1
|
Oszajca M, Drabik G, Radoń M, Franke A, van Eldik R, Stochel G. Experimental and Computational Insight into the Mechanism of NO Binding to Ferric Microperoxidase. The Likely Role of Tautomerization to Account for the pH Dependence. Inorg Chem 2021; 60:15948-15967. [PMID: 34476946 DOI: 10.1021/acs.inorgchem.1c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
According to the current paradigm, the metal-hydroxo bond in a six-coordinate porphyrin complex is believed to be significantly less reactive in ligand substitution than the analogous metal-aqua bond, due to a much higher strength of the former bond. Here, we report kinetic studies for nitric oxide (NO) binding to a heme-protein model, acetylated microperoxidase-11 (AcMP-11), that challenge this paradigm. In the studied pH range 7.4-12.6, ferric AcMP-11 exists in three acid-base forms, assigned in the literature as [(AcMP-11)FeIII(H2O)(HisH)] (1), [(AcMP-11)FeIII(OH)(HisH)] (2), and [(AcMP-11)FeIII(OH)(His-)] (3). From the pH dependence of the second-order rate constant for NO binding (kon), we determined individual rate constants characterizing forms 1-3, revealing only a ca. 10-fold decrease in the NO binding rate on going from 1 (kon(1) = 3.8 × 106 M-1 s-1) to 2 (kon(2) = 4.0 × 105 M-1 s-1) and the inertness of 3. These findings lead to the abandonment of the dissociatively activated mechanism, in which the reaction rate can be directly correlated with the Fe-OH bond energy, as the mechanistic explanation for the process with regard to 2. The reactivity of 2 is accounted for through the existence of a tautomeric equilibrium between the major [(AcMP-11)FeIII(OH)(HisH)] (2a) and minor [(AcMP-11)FeIII(H2O)(His-)] (2b) species, of which the second one is assigned as the NO binding target due to its labile Fe-OH2 bond. The proposed mechanism is further substantiated by quantum-chemical calculations, which confirmed both the significant labilization of the Fe-OH2 bond in the [(AcMP-11)FeIII(H2O)(His-)] tautomer and the feasibility of the tautomer formation, especially after introducing empirical corrections to the computed relative acidities of the H2O and HisH ligands based on the experimental pKa values. It is shown that the "effective lability" of the axial ligand (OH-/H2O) in 2 may be comparable to the lability of the H2O ligand in 1.
Collapse
Affiliation(s)
- Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Gabriela Drabik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Alicja Franke
- Department of Chemistry, Ludwigs-Maximilians University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Rudi van Eldik
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Bari SE, Olabe JA, Slep LD. Three Redox States of Metallonitrosyls in Aqueous Solution. ADVANCES IN INORGANIC CHEMISTRY 2015. [DOI: 10.1016/bs.adioch.2014.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
3
|
Franke A, van Eldik R. Factors That Determine the Mechanism of NO Activation by Metal Complexes of Biological and Environmental Relevance. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201201111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner DS, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract 2012; 22:103-30. [PMID: 23075911 PMCID: PMC3640855 DOI: 10.1159/000341715] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/01/2012] [Indexed: 12/18/2022] Open
Abstract
Based on aqueous redox chemistry and simple in vivo models of oxidative stress, Escherichia coli and Saccharomyces cerevisiae, the cationic Mn(III) N-substituted pyridylporphyrins (MnPs) have been identified as the most potent cellular redox modulators within the porphyrin class of drugs; their efficacy in animal models of diseases that have oxidative stress in common is based on their high ability to catalytically remove superoxide, peroxynitrite, carbonate anion radical, hypochlorite, nitric oxide, lipid peroxyl and alkoxyl radicals, thus suppressing the primary oxidative event. While doing so MnPs could couple with cellular reductants and redox-active proteins. Reactive species are widely accepted as regulators of cellular transcriptional activity: minute, nanomolar levels are essential for normal cell function, while submicromolar or micromolar levels impose oxidative stress, which is evidenced in increased inflammatory and immune responses. By removing reactive species, MnPs affect redox-based cellular transcriptional activity and consequently secondary oxidative stress, and in turn inflammatory processes. The equal ability to reduce and oxidize superoxide during the dismutation process and recently accumulated results suggest that pro-oxidative actions of MnPs may also contribute to their therapeutic effects. All our data identify the superoxide dismutase-like activity, estimated by log k(cat)O2-*), as a good measure for the therapeutic efficacy of MnPs. Their accumulation in mitochondria and their ability to cross the blood-brain barrier contribute to their remarkable efficacy. We summarize herein the therapeutic effects of MnPs in cancer, central nervous system injuries, diabetes, their radioprotective action and potential for imaging. Few of the most potent modulators of cellular redox-based pathways, MnTE2-PyP5+, MnTDE-2-ImP5+, MnTnHex-2-PyP5+ and MnTnBuOE-2-PyP5+, are under preclinical and clinical development.
Collapse
Affiliation(s)
- Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
| | - Tin Weitner
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Amanda Arulpragasam
- Department of Duke University Neuroscience Undergraduate
Program, Duke University Medical Center, Durham, N.C., USA
| | - Miaomiao Lu
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
- Department of Department of Anesthesiology, Second Affiliated
Hospital, Zhengzhou University, Zhengzhou, China
| | - David S. Warner
- Department of Anesthesiology, Duke University Medical Center,
Durham, N.C., USA
- Department of Multidisciplinary Neuroprotection Laboratories,
Duke University Medical Center, Durham, N.C., USA
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| | - Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham,
N.C., USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical
Center, Durham, N.C., USA
| |
Collapse
|
5
|
Kundu S, Annavajhala M, Kurnikov IV, Ryabov AD, Collins TJ. Experimental and Theoretical Evidence for Multiple FeIV Reactive Intermediates in TAML-Activator Catalysis: Rationalizing a Counterintuitive Reactivity Order. Chemistry 2012; 18:10244-9. [DOI: 10.1002/chem.201201665] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Indexed: 11/06/2022]
|
6
|
Watanabe K, Kitagishi H, Kano K. Supramolecular ferric porphyrins as cyanide receptors in aqueous solution. ACS Med Chem Lett 2011; 2:943-7. [PMID: 24900285 DOI: 10.1021/ml200231x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/20/2011] [Indexed: 11/29/2022] Open
Abstract
All fundamental data about binding of the cyanide to a supramolecular complex composed of a per-O-methylated β-cyclodextrin dimer having an imidazole linker (Im3CD) and an anionic ferric porphyrin (Fe((III))TPPS) indicate that the Fe((III))TPPS/Im3CD complex is much better as an cyanide receptor in vivo than hydroxocobalamin, whose cyanide binding ability is lowered by its strong binding to serum proteins in the blood.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Molecular Chemistry
and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry
and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Koji Kano
- Department of Molecular Chemistry
and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|