Ru3+.
Collapse
Affiliation(s)
- Erin J Viere
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| | - Ashley E Kuhn
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| | - Margaret H Roeder
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| | - Nicholas A Piro
- Department of Chemistry, Albright College, 1621 N. 13th Street, Reading, PA 19604, USA
| | - W Scott Kassel
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| | - Timothy J Dudley
- Math, Science and Technology Department, University of Minnesota Crookston, 2900 University Ave., Crookston, MN 56716, USA
| | - Jared J Paul
- Department of Chemistry, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA..
| |
Collapse
|
26
|
Mononuclear first-row transition-metal complexes as molecular catalysts for water oxidation. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)63001-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Lu Z, Gao Y, Chen H, Liu Z, Chen L, Sun L. Efficient molecular ruthenium catalysts containing anionic ligands for water oxidation. Dalton Trans 2018; 45:18459-18464. [PMID: 27431362 DOI: 10.1039/c6dt02056a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new mononuclear Ru complexes RuII(bipa)(pic)3 (1; H2bipa = 6-(1H-benzo[d]imidazol-2-yl)picolinic acid, pic = 4-picoline) and RuII(pbic)(pic)3 (2; H2pbic = 2-(pyridin-2-yl)-1H-benzo[d]imidazole-7-carboxylic acid, pic = 4-picoline) based on anionic ligands were successfully synthesized, and characterized using NMR spectroscopy, mass spectrometry, and X-ray crystallography. These catalysts showed high activities and stabilities in water oxidation in homogeneous systems with a high turnover number of 2100 and a turnover frequency of 0.21 s-1 for complex 1. The O-O band formation mechanism involved water nucleophilic attack. An active catalytic intermediate, i.e., RuIV-OH, was detected using high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Zhongkai Lu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | - Yan Gao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | - Hong Chen
- Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - Zhao Liu
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | - Lifang Chen
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China.
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, China. and Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| |
Collapse
|
28
|
Schilling M, Böhler M, Luber S. Towards the rational design of the Py5-ligand framework for ruthenium-based water oxidation catalysts. Dalton Trans 2018; 47:10480-10490. [DOI: 10.1039/c8dt01209a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An in–depth view on the water oxidation mechanism of Py5-derived Ru catalysts, paving the way for rational design of analogous water oxidation catalysts.
Collapse
Affiliation(s)
- Mauro Schilling
- University of Zurich
- Department of Chemistry C Winterthurerstrasse
- CH-8057 Zurich
- Switzerland
| | - Michael Böhler
- University of Zurich
- Department of Chemistry C Winterthurerstrasse
- CH-8057 Zurich
- Switzerland
| | - Sandra Luber
- University of Zurich
- Department of Chemistry C Winterthurerstrasse
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
29
|
Nestke S, Ronge E, Siewert I. Electrochemical water oxidation using a copper complex. Dalton Trans 2018; 47:10737-10741. [DOI: 10.1039/c8dt01323c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study highlights the importance of proton coupled electron transfer (PCET) during electrochemical-driven water oxidation catalysis employing a copper complex.
Collapse
Affiliation(s)
- Sebastian Nestke
- Universität Göttingen
- Institut für Anorganische Chemie
- 37077 Göttingen
- Germany
| | - Emanuel Ronge
- Universität Göttingen
- Institut für Materialphysik
- 37077 Göttingen
- Germany
| | - Inke Siewert
- Universität Göttingen
- Institut für Anorganische Chemie
- 37077 Göttingen
- Germany
| |
Collapse
|
30
|
Wonglakhon T, Surawatanawong P. Mechanistic insights into HCO2H dehydrogenation and CO2 hydrogenation catalyzed by Ir(Cp*) containing tetrahydroxy bipyrimidine ligand: the role of sodium and proton shuttle. Dalton Trans 2018; 47:17020-17031. [DOI: 10.1039/c8dt03283a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic HCO2H dehydrogenation by Ir(Cp*) tetrahydroxy bipyrimidine is influenced not only by the protonation states but also by the involvement of Na+ and the availability of HCO2H as a proton shuttle.
Collapse
Affiliation(s)
- Tanakorn Wonglakhon
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry
- Faculty of Science
- Mahidol University
- Bangkok 10400
- Thailand
| |
Collapse
|
31
|
Xu P, Hu S, Zhang HD, Zheng X. Theoretical insights into the reactivity of Fe-based catalysts for water oxidation: the role of electron-withdrawing groups. Phys Chem Chem Phys 2018; 20:14919-14926. [DOI: 10.1039/c8cp00687c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relative catalytic efficiency of a series of Fe-based water oxidation catalysts is elucidated by comprehensive calculations using density functional theory methods.
Collapse
Affiliation(s)
- Penglin Xu
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics
- University of Science and Technology of China
- Hefei
- China
| | - Shaojin Hu
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics
- University of Science and Technology of China
- Hefei
- China
| | - Hou-Dao Zhang
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
32
|
Lebedev D, Pineda-Galvan Y, Tokimaru Y, Fedorov A, Kaeffer N, Copéret C, Pushkar Y. The Key Ru V=O Intermediate of Site-Isolated Mononuclear Water Oxidation Catalyst Detected by in Situ X-ray Absorption Spectroscopy. J Am Chem Soc 2017; 140:451-458. [PMID: 29219306 DOI: 10.1021/jacs.7b11388] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improvement of the oxygen evolution reaction (OER) is a challenging step toward the development of sustainable energy technologies. Enhancing the OER rate and efficiency relies on understanding the water oxidation mechanism, which entails the characterization of the reaction intermediates. Very active Ru-bda type (bda is 2,2'-bipyridine-6,6'-dicarboxylate) molecular OER catalysts are proposed to operate via a transient 7-coordinate RuV═O intermediate, which so far has never been detected due to its high reactivity. Here we prepare and characterize a well-defined supported Ru(bda) catalyst on porous indium tin oxide (ITO) electrode. Site isolation of the catalyst molecules on the electrode surface allows trapping of the key 7-coordinate RuV═O intermediate at potentials above 1.34 V vs NHE at pH 1, which is characterized by electron paramagnetic resonance and in situ X-ray absorption spectroscopies. The in situ extended X-ray absorption fine structure analysis shows a Ru═O bond distance of 1.75 ± 0.02 Å, consistent with computational results. Electrochemical studies and density functional theory calculations suggest that the water nucleophilic attack on the surface-bound RuV═O intermediate (O-O bond formation) is the rate limiting step for OER catalysis at low pH.
Collapse
Affiliation(s)
- Dmitry Lebedev
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Yuliana Pineda-Galvan
- Purdue University , Department of Physics and Astronomy, West Lafayette, Indiana 47907, United States
| | - Yuki Tokimaru
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Alexey Fedorov
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Nicolas Kaeffer
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Yulia Pushkar
- Purdue University , Department of Physics and Astronomy, West Lafayette, Indiana 47907, United States
| |
Collapse
|
33
|
Liao RZ, Siegbahn PEM. Quantum Chemical Modeling of Homogeneous Water Oxidation Catalysis. CHEMSUSCHEM 2017; 10:4236-4263. [PMID: 28875583 DOI: 10.1002/cssc.201701374] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The design of efficient and robust water oxidation catalysts has proven challenging in the development of artificial photosynthetic systems for solar energy harnessing and storage. Tremendous progress has been made in the development of homogeneous transition-metal complexes capable of mediating water oxidation. To improve the efficiency of the catalyst and to design new catalysts, a detailed mechanistic understanding is necessary. Quantum chemical modeling calculations have been successfully used to complement the experimental techniques to suggest a catalytic mechanism and identify all stationary points, including transition states for both O-O bond formation and O2 release. In this review, recent progress in the applications of quantum chemical methods for the modeling of homogeneous water oxidation catalysis, covering various transition metals, including manganese, iron, cobalt, nickel, copper, ruthenium, and iridium, is discussed.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
34
|
Soriano-López J, Musaev DG, Hill CL, Galán-Mascarós JR, Carbó JJ, Poblet JM. Tetracobalt-polyoxometalate catalysts for water oxidation: Key mechanistic details. J Catal 2017. [DOI: 10.1016/j.jcat.2017.03.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Voss JM, Duffy EM, Marsh BM, Garand E. Mass Spectrometric and Vibrational Characterization of Reaction Intermediates in [Ru(bpy)(tpy)(H 2 O)] 2+ Catalyzed Water Oxidation. Chempluschem 2017; 82:691-694. [PMID: 31961527 DOI: 10.1002/cplu.201700085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Indexed: 11/09/2022]
Abstract
Mass spectrometry coupled with an in-line electrochemical electrospray ionization source is used to capture some of the reaction intermediates formed in the [Ru(bpy)(tpy)(H2 O)]2+ (bpy=2,2'-bipyridine, tpy=2,2':6',2"-terpyridine) catalyzed water oxidation reaction. By controlling the applied electrochemical potential, we identified the parent complex, as well as the first two oxidation complexes, identified as [Ru(bpy)(tpy)(OH)]2+ and [Ru(bpy)(tpy)(O)]2+ . The structures of the parent and first oxidation complexes are probed directly in the mass spectrometer by using infrared predissociation spectroscopy of D2 -tagged ions. Comparisons between experimental vibrational spectra and density functional theory calculations confirmed the identity and structure of these two complexes. Moreover, the frequency of the O-H stretching mode in [Ru(bpy)(tpy)(OH)]2+ shows that this complex features a Ru-OH interaction that is more covalent than ionic.
Collapse
Affiliation(s)
- Jonathan M Voss
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Erin M Duffy
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Brett M Marsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA), E-mail: Etienne Garand
| |
Collapse
|
36
|
Pavlovic Z, Ranjan C, van Gastel M, Schlögl R. The active site for the water oxidising anodic iridium oxide probed through in situ Raman spectroscopy. Chem Commun (Camb) 2017; 53:12414-12417. [DOI: 10.1039/c7cc05669a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The structure of anodic iridium oxide (IrOx) under water oxidation was explored using in situ Raman spectroscopy and theoretical calculations.
Collapse
Affiliation(s)
- Zoran Pavlovic
- Department of Heterogeneous Catalysis
- Max Planck Institute for Chemical Energy Conversion
- Stiftstrasse 34-36
- Muelheim and Ruhr
- Germany
| | - Chinmoy Ranjan
- Department of Heterogeneous Catalysis
- Max Planck Institute for Chemical Energy Conversion
- Stiftstrasse 34-36
- Muelheim and Ruhr
- Germany
| | - Maurice van Gastel
- Department of Heterogeneous Catalysis
- Max Planck Institute for Chemical Energy Conversion
- Stiftstrasse 34-36
- Muelheim and Ruhr
- Germany
| | - Robert Schlögl
- Department of Heterogeneous Catalysis
- Max Planck Institute for Chemical Energy Conversion
- Stiftstrasse 34-36
- Muelheim and Ruhr
- Germany
| |
Collapse
|
37
|
Moonshiram D, Pineda-Galvan Y, Erdman D, Palenik M, Zong R, Thummel R, Pushkar Y. Uncovering the Role of Oxygen Atom Transfer in Ru-Based Catalytic Water Oxidation. J Am Chem Soc 2016; 138:15605-15616. [PMID: 27802032 DOI: 10.1021/jacs.6b08409] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The realization of artificial photosynthesis carries the promise of cheap and abundant energy, however, significant advances in the rational design of water oxidation catalysts are required. Detailed information on the structure of the catalyst under reaction conditions and mechanisms of O-O bond formation should be obtained. Here, we used a combination of electron paramagnetic resonance (EPR), stopped flow freeze quench on a millisecond-second time scale, X-ray absorption (XAS), resonance Raman (RR) spectroscopy, and density functional theory (DFT) to follow the dynamics of the Ru-based single site catalyst, [RuII(NPM)(4-pic)2(H2O)]2+ (NPM = 4-t-butyl-2,6-di(1',8'-naphthyrid-2'-yl)pyridine, pic = 4-picoline), under the water oxidation conditions. We report a unique EPR signal with g-tensor, gx = 2.30, gy = 2.18, and gz = 1.83 which allowed us to observe fast dynamics of oxygen atom transfer from the RuIV═O oxo species to the uncoordinated nitrogen of the NPM ligand. In few seconds, the NPM ligand modification results in [RuIII(NPM-NO)(4-pic)2(H2O)]3+ and [RuIII(NPM-NO,NO)(4-pic)2]3+ complexes. A proposed [RuV(NPM)(4-pic)2═O]3+ intermediate was not detected under the tested conditions. We demonstrate that while the proximal base might be beneficial in O-O bond formation via nucleophilic water attack on an oxo species as shown by DFT, the noncoordinating nitrogen is impractical as a base in water oxidation catalysts due to its facile conversion to the N-O group. This study opens new horizons for understanding the real structure of Ru catalysts under water oxidation conditions and points toward the need to further investigate the role of the N-O ligand in promoting water oxidation catalysis.
Collapse
Affiliation(s)
- Dooshaye Moonshiram
- Department of Physics and Astronomy, Purdue University , 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Yuliana Pineda-Galvan
- Department of Physics and Astronomy, Purdue University , 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Darren Erdman
- Department of Physics and Astronomy, Purdue University , 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Mark Palenik
- Code 6189, Chemistry Division, Naval Research Laboratory , 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | - Ruifa Zong
- Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| | - Randolph Thummel
- Department of Chemistry, University of Houston , Houston, Texas 77204-5003, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University , 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
38
|
Matias TA, Mangoni AP, Toma SH, Rein FN, Rocha RC, Toma HE, Araki K. Catalytic Water-Oxidation Activity of a Weakly Coupled Binuclear Ruthenium Polypyridyl Complex. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tiago A. Matias
- Department of Chemistry; Institute of Chemistry; University of São Paulo; Av. Lineu Prestes 748 SP 05508-000 Butantã São Paulo Brazil
| | - Ana P. Mangoni
- Department of Chemistry; Institute of Chemistry; University of São Paulo; Av. Lineu Prestes 748 SP 05508-000 Butantã São Paulo Brazil
| | - Sergio H. Toma
- Department of Chemistry; Institute of Chemistry; University of São Paulo; Av. Lineu Prestes 748 SP 05508-000 Butantã São Paulo Brazil
| | | | | | - Henrique E. Toma
- Department of Chemistry; Institute of Chemistry; University of São Paulo; Av. Lineu Prestes 748 SP 05508-000 Butantã São Paulo Brazil
| | - Koiti Araki
- Department of Chemistry; Institute of Chemistry; University of São Paulo; Av. Lineu Prestes 748 SP 05508-000 Butantã São Paulo Brazil
| |
Collapse
|
39
|
Vaissier V, Van Voorhis T. Adiabatic Approximation in Explicit Solvent Models of RedOx Chemistry. J Chem Theory Comput 2016; 12:5111-5116. [DOI: 10.1021/acs.jctc.6b00746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Valérie Vaissier
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
40
|
Casadevall C, Codolà Z, Costas M, Lloret-Fillol J. Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru(V) (O)(Py2 (Me) tacn)] Intermediate. Chemistry 2016; 22:10111-26. [PMID: 27324949 DOI: 10.1002/chem.201600584] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Indexed: 01/09/2023]
Abstract
A new family of ruthenium complexes based on the N-pentadentate ligand Py2 (Me) tacn (N-methyl-N',N''-bis(2-picolyl)-1,4,7-triazacyclononane) has been synthesised and its catalytic activity has been studied in the water-oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4 ) to generate the WO intermediates [Ru(II) (OH2 )(Py2 (Me) tacn)](2+) , [Ru(III) (OH2 )(Py2 (Me) tacn)](3+) , [Ru(III) (OH)(Py2 (Me) tacn)](2+) and [Ru(IV) (O)(Py2 (Me) tacn)](2+) , which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [Ru(IV) (O)(Py2 (Me) tacn)](2+) has a long half-life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, (18) O-labelling and theoretical studies, and the conclusion is that the rate-determining step is a single-site water nucleophilic attack on a metal-oxo species. Moreover, [Ru(IV) (O)(Py2 (Me) tacn)](2+) is proposed to be the resting state under catalytic conditions. By monitoring Ce(IV) consumption, we found that the O2 evolution rate is redox-controlled and independent of the initial concentration of Ce(IV) . Based on these facts, we propose herein that [Ru(IV) (O)(Py2 (Me) tacn)](2+) is oxidised to [Ru(V) (O)(Py2 (Me) tacn)](2+) prior to attack by a water molecule to give [Ru(III) (OOH)(Py2 (Me) tacn)](2+) . Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2 )(Py2 (Me) tacn)](2+) (M=Ru, Fe) complexes is due to the difference in the redox stability of the key M(V) (O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions.
Collapse
Affiliation(s)
- Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Zoel Codolà
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona Campus Montilivi, 17071, Girona, Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and, Departament de Química, Universitat de Girona Campus Montilivi, 17071, Girona, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007, Tarragona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010, Barcelona, Spain.
| |
Collapse
|
41
|
Yang B, Jiang X, Guo Q, Lei T, Zhang LP, Chen B, Tung CH, Wu LZ. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O−O Bond Formation Pathways by Different Aggregation Patterns. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
42
|
Yang B, Jiang X, Guo Q, Lei T, Zhang LP, Chen B, Tung CH, Wu LZ. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O−O Bond Formation Pathways by Different Aggregation Patterns. Angew Chem Int Ed Engl 2016; 55:6229-34. [DOI: 10.1002/anie.201601653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
43
|
Duffy EM, Marsh BM, Voss JM, Garand E. Characterization of the Oxygen Binding Motif in a Ruthenium Water Oxidation Catalyst by Vibrational Spectroscopy. Angew Chem Int Ed Engl 2016; 55:4079-82. [DOI: 10.1002/anie.201600350] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Erin M. Duffy
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Brett M. Marsh
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Jonathan M. Voss
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Etienne Garand
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
44
|
Duffy EM, Marsh BM, Voss JM, Garand E. Characterization of the Oxygen Binding Motif in a Ruthenium Water Oxidation Catalyst by Vibrational Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Erin M. Duffy
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Brett M. Marsh
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Jonathan M. Voss
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Etienne Garand
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
45
|
Kärkäs MD, Liao RZ, Laine TM, Åkermark T, Ghanem S, Siegbahn PEM, Åkermark B. Molecular ruthenium water oxidation catalysts carrying non-innocent ligands: mechanistic insight through structure–activity relationships and quantum chemical calculations. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01704a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein is highlighted how structure–activity relationships can be used to provide mechanistic insight into H2O oxidation catalysis.
Collapse
Affiliation(s)
- Markus D. Kärkäs
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Tanja M. Laine
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Torbjörn Åkermark
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Shams Ghanem
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Per E. M. Siegbahn
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Björn Åkermark
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
46
|
Kim H, Park J, Park I, Jin K, Jerng SE, Kim SH, Nam KT, Kang K. Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat Commun 2015; 6:8253. [PMID: 26365091 PMCID: PMC4579784 DOI: 10.1038/ncomms9253] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/31/2015] [Indexed: 12/11/2022] Open
Abstract
The development of efficient and stable water oxidation catalysts is necessary for the realization of practically viable water-splitting systems. Although extensive studies have focused on the metal-oxide catalysts, the effect of metal coordination on the catalytic ability remains still elusive. Here we select four cobalt-based phosphate catalysts with various cobalt- and phosphate-group coordination as a platform to better understand the catalytic activity of cobalt-based materials. Although they exhibit various catalytic activities and stabilities during water oxidation, Na2CoP2O7 with distorted cobalt tetrahedral geometry shows high activity comparable to that of amorphous cobalt phosphate under neutral conditions, along with high structural stability. First-principles calculations suggest that the surface reorganization by the pyrophosphate ligand induces a highly distorted tetrahedral geometry, where water molecules can favourably bind, resulting in a low overpotential (∼0.42 eV). Our findings emphasize the importance of local cobalt coordination in the catalysis and suggest the possible effect of polyanions on the water oxidation chemistry.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jimin Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
- Center for Biomaterials, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Inchul Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Kyoungsuk Jin
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sung Eun Jerng
- Western Seoul Center, Korea Basic Science Institute (KBSI), 150, Bukahyeon ro, Seodaemun-gu, Seoul 120-140, Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI), 150, Bukahyeon ro, Seodaemun-gu, Seoul 120-140, Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
47
|
Yu WB, He QY, Ma XF, Shi HT, Wei X. A new copper species based on an azo-compound utilized as a homogeneous catalyst for water oxidation. Dalton Trans 2015; 44:351-8. [PMID: 25382024 DOI: 10.1039/c4dt03097d] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new azo-complex [(L)Cu(II)(NO3)] [L = (E)-3-(pyridin-2-yldiazenyl)naphthalen-2-ol (HL)], was prepared via a one-pot synthetic method at 60 °C and was structurally characterized by IR, EA, PXRD and single crystal X-ray diffraction. In addition, TGA studies indicated that the complex was stable in air. The redox properties were determined by cyclic voltammetry, which revealed that the complex could be utilized as a catalyst for water oxidation under mild conditions. Subsequently, the complex was employed as a catalyst to take part in water oxidation reaction in the presence of a Ce(IV) salt utilized as an oxidant at pH 11 in PBS (Phosphate Buffered Saline) solution. The results suggested that the catalyst exhibited a high stability and activity toward water oxidation reaction under these conditions with an initial TOF of 4.0 kPa h(-1). Calculation methodology was performed to study the mechanism of the reaction, which revealed that in this catalytic process, the initial oxidation of Cu(II) to Cu(III) occurred by the formation of an intermediate "Cu(III)-O-O-Cu(III)". The formation of this intermediate, resulted in a release of oxygen and closing of the catalytic cycle.
Collapse
Affiliation(s)
- Wei-Bin Yu
- Analysis and Testing Central Facility, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, P. R. China.
| | | | | | | | | |
Collapse
|
48
|
Duffy EM, Marsh BM, Garand E. Probing the Hydrogen-Bonded Water Network at the Active Site of a Water Oxidation Catalyst: [Ru(bpy)(tpy)(H2O)]2+·(H2O)0–4. J Phys Chem A 2015; 119:6326-32. [DOI: 10.1021/acs.jpca.5b04778] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erin M. Duffy
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Brett M. Marsh
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Etienne Garand
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
49
|
Han Y, Wu Y, Lai W, Cao R. Electrocatalytic Water Oxidation by a Water-Soluble Nickel Porphyrin Complex at Neutral pH with Low Overpotential. Inorg Chem 2015; 54:5604-13. [DOI: 10.1021/acs.inorgchem.5b00924] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yongzhen Han
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yizhen Wu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wenzhen Lai
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Rui Cao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- School of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
50
|
Elgrishi N, Chambers MB, Fontecave M. Turning it off! Disfavouring hydrogen evolution to enhance selectivity for CO production during homogeneous CO 2 reduction by cobalt-terpyridine complexes. Chem Sci 2015; 6:2522-2531. [PMID: 28706660 PMCID: PMC5489026 DOI: 10.1039/c4sc03766a] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Understanding the activity and selectivity of molecular catalysts for CO2 reduction to fuels is an important scientific endeavour in addressing the growing global energy demand. Cobalt-terpyridine compounds have been shown to be catalysts for CO2 reduction to CO while simultaneously producing H2 from the requisite proton source. To investigate the parameters governing the competition for H+ reduction versus CO2 reduction, the cobalt bisterpyridine class of compounds is first evaluated as H+ reduction catalysts. We report that electronic tuning of the ancillary ligand sphere can result in a wide range of second-order rate constants for H+ reduction. When this class of compounds is next submitted to CO2 reduction conditions, a trend is found in which the less active catalysts for H+ reduction are the more selective towards CO2 reduction to CO. This represents the first report of the selectivity of a molecular system for CO2 reduction being controlled through turning off one of the competing reactions. The activities of the series of catalysts are evaluated through foot-of-the-wave analysis and a catalytic Tafel plot is provided.
Collapse
Affiliation(s)
- Noémie Elgrishi
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 CNRS , UPMC Univ Paris 06 , Collège de France , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France . ; ; Tel: +33 1 44271360
| | - Matthew B Chambers
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 CNRS , UPMC Univ Paris 06 , Collège de France , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France . ; ; Tel: +33 1 44271360
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques , UMR 8229 CNRS , UPMC Univ Paris 06 , Collège de France , 11 Place Marcelin Berthelot , 75231 Paris Cedex 05 , France . ; ; Tel: +33 1 44271360
| |
Collapse
|