1
|
Ali A, Pervaiz M, Saeed Z, Younas U, Bashir R, Ullah S, Bukhari SM, Ali F, Jelani S, Rashid A, Adnan A. Synthesis and biological evaluation of 4-dimethylaminobenzaldehyde derivatives of Schiff bases metal complexes: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
2
|
McKee ML. Exploring the Reaction Mechanism of C-H Oxidation by Copper-Salen Complexes. J Phys Chem A 2022; 126:4969-4980. [PMID: 35861503 DOI: 10.1021/acs.jpca.2c03344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of C-H oxidation of propylene (C3H6) and 1-phenyl-1-pentyne (C3H7-C≡C-Ph) by HOOR (R═Me, tBu) and 3O2 by a copper-salen complex was explored by computations. The most noteworthy step is the complexation of two Cu salens to the peroxide to form either the LCuOH/LCuOR pair or an OH-bridged complex LCu(μ-OH)CuL plus OR. The latter pathway involves an avoided crossing of two triplet electronic states. The LCuOH complex can abstract a hydrogen atom from C3H6 and the C3H5 radical plus 3O2 forms the complex LCuOOC3H5. Migration of a hydrogen to the proximal oxygen atom reforms LCuOH and acrolein HC(O)CH═CH2.
Collapse
Affiliation(s)
- Michael L McKee
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
3
|
Pervaiz M, Sadiq A, Sadiq S, Saeed Z, Imran M, Younas U, Majid Bukhari S, Rashad Mahmood Khan R, Rashid A, Adnan A. Design and synthesis of Schiff base Homobimetallic-Complexes as promising antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Akine S, Miyashita M, Nabeshima T. Enhancement of Alkali Metal Ion Recognition by Metalation of a Tris(saloph) Cryptand Having Benzene Rings at the Bridgeheads. Inorg Chem 2021; 60:12961-12971. [PMID: 34310880 DOI: 10.1021/acs.inorgchem.1c01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A cryptand derivative, H6L, which has three H2saloph arms connected by two benzene ring bridgeheads, was synthesized and converted into the trinuclear metallocryptand, LNi3. The nonmetalated host, H6L, was found to bind to alkali metal ions (Na+, K+, Rb+, Cs+; logKa = 3.37-6.67) in its well-defined cavity in DMSO/chloroform (1:9). The binding affinity was enhanced by 1-2 orders of magnitude upon the conversion into the metallocryptand, LNi3, which can be explained by the more polarized phenoxo groups in the [Ni(saloph)] arms. The guest binding affinity of Na+ < K+ < Rb+ ≈ Cs+ was clearly demonstrated by the 1H NMR competition experiments. The DFT calculations suggested that the Rb+ ion most suitably fit into the benzene-benzene spacing with a cation-π interaction and that only the largest Cs+ ion can almost equally interact with all six phenoxo oxygen donor atoms. The metallocryptand, LNi3, also showed a strong binding affinity to Ag+ by taking advantage of cation-π interactions, which was confirmed by spectroscopic titrations and crystallographic analysis as well as DFT calculations. Thus, the well-defined three-dimensional cavity of LNi3 was found to be suitable for strong binding with alkali metal ions as well as Ag+.
Collapse
Affiliation(s)
- Shigehisa Akine
- Graduate School of Natural Science and Technology/Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masato Miyashita
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Tatsuya Nabeshima
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
5
|
Shestakov AF, Yakushchenko IK, Slesarenko AA, Troshin PA, Yarmolenko OV. Synthesis and Investigation of Dilithium Salts of Polyhydroquinones with Azomethine Groups as the Cathodes for Lithium Organic Batteries. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193520040126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Biswas S, Lau N, Borovik AS, Hendrich MP, Bominaar EL. Analysis of the Puzzling Exchange-Coupling Constants in a Series of Heterobimetallic Complexes. Inorg Chem 2019; 58:9150-9160. [DOI: 10.1021/acs.inorgchem.9b00757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saborni Biswas
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Nathanael Lau
- Department of Chemistry, University of California−Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A. S. Borovik
- Department of Chemistry, University of California−Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Michael P. Hendrich
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Solomon MB, Chan B, Kubiak CP, Jolliffe KA, D'Alessandro DM. The spectroelectrochemical behaviour of redox-active manganese salen complexes. Dalton Trans 2019; 48:3704-3713. [DOI: 10.1039/c8dt02676a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of discrete, functionalised Mn(iii) pyridyl salen metal complexes with varying aliphatic and aromatic bridging diamines have been evaluated and their spectroelectrochemical properties probed.
Collapse
Affiliation(s)
| | - Bun Chan
- Graduate School of Engineering
- Nagasaki University
- Nagasaki-shi
- Japan
| | - Clifford P. Kubiak
- Department of Chemistry and Biochemistry
- University of California
- San Diego
- USA
| | | | | |
Collapse
|
8
|
Lau N, Sano Y, Ziller JW, Borovik AS. Modular bimetallic complexes with a sulfonamido-based ligand. Dalton Trans 2018; 47:12362-12372. [PMID: 30118133 PMCID: PMC6165629 DOI: 10.1039/c8dt02455c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of bimetallic complexes prepared with the ligands N,N,N',N'-tetramethylethane-1,2-diamine (TMEDA) and N,N',N''-[2,2',2''-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST]3-) is described. Four diiron compounds of the formulation (TMEDA)FeII(X)-(μ-OH)-FeIIIMST were prepared, in which the X- ligands are the anions OTf-, Br-, SCN-, or N3-. Additionally, two heterobimetallic compounds of the formulation (TMEDA)MII(OTf)-(μ-OH)-FeIIIMST (MII = CoII or NiII) were synthesized. All these compounds have similar spectroscopic and structural properties. The diiron compounds exhibit perpendicular-mode electron paramagnetic resonance spectra consistent with S = 1/2 spin ground states, which is expected for high-spin FeII and FeIII centres that are antiferromagnetically coupled. The heterobimetallic (TMEDA)NiII(OTf)-(μ-OH)-FeIIIMST complex had a spin state of S = 3/2 that also resulted from antiferromagnetic coupling between the high-spin NiII and FeIII centres. The modularity of this system is further demonstrated by the substitution of the TMEDA ligand with ethylenediamine (en); for this species two equivalents of en coordinate to the FeII centre to form [(en)2FeII-(μ-OH)-FeIIIMST]OTf. These results demonstrate that a modular bimetallic system has been developed in which the key components can be modified.
Collapse
Affiliation(s)
- Nathanael Lau
- Department of Chemistry, University of California - Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | | | | | | |
Collapse
|
9
|
Gutierrez K, Corchado J, Lin S, Chen Z, Piñero Cruz DM. A non-innocent salen naphthalene ligand and its Co 2+ , Ni 2+ and Cu 2+ metal complexes: Structural, electrochemical, and spectroscopic characterization and computational studies. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Lecarme L, Chiang L, Moutet J, Leconte N, Philouze C, Jarjayes O, Storr T, Thomas F. The structure of a one-electron oxidized Mn(iii)-bis(phenolate)dipyrrin radical complex and oxidation catalysis control via ligand-centered redox activity. Dalton Trans 2018; 45:16325-16334. [PMID: 27711805 DOI: 10.1039/c6dt02163h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The tetradentate ligand dppH3, which features a half-porphyrin and two electron-rich phenol moieties, was prepared and chelated to manganese. The mononuclear Mn(iii)-dipyrrophenolate complex 1 was structurally characterized. The metal ion lies in a square pyramidal environment, the apical position being occupied by a methanol molecule. Complex 1 displays two reversible oxidation waves at 0.00 V and 0.47 V vs. Fc+/Fc, which are assigned to ligand-centered processes. The one-electron oxidized species 1+ SbF6- was crystallized, showing an octahedral Mn(iii) center with two water molecules coordinated at both apical positions. The bond distance analysis and DFT calculations disclose that the radical is delocalized over the whole aromatic framework. Complex 1+ SbF6- exhibits an Stot = 3/2 spin state due to the antiferromagnetic coupling between Mn(iii) and the ligand radical. The zero field splitting parameters are D = 1.6 cm-1, E/D = 0.18(1), g⊥ = 1.99 and g∥ = 1.98. The dication 12+ is an integer spin system, which is assigned to a doubly oxidized ligand coordinated to a Mn(iii) metal center. Both 1 and 1+ SbF6- catalyze styrene oxidation in the presence of PhIO, but the nature of the main reaction product is different. Styrene oxide is the main reaction product when using 1, but phenylacetaldehyde is formed predominantly when using 1+ SbF6-. We examined the ability of complex 1+ SbF6- to catalyze the isomerization of styrene oxide and found that it is an efficient catalyst for the anti-Markovnikov opening of styrene oxide. The formation of phenylacetaldehyde from styrene therefore proceeds in a tandem E-I (epoxidation-isomerization) mechanism in the case of 1+ SbF6-. This is the first evidence of control of the reactivity for styrene oxidation by changing the oxidation state of a catalyst based on a redox-active ligand.
Collapse
Affiliation(s)
- Laureline Lecarme
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Linus Chiang
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, British Columbia V5A-1S4, Canada
| | - Jules Moutet
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Nicolas Leconte
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Christian Philouze
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Olivier Jarjayes
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| | - Tim Storr
- Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, British Columbia V5A-1S4, Canada
| | - Fabrice Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250, Université Grenoble Alpes, B. P. 53, 38041 Grenoble cedex 9, France.
| |
Collapse
|
11
|
Clarke RM, Jeen T, Rigo S, Thompson JR, Kaake LG, Thomas F, Storr T. Exploiting exciton coupling of ligand radical intervalence charge transfer transitions to tune NIR absorption. Chem Sci 2017; 9:1610-1620. [PMID: 29675206 PMCID: PMC5887452 DOI: 10.1039/c7sc04537a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/18/2017] [Indexed: 12/03/2022] Open
Abstract
We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region.
We detail the rational design of a series of bimetallic bis-ligand radical Ni salen complexes in which the relative orientation of the ligand radical chromophores provides a mechanism to tune the energy of intense intervalence charge transfer (IVCT) bands in the near infrared (NIR) region. Through a suite of experimental (electrochemistry, electron paramagnetic resonance spectroscopy, UV-vis-NIR spectroscopy) and theoretical (density functional theory) techniques, we demonstrate that bimetallic Ni salen complexes form bis-ligand radicals upon two-electron oxidation, whose NIR absorption energies depend on the geometry imposed in the bis-ligand radical complex. Relative to the oxidized monomer [1˙]+ (E = 4500 cm–1, ε = 27 700 M–1 cm–1), oxidation of the cofacially constrained analogue 2 to [2˙˙]2+ results in a blue-shifted NIR band (E = 4830 cm–1, ε = 42 900 M–1 cm–1), while oxidation of 5 to [5˙˙]2+, with parallel arrangement of chromophores, results in a red-shifted NIR band (E = 4150 cm–1, ε = 46 600 M–1 cm–1); the NIR bands exhibit double the intensity in comparison to the monomer. Oxidation of the intermediate orientations results in band splitting for [3˙˙]2+ (E = 4890 and 4200 cm–1; ε = 26 500 and 21 100 M–1 cm–1), and a red-shift for [4˙˙]2+ using ortho- and meta-phenylene linkers, respectively. This study demonstrates for the first time, the applicability of exciton coupling to ligand radical systems absorbing in the NIR region and shows that by simple geometry changes, it is possible to tune the energy of intense low energy absorption by nearly 400 nm.
Collapse
Affiliation(s)
- Ryan M Clarke
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Tiffany Jeen
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Serena Rigo
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - John R Thompson
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Loren G Kaake
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Fabrice Thomas
- Départment de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250 , Université Grenoble-Alpes , B.P. 53 , 38041 Grenoble Cedex 9 , France
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| |
Collapse
|
12
|
Sano Y, Lau N, Weitz AC, Ziller JW, Hendrich MP, Borovik A. Models for Unsymmetrical Active Sites in Metalloproteins: Structural, Redox, and Magnetic Properties of Bimetallic Complexes with M II-(μ-OH)-Fe III Cores. Inorg Chem 2017; 56:14118-14128. [PMID: 29112385 PMCID: PMC5696092 DOI: 10.1021/acs.inorgchem.7b02230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bimetallic complexes are important sites in metalloproteins but are often difficult to prepare synthetically. We have previously introduced an approach to form discrete bimetallic complexes with MII-(μ-OH)-FeIII (MII = Mn, Fe) cores using the tripodal ligand N,N',N″-[2,2',2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido) ([MST]3-). This series is extended to include the rest of the late 3d transition metal ions (MII = Co, Ni, Cu, Zn). All of the bimetallic complexes have similar spectroscopic and structural properties that reflect little change despite varying the MII centers. Magnetic studies performed on the complexes in solution using electron paramagnetic resonance spectroscopy showed that the observed spin states varied incrementally from S = 0 through S = 5/2; these results are consistent with antiferromagnetic coupling between the high-spin MII and FeIII centers. However, the difference in the MII ion occupancy yielded only slight changes in the magnetic exchange coupling strength, and all complexes had J values ranging from +26(4) to +35(3) cm-1.
Collapse
Affiliation(s)
- Yohei Sano
- Department of Chemistry, University of California – Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, United States
| | - Nathanael Lau
- Department of Chemistry, University of California – Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, United States
| | - Andrew C. Weitz
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Joseph W. Ziller
- Department of Chemistry, University of California – Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, United States
| | - Michael P. Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - A.S. Borovik
- Department of Chemistry, University of California – Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, United States
| |
Collapse
|
13
|
Synthesis and Properties of Salicylaldehydes Fine-Tuned by Modular Assembly using “Plug-and-Socket”-Type Extendibility. Chemistry 2017; 23:8286-8294. [DOI: 10.1002/chem.201701141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Indexed: 11/07/2022]
|
14
|
Stobbe BC, Powell DR, Thomson RK. Schiff base thorium(iv) and uranium(iv) chloro complexes: synthesis, substitution and oxidation chemistry. Dalton Trans 2017; 46:4888-4892. [DOI: 10.1039/c7dt00580f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schiff base chloro complexes of U(iv) and Th(iv) are prepared and provide access to rare pseudo trans diazide species, and a facile pathway to uranyl complexes through oxidation with NaNO2.
Collapse
Affiliation(s)
- Brian C. Stobbe
- Department of Chemistry & Biochemistry
- University of Oklahoma
- Norman
- USA 73019
| | - Douglas R. Powell
- Department of Chemistry & Biochemistry
- University of Oklahoma
- Norman
- USA 73019
| | - Robert K. Thomson
- Department of Chemistry & Biochemistry
- University of Oklahoma
- Norman
- USA 73019
| |
Collapse
|
15
|
Heras Ojea MJ, Hay MA, Cioncoloni G, Craig GA, Wilson C, Shiga T, Oshio H, Symes MD, Murrie M. Ligand-directed synthesis of {MnIII5} twisted bow-ties. Dalton Trans 2017; 46:11201-11207. [DOI: 10.1039/c7dt02430d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3,5-Diamino-1,2,4-triazole derivatives direct the assembly of {MnIII5} twisted bow-ties.
Collapse
Affiliation(s)
| | - Moya A. Hay
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | | | - Gavin A. Craig
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Claire Wilson
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Takuya Shiga
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Hiroki Oshio
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Mark D. Symes
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Mark Murrie
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| |
Collapse
|
16
|
Houjou H, Yagi K, Yoshikawa I, Mutai T, Araki K. Effects of interaction between the chelate rings and π-conjugated systems in fused salphen complexes on UV-Vis-NIR spectra. J PHYS ORG CHEM 2016. [DOI: 10.1002/poc.3635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hirohiko Houjou
- Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Keisuke Yagi
- Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Isao Yoshikawa
- Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Toshiki Mutai
- Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Koji Araki
- Institute of Industrial Science; The University of Tokyo; 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
17
|
Ali A, Dhar D, Barman SK, Lloret F, Mukherjee R. Nickel(II) Complex of a Hexadentate Ligand with Two o-Iminosemiquinonato(1-) π-Radical Units and Its Monocation and Dication. Inorg Chem 2016; 55:5759-71. [PMID: 27232547 DOI: 10.1021/acs.inorgchem.5b02688] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aerobic reaction of a hexadentate redox-active o-aminophenol-based ligand, H4L(3) = N,N'-bis(2-hydroxy-3,5-di-tert-butylphenyl)-2,2'-diamino(diphenyldithio)-ethane, in CH3OH with Ni(II)(O2CCH3)2·4H2O and Et3N afforded isolation of a reddish-brown crystalline solid [Ni(L(3))] 1. Cyclic voltammetry (CV) experiment exhibits two oxidative responses at E1/2 = 0.09 and 0.53 V vs SCE (saturated calomel electrode). Chemical oxidation of 1 in air by [Fe(III)(η(5)-C5H5)2][PF6] and AgBF4 in CH2Cl2 led to the isolation of one-electron oxidized species [1](1+) as purple [1][PF6]·CH2Cl2 and two-electron oxidized species [1](2+) as dark purple [1][BF4]2·CH2Cl2, respectively. X-ray crystallographic analysis at 100(2) K unambiguously established that the ligand is present in [Ni(II){(L(ISQ)O,N)(•-)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}] 1, [Ni(II){(L(IBQ)O,N)(0)}{(L(ISQ)O,N)(•-)}{(LS,S)(0)}][PF6]·CH2Cl2, and [Ni(II){(L(IBQ)O,N)(0)}{(L(IBQ)O,N)(0)}{(LS,S)(0)}][BF4]2·CH2Cl2, as monoanionic o-iminosemiquinonate(1-) π-radical (Srad = 1/2) (L(ISQ))(•-) and neutral o-iminoquinone (L(IBQ))(0) redox-levels. Complexes 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 possess an S = 2, 3/2, and 1 ground-state, respectively, established by temperature-dependent (2-300 K) magnetic behavior of 1 and [1][PF6]·CH2Cl2, and a μeff value of [1][BF4]2·CH2Cl2 at 300 K. Both 1 and [1][PF6]·CH2Cl2 exhibit ferromagnetic exchange-coupling between the two electrons of Ni(II) and two/one ligand π-radicals, respectively. The redox processes are shown to be ligand-based. Spectroscopic and redox properties, and density functional theory (DFT) calculations at the CAM-B3LYP-level of theory adequately describe the electronic structure of 1, [1](1+), and [1](2+). The observed UV-vis-NIR absorptions for 1, [1][PF6]·CH2Cl2, and [1][BF4]2·CH2Cl2 have been assigned, based on time-dependent (TD)-DFT calculations.
Collapse
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Debanjan Dhar
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| | - Francesc Lloret
- Departament de Quımíca, Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de Valeńcia , Polígono de la Coma, s/n, 46980-Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| |
Collapse
|
18
|
Bugenhagen BEC, Prosenc MH. Direct C-C coupling of two Ni-salphen complexes to yield dinickel-disalphen complexes with symmetric and non-symmetric substitution-patterns. Dalton Trans 2016; 45:7460-8. [PMID: 27040080 DOI: 10.1039/c5dt04612b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The synthesis of symmetric and non-symmetric 5,5'-linked disalophen Ni(ii) complexes by the Suzuki-Miyaura-reaction is reported. Also, the synthesis and structural characterization of four Ni(ii)-precursor complexes are presented. The 5-Br-substituted mononuclear complexes and are coupled to the pinacolborane substituted complexes and yielding the four dinuclear dinickel complexes in good yields. The crystal structure of dinuclear complex was obtained revealing a coplanar arrangement between the two salophen fragments. Electronic spectra as well as DFT-calculations on the ground states and excitation energies are reported and they reveal a small coupling between the electronically saturated Ni-salophen complexes.
Collapse
Affiliation(s)
- B E C Bugenhagen
- Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - M H Prosenc
- Institute for Physical Chemistry, TU Kaiserslautern, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany.
| |
Collapse
|
19
|
Thomas F. Ligand-centred oxidative chemistry in sterically hindered salen complexes: an interesting case with nickel. Dalton Trans 2016; 45:10866-77. [DOI: 10.1039/c6dt00942e] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Salen ligands are ubiquitous chelators, whose nickel complexes readily undergo a ligand-centred redox chemistry in non-coordinating solvents.
Collapse
Affiliation(s)
- F. Thomas
- Département de Chimie Moléculaire - Chimie Inorganique Redox (CIRE) - UMR CNRS 5250
- Université Grenoble-Alpes
- 38041 Grenoble cedex 9
- France
| |
Collapse
|
20
|
Clarke RM, Hazin K, Thompson JR, Savard D, Prosser KE, Storr T. Electronic Structure Description of a Doubly Oxidized Bimetallic Cobalt Complex with Proradical Ligands. Inorg Chem 2015; 55:762-74. [DOI: 10.1021/acs.inorgchem.5b02231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ryan M. Clarke
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Khatera Hazin
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - John R. Thompson
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Didier Savard
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kathleen E. Prosser
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Tim Storr
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
21
|
Chiang L, Clarke RM, Herasymchuk K, Sutherland M, Prosser KE, Shimazaki Y, Storr T. Electronic Structure Evaluation of an Oxidized Tris(methoxy)-Substituted Ni Salen Complex. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201501144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
de Bellefeuille D, Orio M, Barra AL, Aukauloo A, Journaux Y, Philouze C, Ottenwaelder X, Thomas F. Redox Noninnocence of the Bridge in Copper(II) Salophen and Bis(oxamato) Complexes. Inorg Chem 2015; 54:9013-26. [DOI: 10.1021/acs.inorgchem.5b01285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- David de Bellefeuille
- Department
of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Maylis Orio
- Laboratoire
de Spectrochimie Infrarouge et Raman, Université des Sciences et Technologies de Lille, UMR CNRS 8516, 59655 Villeneuve
d’Ascq Cedex, France
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses, CNRS, 25 rue des Martyrs, 38042 Grenoble, France
| | - Ally Aukauloo
- Institut
de Chimie Moléculaire et des Matériaux d’Orsay,
UMR CNRS 8182, Université Paris-Sud XI, 91405 Orsay, France
- Service de Bioénergétique,
Biologie Structurale et Mécanismes (SB2SM), CEA, iBiTec-S;
Biochimie Biophysique et Biologie Structurale (B3S),
I2BC, UMR 9198, 91191 Gif-sur-Yvette, France
| | - Yves Journaux
- Institut
de Chimie Moléculaire et des Matériaux d’Orsay,
UMR CNRS 8182, Université Paris-Sud XI, 91405 Orsay, France
- Sorbonne Universités,
UPMC Université Paris 06, UMR CNRS 8232, Institut
Parisien de Chimie Moléculaire, France
| | - Christian Philouze
- Equipe
CIRE, Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes, 38041 Grenoble Cedex 9, France
| | - Xavier Ottenwaelder
- Department
of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Fabrice Thomas
- Equipe
CIRE, Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble-Alpes, 38041 Grenoble Cedex 9, France
| |
Collapse
|
23
|
Ali A, Barman SK, Mukherjee R. Palladium(II) Complex of a Redox-Active Amidophenolate-Based O,N,S,N Ligand: Its Monocation and Dication and Reactivity with PPh3. Inorg Chem 2015; 54:5182-94. [DOI: 10.1021/ic503103e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Akram Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Suman K. Barman
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246, India
| |
Collapse
|
24
|
Houjou H, Yagi K, Yoshikawa I, Mutai T, Araki K. Solid-State Characterization of a Fused Salphen–Nickel Metallopolymer Prepared via Transmetalation in a Heterogeneous Reaction System. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0187-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Feldscher B, Stammler A, Bögge H, Glaser T. Aromatic Versus Heteroradialene Character in Extended Thiophloroglucinol Ligands and their Trinuclear Nickel(II) Complexes. Chem Asian J 2014; 9:2205-18. [DOI: 10.1002/asia.201402272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 11/11/2022]
|
26
|
Feldscher B, Theil H, Stammler A, Bögge H, Glaser T. A streamlined synthesis of extended thiophloroglucinol ligands and their trinuclear NiII3 complexes. Dalton Trans 2014; 43:4102-14. [DOI: 10.1039/c3dt53457j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Clarke RM, Storr T. The chemistry and applications of multimetallic salen complexes. Dalton Trans 2014; 43:9380-91. [DOI: 10.1039/c4dt00591k] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Fortier S, Le Roy JJ, Chen CH, Vieru V, Murugesu M, Chibotaru LF, Mindiola DJ, Caulton KG. A dinuclear cobalt complex featuring unprecedented anodic and cathodic redox switches for single-molecule magnet activity. J Am Chem Soc 2013; 135:14670-8. [PMID: 23991708 DOI: 10.1021/ja405284t] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
One-electron oxidation or reduction of the paramagnetic dinuclear Co(II) complex dmp2Nin{Co[N(SiMe3)2]}2 (1; dmp2Nin(2-) = bis(2,6-dimethylphenyl)nindigo), by fully reversible chemical or electrochemical methods, generates the radical salts [1(OEt2)](+) and [1](-), respectively. Full structural and magnetic analyses reveal the locus of the redox changes to be nindigo-based, thus giving rise to ligand-centered radicals sandwiched between two paramagnetic and low-coordinate Co(II) centers. The presence of these sandwiched radicals mediates magnetic coupling between the high-spin (S = 3/2) cobalt ions, which gives rise to single-molecule magnet (SMM) activity in both the oxidized ([1(OEt2)](+)) and reduced ([1](-)) states. This feature represents the first example of a SMM exhibiting fully reversible, dual "ON/OFF" switchability in both the cathodic and anodic states.
Collapse
Affiliation(s)
- Skye Fortier
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Widger LR, Jiang Y, Siegler M, Kumar D, Latifi R, de Visser SP, Jameson GN, Goldberg DP. Synthesis and ligand non-innocence of thiolate-ligated (N4S) Iron(II) and nickel(II) bis(imino)pyridine complexes. Inorg Chem 2013; 52:10467-80. [PMID: 23992096 PMCID: PMC3827697 DOI: 10.1021/ic4013558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The known iron(II) complex [Fe(II)(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [Fe(II)(LN3S)(py)](OTf) (2) and [Fe(II)(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, ultraviolet-visible (UV-vis) spectroscopic analysis, (1)H nuclear magnetic resonance (NMR), and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [Ni(II)(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1-3 and 5 undergo a single reduction process with E(1/2) between -0.9 V to -1.2 V versus Fc(+)/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the monoreduced complex [Fe(LN3S)(DMAP)](0) (4), which was characterized by X-ray crystallography, UV-vis spectroscopic analysis, electron paramagnetic resonance (EPR) spectroscopy (g = [2.155, 2.057, 2.038]), and Mössbauer (δ = 0.33 mm s(-1); ΔE(Q) = 2.04 mm s(-1)) spectroscopy. Computational methods (DFT) were employed to model complexes 3-5. The combined experimental and computational studies show that 1-3 are 5-coordinate, high-spin (S = 2) Fe(II) complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) Fe(II) complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (S(total) = 1/2) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the monoreduced 4 appears to react with O2 to give a mixture of sulfur oxygenates and iron oxygenates. The nickel(II) complex 5 does not react with O2, and even when the monoreduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2.
Collapse
Affiliation(s)
- Leland R. Widger
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Yunbo Jiang
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Maxime Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Devesh Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareilly Road, Lucknow (U. P.) 226 025, India
| | - Reza Latifi
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Guy N.L. Jameson
- Department of Chemistry & MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
30
|
Houjou H, Shingai H, Yagi K, Yoshikawa I, Araki K. Mutual Interference between Intramolecular Proton Transfer Sites through the Adjoining π-Conjugated System in Schiff Bases of Double-Headed, Fused Salicylaldehydes. J Org Chem 2013; 78:9021-31. [DOI: 10.1021/jo401108z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hirohiko Houjou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Shingai
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Keisuke Yagi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Isao Yoshikawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Koji Araki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
31
|
Bittner MM, Kraus D, Lindeman SV, Popescu CV, Fiedler AT. Synthetic, spectroscopic, and DFT studies of iron complexes with iminobenzo(semi)quinone ligands: implications for o-aminophenol dioxygenases. Chemistry 2013; 19:9686-98. [PMID: 23744733 PMCID: PMC3965334 DOI: 10.1002/chem.201300520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/17/2013] [Indexed: 11/10/2022]
Abstract
The oxidative C-C bond cleavage of o-aminophenols by nonheme Fe dioxygenases is a critical step in both human metabolism (the kynurenine pathway) and the microbial degradation of nitroaromatic pollutants. The catalytic cycle of o-aminophenol dioxygenases (APDOs) has been proposed to involve formation of an Fe(II)/O2/iminobenzosemiquinone complex, although the presence of a substrate radical has been called into question by studies of related ring-cleaving dioxygenases. Recently, we reported the first synthesis of an iron(II) complex coordinated to an iminobenzosemiquinone (ISQ) ligand, namely, [Fe((Ph2)Tp)((tBu)ISQ)] (2a; where (Ph2)Tp=hydrotris(3,5-diphenylpyrazol-1-yl)borate and (tBu)ISQ is the radical anion derived from 2-amino-4,6-di-tert-butylphenol). In the current manuscript, density functional theory (DFT) calculations and a wide variety of spectroscopic methods (electronic absorption, Mössbauer, magnetic circular dichroism, and resonance Raman) were employed to obtain detailed electronic-structure descriptions of 2a and its one-electron oxidized derivative [3a](+). In addition, we describe the synthesis and characterization of a parallel series of complexes featuring the neutral supporting ligand tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine ((Ph2)TIP). The isomer shifts of about 0.97 mm s(-1) obtained through Mössbauer experiments confirm that 2a (and its (Ph2)TIP-based analogue [2b](+)) contain Fe(II) centers, and the presence of an ISQ radical was verified by analysis of the absorption spectra in light of time-dependent DFT calculations. The collective spectroscopic data indicate that one-electron oxidation of the Fe(II)-ISQ complexes yields complexes ([3a](+) and [3b](2+)) with electronic configurations between the Fe(III)-ISQ and Fe(II)-IBQ limits (IBQ=iminobenzoquinone), highlighting the ability of o-amidophenolates to access multiple oxidation states. The implications of these results for the mechanism of APDOs and other ring-cleaving dioxygenases are discussed.
Collapse
Affiliation(s)
- Michael M. Bittner
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - David Kraus
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Sergey V. Lindeman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Codrina V. Popescu
- Department of Chemistry, Ursinus College, Collegeville, Pennsylvania 19426, United States
| | - Adam T. Fiedler
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
32
|
Shingai H, Houjou H, Yoshikawa I, Araki K. A Redox-Active, Amphoteric Pyrogallolaldehyde Derivative: Electrochemical Characterization and Schiff Base Formation for Constructing Multifunctional Salphen Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hajime Shingai
- Institute of Industrial Science, The University of Tokyo
| | | | - Isao Yoshikawa
- Institute of Industrial Science, The University of Tokyo
| | - Koji Araki
- Institute of Industrial Science, The University of Tokyo
| |
Collapse
|
33
|
Dunn TJ, Chiang L, Ramogida CF, Hazin K, Webb MI, Katz MJ, Storr T. Class III Delocalization and Exciton Coupling in a Bimetallic Bis-ligand Radical Complex. Chemistry 2013; 19:9606-18. [DOI: 10.1002/chem.201300798] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Indexed: 11/07/2022]
|
34
|
Tong WL, Yiu SM, Chan MCW. Crowded Bis-(M-salphen) [M = Pt(II), Zn(II)] Coordination Architectures: Luminescent Properties and Ion-Selective Responses. Inorg Chem 2013; 52:7114-24. [DOI: 10.1021/ic400692x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wah-Leung Tong
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong
Kong, China
| | - Shek-Man Yiu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong
Kong, China
| | - Michael C. W. Chan
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong
Kong, China
| |
Collapse
|
35
|
Guo Z, Yiu SM, Chan MCW. Shape-Persistent (Pt-salphen)2Phosphorescent Coordination Frameworks: Structural Insights and Selective Perturbations. Chemistry 2013; 19:8937-47. [DOI: 10.1002/chem.201300421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Indexed: 11/09/2022]
|
36
|
Fortier S, González-del Moral O, Chen CH, Pink M, Le Roy JJ, Murugesu M, Mindiola DJ, Caulton KG. Probing the redox non-innocence of dinuclear, three-coordinate Co(II) nindigo complexes: not simply β-diketiminate variants. Chem Commun (Camb) 2012; 48:11082-4. [PMID: 23042486 DOI: 10.1039/c2cc34560a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reduction of the dinuclear Co(II) nindigo complex dmp(2)Nin[Co(N{SiMe(3)}(2))](2), with 1 or 2 equiv. of K(0) (or KC(8)), affords the reduced complexes [dmp(2)Nin{Co(N{SiMe(3)}(2))}(2)](-) and [dmp(2)Nin{Co(N{SiMe(3)}(2))}(2)](2-), respectively. Inspection of these reduced species reveals ligand-centered reduction, with each cobalt ion retaining a formal 2+ oxidation state.
Collapse
Affiliation(s)
- Skye Fortier
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kochem A, Kanso H, Baptiste B, Arora H, Philouze C, Jarjayes O, Vezin H, Luneau D, Orio M, Thomas F. Ligand contributions to the electronic structures of the oxidized cobalt(II) salen complexes. Inorg Chem 2012; 51:10557-71. [PMID: 23013360 DOI: 10.1021/ic300763t] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Square planar cobalt(II) complexes of salen ligands N,N'-bis(3-tert-butyl-5R-salicylidene)-1,2-cyclohexanediamine), where R = OMe (1) and tert-butyl (2), were prepared. 1 and 2 were electrochemically reversibly oxidized into cations [1-H(2)O](+) and [2-H(2)O](+) in CH(2)Cl(2). The chemically generated [1-H(2)O](SbF(6))·0.68 H(2)O·0.82CH(2)Cl(2) and [2-H(2)O](SbF(6))·0.3H(2)O·0.85CH(2)Cl(2) were characterized by X-ray diffraction and NIR spectroscopy. Both complexes are paramagnetic species containing a square pyramidal cobalt ion coordinated at the apical position by an exogenous water molecule. They exhibit remarkable NIR bands at 1220 (7370 M(-1) cm(-1)) and 1060 nm (5560 M(-1) cm(-1)), respectively, assigned to a CT transition. DFT calculations and magnetic measurements confirm the paramagnetic (S = 1) ground spin state of the cations. They show that more than 70% of the total spin density in [1-H(2)O](+) and [2-H(2)O](+) is localized on the metal, the remaining spin density being distributed over the aromatic rings (30% phenoxyl character). In the presence of N-methylimidazole 1 and 2 are irreversibly oxidized by air into the genuine octahedral cobalt(III) bis(phenolate) complexes [1-im(2)](+) and [2-im(2)](+), the former being structurally characterized. Neither [1-im(2)](+) nor [2-im(2)](+) exhibits a NIR feature in its electronic spectrum. 1 and 2 were electrochemically two-electron oxidized into [1](2+) and [2](2+). The cations were identified as Co(III)-phenoxyl species by their characteristic absorption band at ca. 400 nm in the UV-vis spectrum. Coordination of the phenoxyl radical to the cobalt(III) metal ion is evidenced by the EPR signal centered at g = 2.00.
Collapse
Affiliation(s)
- Amélie Kochem
- Equipe de Chimie Inorganique Redox Biomimétique, Département de Chimie Moléculaire, Université Joseph Fourier, 38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chiang L, Kochem A, Jarjayes O, Dunn TJ, Vezin H, Sakaguchi M, Ogura T, Orio M, Shimazaki Y, Thomas F, Storr T. Radical Localization in a Series of Symmetric NiIIComplexes with Oxidized Salen Ligands. Chemistry 2012; 18:14117-27. [DOI: 10.1002/chem.201201410] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Indexed: 11/12/2022]
|
39
|
Zhou W, Chiang L, Patrick BO, Storr T, Smith KM. Cyclopentadienyl chromium diimine and pyridine-imine complexes: ligand-based radicals and metal-based redox chemistry. Dalton Trans 2012; 41:7920-30. [DOI: 10.1039/c2dt30160a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Dunn TJ, Chiang L, Ramogida CF, Webb MI, Savard D, Sakaguchi M, Ogura T, Shimazaki Y, Storr T. Non-innocent ligand behaviour of a bimetallic Cu complex employing a bridging catecholate. Dalton Trans 2012; 41:7905-14. [DOI: 10.1039/c2dt30444a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kochem A, Jarjayes O, Baptiste B, Philouze C, Vezin H, Tsukidate K, Tani F, Orio M, Shimazaki Y, Thomas F. One-Electron Oxidized Copper(II) Salophen Complexes: Phenoxyl versus Diiminobenzene Radical Species. Chemistry 2011; 18:1068-72. [DOI: 10.1002/chem.201102882] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 11/08/2022]
|