1
|
Debnath S, Navadiya SV, Ghosh R, Pradhan D, Chatterjee PB. Coumarin-Ensembled Vanadium(V) Compounds and Their Affinity Studies Toward Biological Thiols Probed by Fluorescence Spectroscopy. Chem Asian J 2023; 18:e202201162. [PMID: 36448966 DOI: 10.1002/asia.202201162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Fluorescence spectroscopic studies of a pair of new oxido-vanadium(V) compounds with biological thiols, such as homocysteine (Hcy), cysteine (Cys), and glutathione (GSH), have been investigated in this article. Despite notable progress in vanadium-thiol chemistry, no attention has been paid to exploring vanadium-based optical probes to study their interaction with biothiols. For this purpose, two oxido-vanadium(V) compounds, 1 and 2, have been prepared involving a tridentate ONO donor-based luminescent coumarin-derived ligand. Single crystal X-ray diffraction analysis, NMR (1 H, 13 C, and 51 V) spectroscopy, XPS, and DFT calculations have been used to establish their identities. The vanadium center in these compounds has a distorted octahedral environment. In compound 2, a methanol molecule is coordinated to the vanadium(V) center in the trans position of the terminal oxido moiety. The latter exerts a strong trans-labilizing influence on the coordinating methanol. Both 1 and 2 are weakly fluorescent. Photophysical investigations of the vanadium complexes in aqueous media at physiological pH (7.4) in the presence of various biothiols and amino acids showed significant fluorescence enhancement (83-fold) of the vanadium complexes, specifically with Hcy. The specific affinity of the complexes for Hcy remained unchanged even in the presence of other biothiols and amino acids. Kinetic investigation reveals pseudo-first order behavior of the compound with Hcy. Mechanistic studies have manifested that Hcy-induced reduction triggers the decomplexation of the vanadium compound, followed by hydrolysis and subsequent cyclization. Time-correlated single photon counting suggested that the radiative rate constant (kr ) of 1 and 2 in the presence of Hcy serves as the prime factor for the fluorescence enhancement of the medium. Compound 1 has been tested efficiently for Hcy measurement in blood plasma rendering it suitable for practical applications.
Collapse
Affiliation(s)
- Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI G. B. Marg Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit V Navadiya
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI G. B. Marg Bhavnagar, Gujarat, 364002, India
| | - Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI G. B. Marg Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debjani Pradhan
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI G. B. Marg Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI G. B. Marg Bhavnagar, Gujarat, 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Evolution of metal-thiocarboxylate chemistry in 21st century. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Thomas CS, Braun DR, Olmos JL, Rajski SR, Phillips GN, Andes D, Bugni TS. Pyridine-2,6-Dithiocarboxylic Acid and Its Metal Complexes: New Inhibitors of New Delhi Metallo -Lactamase-1. Mar Drugs 2020; 18:md18060295. [PMID: 32498259 PMCID: PMC7374359 DOI: 10.3390/md18060295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae continue to threaten human health worldwide with few effective treatment options. New Delhi metallo-β-lactamase (NDM) enzymes are a contributing element that drive resistance to many β-lactam- and carbapenem-based antimicrobials. Many NDM inhibitors are known, yet none are clinically viable. In this study, we present and characterize a new class of NDM-1 inhibitors based on a pyridine-2,6-dithiocarboxylic acid metal complex scaffold. These complexes display varied and unique activity profiles against NDM-1 in kinetic assays and serve to increase the effectiveness of meropenem, an established antibacterial, in assays using clinical Enterobacteriaceae isolates.
Collapse
Affiliation(s)
- Chris S. Thomas
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - Jose Luis Olmos
- Department of Biosciences, Rice University, Houston, TX 77005, USA; (J.L.O.J.); (G.N.P.J.)
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
| | - George N. Phillips
- Department of Biosciences, Rice University, Houston, TX 77005, USA; (J.L.O.J.); (G.N.P.J.)
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - David Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI 53705, USA; (C.S.T.); (D.R.B.); (S.R.R.)
- Correspondence: ; Tel.: +1-608-263-2519
| |
Collapse
|
4
|
Steffensmeier E, Nicholas KM. Oxidation–reductive coupling of alcohols catalyzed by oxo-vanadium complexes. Chem Commun (Camb) 2018; 54:790-793. [DOI: 10.1039/c7cc08387d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxo-vanadium complexes catalyze the novel oxidation–reductive coupling of benzylic and allylic alcohols.
Collapse
|
5
|
Mudhulkar R, Nair RR, Raval IH, Haldar S, Chatterjee PB. Visualizing Zn2+in Living Whole OrganismArtemiaby a Natural Fluorimetric Intermediate Siderophore. ChemistrySelect 2017. [DOI: 10.1002/slct.201701071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Raju Mudhulkar
- Analytical Division and Centralized Instrument Facility; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| | - Ratish R. Nair
- Analytical Division and Centralized Instrument Facility; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| | - Ishan H. Raval
- Marine Biotechnology and Ecology Division; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| | - Soumya Haldar
- Marine Biotechnology and Ecology Division; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
- Academy of Scientific and Innovative Research; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| | - Pabitra B. Chatterjee
- Analytical Division and Centralized Instrument Facility; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
- Academy of Scientific and Innovative Research; CSIR-CSMCRI, G. B. Marg; Bhavnagar 364002, Gujarat INDIA
| |
Collapse
|
6
|
Raju M, Patel TJ, Nair RR, Chatterjee PB. Xanthurenic acid: a natural ionophore with high selectivity and sensitivity for potassium ions in an aqueous solution. NEW J CHEM 2016. [DOI: 10.1039/c5nj02540k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synopsis: A well-known tryptophan metabolite, xanthurenic acid, a natural non-fluorescent intermediate siderophore, showed a very selective turn-on response to K+ over other competing metal ions and the detection limit of this natural ionophore was found to be 53 nM at physiological pH.
Collapse
Affiliation(s)
- M. Raju
- Analytical Discipline and Centralized Instrument Facility
- CSIR-CSMCRI
- Bhavnagar
- India
| | - Tapasya J. Patel
- Analytical Discipline and Centralized Instrument Facility
- CSIR-CSMCRI
- Bhavnagar
- India
| | - Ratish R. Nair
- Analytical Discipline and Centralized Instrument Facility
- CSIR-CSMCRI
- Bhavnagar
- India
| | - Pabitra B. Chatterjee
- Analytical Discipline and Centralized Instrument Facility
- CSIR-CSMCRI
- Bhavnagar
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
7
|
Gupta R, Yehl J, Li M, Polenova T. 51V magic angle spinning NMR spectroscopy and quantum chemical calculations in vanadium bio-inorganic systems: current perspective. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, 51V magic angle spinning (MAS) NMR spectroscopy has been widely used to characterize vanadium centers in biology, biomimetic complexes, and inorganic compounds of medicinal and industrial relevance. It has been demonstrated that 51V NMR parameters are sensitive probes of the coordination geometry and chemical environment of the metal center, beyond the first coordination sphere. To establish the relationships between NMR parameters and structure of the vanadium centers, over the past decade a large series of coordination complexes have been analyzed by MAS NMR spectroscopy. It has been demonstrated that the interpretation of the NMR parameters requires the use of theoretical methods, such as density functional (DFT) theory, whereby the experimental NMR observables are linked to the electronic and structural properties of a molecule. DFT calculations have been successfully employed to not only predict NMR parameters but to also yield valuable information regarding the structure and function of various vanadium compounds. In this report, we review the current state of the field, and present a survey of bioinorganic vanadium complexes as well as vanadium-dependent haloperoxidases analyzed using 51V MAS NMR spectroscopy and DFT calculations, to illustrate the rich information content available from such a combined approach.
Collapse
Affiliation(s)
- Rupal Gupta
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Jenna Yehl
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Mingyue Li
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
8
|
Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 2015; 44:6320-39. [PMID: 25764171 PMCID: PMC4375017 DOI: 10.1039/c4dt03559c] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria secrete small molecules known as siderophores to acquire iron from their surroundings. For over 60 years, investigations into the bioinorganic chemistry of these molecules, including fundamental coordination chemistry studies, have provided insight into the crucial role that siderophores play in bacterial iron homeostasis. The importance of understanding the fundamental chemistry underlying bacterial life has been highlighted evermore in recent years because of the emergence of antibiotic-resistant bacteria and the need to prevent the global rise of these superbugs. Increasing reports of siderophores functioning in capacities other than iron transport have appeared recently, but reports of "non-classical" siderophore functions have long paralleled those of iron transport. One particular non-classical function of these iron chelators, namely antibiotic activity, was documented before the role of siderophores in iron transport was established. In this Perspective, we present an exposition of past and current work into non-classical functions of siderophores and highlight the directions in which we anticipate that this research is headed. Examples include the ability of siderophores to function as zincophores, chalkophores, and metallophores for a variety of other metals, sequester heavy metal toxins, transport boron, act as signalling molecules, regulate oxidative stress, and provide antibacterial activity.
Collapse
Affiliation(s)
- Timothy C Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
9
|
Li M, Yehl J, Hou G, Chatterjee PB, Goldbourt A, Crans DC, Polenova T. NMR Crystallography for Structural Characterization of Oxovanadium(V) Complexes: Deriving Coordination Geometry and Detecting Weakly Coordinated Ligands at Atomic Resolution in the Solid State. Inorg Chem 2015; 54:1363-74. [DOI: 10.1021/ic5022388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mingyue Li
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jenna Yehl
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Guangjin Hou
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Pabitra B. Chatterjee
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Amir Goldbourt
- School
of Chemistry, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Debbie C. Crans
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Tatyana Polenova
- Department
of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|