1
|
Mumthaj A, Umadevi M. A selective and sensitive probes of chalcone derivative as a fluorescent chemosensor for the detection of Cr 3+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123741. [PMID: 38091649 DOI: 10.1016/j.saa.2023.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
A new chalcone based chemosensor like 6-cinnamoylthiochroman-4-one (AZAN), has been designed and synthesized from 6-chlorothiochroman-4-one and cinnamaldehyde via keto ethylenic linkage. Its amino derivatives were synthesized by using urea (AZANU), thiourea (AZANTU) and 2,6-diamino pyridine (AZANPy) respectively and its metal ion sensing properties were investigated. The sensors can selectively recognize and sense the metal cations by showing different fluorescent characteristics at different concentrations. The fluorescence intensity shows remarkable enhancement by Cr3+ over other common metal ions (Cd2+, Hg2+ and Pb2+). The proposed mechanism can be confirmed by UV-Vis and emission titration. The newly synthesized receptor can sense the metal ions even in nano molar level. The binding or association constant and detection limit of chemosensor to Cr3+ are 1.684 × 105 M-1 and 0.2245 × 10-9 M respectively. A computation using the density functional theory was done to gain detailed insights into the electronic structures of the ligand and its derivatives. B3LYP function and 6-31G(d,p) basis set were used to optimize the ground-state geometry of the chemical and its derivatives.
Collapse
Affiliation(s)
- A Mumthaj
- PG Research Department of Chemistry, Nehru Memorial College (Autonomous), Puthanampatti, (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu 626 002, India; PG Research Department of Chemistry, Hajee Karutha Rowther Howdia College, Uthamapalayam, Tamil Nadu 626 5533, India
| | - M Umadevi
- PG Research Department of Chemistry, Nehru Memorial College (Autonomous), Puthanampatti, (Affiliated to Bharathidasan University), Tiruchirappalli, Tamil Nadu 626 002, India.
| |
Collapse
|
2
|
Bilgic A, Aydin Z. A new bodipy/pillar[5]arene functionalized magnetic sporopollenin for the detection of Cu(II) and Hg(II) ions in aqueous solution. J Colloid Interface Sci 2024; 657:102-113. [PMID: 38035413 DOI: 10.1016/j.jcis.2023.11.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
In this study, a new bodipy/pillar[5]arene functionalized magnetic MS-Sp-P[5]-bodipy microcapsule sensor was prepared based on the use of environmentally friendly for the selective and sensitive detection of Cu(II) and Hg(II) ions in aqueous media. SEM results used in the characterization process of the materials synthesized at each stage confirmed the structural and morphological changes in the pore structure, while other characterization results (FT-IR and XRD) elucidated the role of pillar[5]arene compound and bodipy dye in the synthesis of magnetic microcapsule sensors. The colloidal solution of MS-Sp-P[5]-bodipy (water/ethanol)) showed two fluorescence bands centered at 402 and 540 nm. The detection limits of MS-Sp-P[5]-bodipy for Hg(II) and Cu(II) were calculated to be 0.06 µM and 2.27 µM, respectively (at 540 nm). The linear range of the magnetic sensor for Hg(II) and Cu(II) was found to be in the range of 1-150 µM and 10-150 µM, respectively. The experimental results (response time, pH, temperature, sensitivity and selectivity) demonstrated the applicability and potential of the prepared magnetic microcapsule sensor for the detection of Cu(II) and Hg(II) in water and tap water samples containing heavy metal ions.
Collapse
Affiliation(s)
- Ali Bilgic
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey.
| | - Ziya Aydin
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100 Karaman, Turkey
| |
Collapse
|
3
|
Sannok T, Wechakorn K, Jantra J, Kaewchoay N, Teepoo S. Silica nanoparticle-modified paper strip-based new rhodamine B chemosensor for highly selective detection of copper ions in drinking water. Anal Bioanal Chem 2023:10.1007/s00216-023-04754-z. [PMID: 37222793 DOI: 10.1007/s00216-023-04754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
A new rhodamine B derivative (RDB) was synthesized and utilized for the colorimetric detection of copper ions (Cu2+). This chemosensor utilized a paper strip as a support and a smartphone as a detector for on-site quantitative detection of Cu2+ in water samples. Silica nanoparticles (SiNPs) were investigated as the modifier nanoparticles to achieve uniform color on the paper strip and showed a color response 1.9-fold higher than the one without SiNPs. The RDB chemosensor-based paper strip provided high selectivity toward Cu2+ with a detection limit of 0.7 mg/L, and the working concentrations for Cu2+ ranged from 1 to 17 mg/L. Parallel analyses of eight drinking water samples were conducted by inductively coupled plasma optical emission spectroscopy. The results were in good agreement, indicating the practical reliability of the established method with a short assay time and high selectivity. These indicate its great potential for on-site detection of Cu2+.
Collapse
Affiliation(s)
- Tadcha Sannok
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Kanokorn Wechakorn
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Jongjit Jantra
- King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon, Chumphon, 86160, Pathiu, Thailand
| | - Netnapit Kaewchoay
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Siriwan Teepoo
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi, 12110, Pathum Thani, Thailand.
| |
Collapse
|
4
|
Li WH, Zhao SS, Chu X, Qin ZQ, Zhang JX, Li HY. Two phosphorescent iridium(III) complexes containing simple L-alanine ligands as efficient sensors for Cu2+ ions. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Singh D, Ibrahim A, Kumar P, Gupta R. Methylene Spacer Mediated Detection Switch Between Copper and Zinc Ions by Two Coumarin‐Pyrene Based Chemosensors. ChemistrySelect 2022. [DOI: 10.1002/slct.202202574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Devender Singh
- Department of Chemistry University of Delhi New Delhi 110007 India
| | - Annan Ibrahim
- Department of Chemistry University of Delhi New Delhi 110007 India
| | - Pramod Kumar
- Department of Chemistry Mahamana Malviya College Khekra (Baghpat) C.C.S. University Meerut India
| | - Rajeev Gupta
- Department of Chemistry University of Delhi New Delhi 110007 India
| |
Collapse
|
6
|
A chromone-based colorimetric fluorescence sensor for selective detection of Cu2+ions, and its application for in-situ imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Das N, Khan T, Das A, Jain VK, Acharya J, Faizi MSH, Daniel J, Sen P. A Novel Quinoline Derivative for Selective and Sensitive Visual Detection
of PPB Level Cu2+ in an Aqueous Solution. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411016999201123162027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:
Selective and sensitive visual detection of Cu2+in aqueous solution at PPB level using easily synthesized
compound.
Background:
The search for a chemosensor that can detect Cu2+ is very long owing to the fact that an optimum level of
Cu2+ is required for human health and the recommended amount of Cu2+ in drinking water is set to be 1-2 mgL-1
. Thus, it
is very important to detect Cu2+ even at a very low concentration to assess the associated health risks.
Objective:
We are still seeking for the easiest, cheapest, fastest and greenest sensor that can selectively, sensitively and
accurately detect Cu2+ with lowest detection limit. Our objective of this work is to find one such Cu2+ sensor.
Methods:
We have synthesized a quinoline derivative following very easy synthetic procedures and characterize the
compound by standard methods. For sensing study, we used steady state absorption and emission spectroscopy.
Results:
Our sensor can detect Cu2+ selectively and sensitively in aqueous solution instantaneously even in the presence of
excess amount of other salts. The pale-yellow color of the sensor turns red on the addition of Cu2+
. There is no
interference from other cations and anions. A 2:1 binding mechanism of the ligand with Cu2+ is proposed using Jobs plot
with binding constant in the order of 109 M-2
. We calculated the LOD to be 18 ppb, which is quite low than what is
permissible in drinking water.
Conclusion:
We developed a new quinoline based chemo-sensor following straightforward synthetic procedure from very
cheap starting materials that can detect Cu2+ visually and instantaneously in aqueous solution with ppb level sensitivity
and zero interference from other ions.
Collapse
Affiliation(s)
- Nilimesh Das
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Tanmoy Khan
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Aritra Das
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Vipin Kumar Jain
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Joydev Acharya
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| | - Md. Serajul Haque Faizi
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
- Department of Chemistry,
Langat Singh College, B. R. A. Bihar University, Muzaffarpur - 842 001, Bihar, India
| | - Joseph Daniel
- Department of Chemistry,
Christ Church College, Kanpur - 208 001, UP, India
| | - Pratik Sen
- Depatment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208 016, UP, India
| |
Collapse
|
8
|
Naskar B, Das Mukhopadhyay C, Goswami S. A new diformyl phenol based chemosensor selectively detects Zn 2+ and Co 2+ in the nanomolar range in 100% aqueous medium and HCT live cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj01478e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new diformyl phenol based chemosensor that can sense Zn2+ and Co2+ in the nanomolar range in 100% aqueous solution and in HCT cells was explored.
Collapse
Affiliation(s)
- Barnali Naskar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
- Department of Chemistry, Lalbaba College, University of Calcutta, Howrah 711202, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science & Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
9
|
Ozmen P, Demir Z, Karagoz B. An easy way to prepare reusable rhodamine-based chemosensor for selective detection of Cu2+ and Hg2+ ions. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Liu Y, Jiang B, Zhao L, Zhao L, Wang Q, Wang C, Xu B. A dansyl-based fluorescent probe for sensing Cu 2+ in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120009. [PMID: 34087769 DOI: 10.1016/j.saa.2021.120009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
A fluorescent probe based on a glycyl-L-tyrosine-modified dansyl derivative (D-GT) is designed and synthesized. D-GT demonstrated great detection performance toward Cu2+ in an aqueous solution. Fluorescence quenching occurred due to the coordination of Cu2+ with D-GT. The sensitive detection of D-GT to Cu2+ was applied in aqueous solution within a wide pH span (6-12). A 1:1 coordinate stoichiometric way and an association constant of 6.47 × 104 M-1 between D-GT and Cu2+ were determined. The measured detection limit for Cu2+ in HEPES buffer solution (10 mM, pH 7.4) was 0.69 μM. The probe displayed an appropriate sensitivity toward Cu2+ in real drinking water samples and living cells, which reveals the potential applications of D-GT in complicated environments.
Collapse
Affiliation(s)
- Yu Liu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Bing Jiang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Linlin Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Li Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Qiyu Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Ce Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Pan W, Yang X, Wang Y, Wu L, Liang N, Zhao L. AIE-ESIPT based colorimetric and “OFF-ON-OFF” fluorescence Schiff base sensor for visual and fluorescent determination of Cu2+ in an aqueous media. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113506] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Li D, Qiu X, Guo H, Duan D, Zhang W, Wang J, Ma J, Ding Y, Zhang Z. A simple strategy for the detection of Pb(II) and Cu(II) by an electrochemical sensor based on Zn/Ni-ZIF-8/XC-72/Nafion hybrid materials. ENVIRONMENTAL RESEARCH 2021; 202:111605. [PMID: 34197819 DOI: 10.1016/j.envres.2021.111605] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel electrochemical sensor for simultaneous detection of Pb(II) and Cu(II) was constructed by using Zn/Ni-ZIF-8/XC-72/Nafion hybrid material as electrode surface modifier. XRD, FT-IR, XPS and SEM were used to study the crystal structure, functional groups, element types and morphologies of the prepared materials. The electrochemical performance of the Zn/Ni-ZIF-8/XC-72/Nafion/GCE sensor were investigated by CV, EIS and DPV. In addition, the effects of various conditions including pH, the type of buffer and the ratio of Zn/Ni-ZIF-8 to XC-72 were also explored for the determination of Pb(II) and Cu(II). Under the optimum conditions, the constructed sensor exhibited outstanding linear response of Pb(II) (0.794-39.6 ppm) and Cu(II) (0.397-19.9 ppm) with detection limits of 0.0150 and 0.0096 ppm, respectively. Finally, the fabricated sensor was further used to detect Pb(II) and Cu(II) in real samples, and the satisfactory recovery was obtained.
Collapse
Affiliation(s)
- Dongdong Li
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China; School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xianhua Qiu
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China.
| | - Huiqin Guo
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Dawei Duan
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China; Faculty of Food Technology, Sumy National Agrarian University, Sumy, 40021, Ukraine
| | - Wanqing Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Jichao Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Jingjing Ma
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yuan Ding
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Zhongyin Zhang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, China
| |
Collapse
|
13
|
Ali R, Ali IA, Messaoudi S, Alminderej FM, Saleh SM. An effective optical chemosensor film for selective detection of mercury ions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Das R, Bej S, Hirani H, Banerjee P. Trace-Level Humidity Sensing from Commercial Organic Solvents and Food Products by an AIE/ESIPT-Triggered Piezochromic Luminogen and ppb-Level "OFF-ON-OFF" Sensing of Cu 2+: A Combined Experimental and Theoretical Outcome. ACS OMEGA 2021; 6:14104-14121. [PMID: 34124433 PMCID: PMC8190783 DOI: 10.1021/acsomega.1c00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Selective and sensitive moisture sensors have attracted immense attention due to their ability to monitor the humidity content in industrial solvents, food products, etc., for regulating industrial safety management. Herein, a hydroxy naphthaldehyde-based piezochromic luminogen, namely, 1-{[(2-hydroxyphenyl)imino]methyl}naphthalen-2-ol (NAP-1), has been synthesized and its photophysical and molecular sensing properties have been investigated by means of various spectroscopic tools. Owing to the synergistic effect of both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) along with the restriction of C=N isomerization, the probe shows bright yellowish-green-colored keto emission with high quantum yield after the interaction with a trace amount of water. This makes NAP-1 a potential sensor for monitoring water content in the industrial solvents with very low detection limits of 0.033, 0.032, 0.034, and 0.033% (v/v) from tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), and methanol, respectively. The probe could be used in the food industry to detect trace moisture in the raw food samples. The reversible switching behavior of NAP-1 makes it suitable for designing an INHIBIT logic gate with an additional application in inkless writing. In addition, an Internet of Things-(IoT) based prototype device has been proposed for on-site monitoring of the moisture content by a smartphone via Bluetooth or Wi-Fi. The aggregated probe also has the ability to recognize Cu2+ from a purely aqueous medium via the chelation-enhanced quenching (CHEQ) mechanism, leading to ∼84% fluorescence quenching with a Stern-Volmer quenching constant of 1.46 × 104 M-1 and with an appreciably low detection threshold of 57.2 ppb, far below than recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (U.S. EPA). The spectroscopic and theoretical calculations (density functional theory (DFT), time-dependent DFT (TD-DFT), and natural bond orbital (NBO) analysis) further empower the understanding of the mechanistic course of the interaction of the host-guest recognition event.
Collapse
Affiliation(s)
- Riyanka Das
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Sourav Bej
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| | - Harish Hirani
- CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, India
- Mechanical
Engineering Department, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Priyabrata Banerjee
- Surface
Engineering & Tribology Group, CSIR-Central
Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
- Academy
of Scientific and Innovative Research (AcSIR), AcSIR Headquarters CSIR-HRDC Campus, Postal Staff
College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, Uttar
Pradesh, India
| |
Collapse
|
15
|
Ali SA, Mittal D, Kaur G. In-situ monitoring of xenobiotics using genetically engineered whole-cell-based microbial biosensors: recent advances and outlook. World J Microbiol Biotechnol 2021; 37:81. [PMID: 33843020 DOI: 10.1007/s11274-021-03024-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Industrialisation, directly or indirectly, exposes humans to various xenobiotics. The increased magnitude of chemical pesticides and toxic heavy metals in the environment, as well as their intrusion into the food chain, seriously threatens human health. Therefore, the surveillance of xenobiotics is crucial for social safety and security. Online investigation by traditional methods is not sufficient for the detection and identification of such compounds because of the high costs and their complexity. Advancement in the field of genetic engineering provides a potential opportunity to use genetically modified microorganisms. In this regard, whole-cell-based microbial biosensors (WCBMB) represent an essential tool that couples genetically engineered organisms with an operator/promoter derived from a heavy metal-resistant operon combined with a regulatory protein in the gene circuit. The plasmid controls the expression of the reporter gene, such as gfp, luc, lux and lacZ, to an inducible gene promoter and has been widely applied to assay toxicity and bioavailability. This review summarises the recent trends in the development and application of microbial biosensors and the use of mobile genes for biomedical and environmental safety concerns.
Collapse
Affiliation(s)
- Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, Haryana, India. .,Proteomics and Cell Biology Lab, Animal Biotechnology Center, ICAR-National Dairy Research Institute, 132001, Karnal, Haryana, India.
| | - Deepti Mittal
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Gurjeet Kaur
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, 2052, Sydney, NSW, Australia
| |
Collapse
|
16
|
A novel mitochondria-targeted fluorescent probe based on carbon dots for Cu2+ imaging in living cells and zebrafish. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113143] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Golbedaghi R, Justino LL, Bahrampour M, Fausto R. A novel fluorescent chemosensor for Cu2+ ion based on a new hexadentate ligand receptor: X-ray single crystal of the perchlorate salt of the ligand, ion selectivity assays and TD-DFT study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Shanmugam Suresh, Bhuvanesh N, Prabhu J, Nandhakumar R. Application of Imidazole Derivative for Fluorescent Detection and Determination of Cu(II) in Aqueous and Biological Media. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Mohan V, Das N, Jain VK, Khan T, Pandey SK, Faizi MSH, Daniel J, Sen P. Highly Selective and Sensitive (PPB Level) Quinolin‐Based Colorimetric Chemosensor for Cu(II). ChemistrySelect 2020. [DOI: 10.1002/slct.202001814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vaisakh Mohan
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
- Present address: Department of Chemistry TKM College of Engineering Kollam 691 005 Kerala India
| | - Nilimesh Das
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
| | - Vipin K. Jain
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
| | - Tanmoy Khan
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
| | - Sarvesh K. Pandey
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
- Present address: Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore Bangalore 560 012 Karnataka India
| | - Md. Serajul H. Faizi
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
- Present address: Department of Chemistry Langat Singh College B. R. A. Bihar University Muzaffarpur 842 001 Bihar India
| | - Joseph Daniel
- Department of Chemistry Christ Church College Kanpur 208 001 UP India
| | - Pratik Sen
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur 208 016 UP India
| |
Collapse
|
20
|
Supamas Danwittayakul, Phitchaya Muensri. Polyethyleneimine Coated Polyacrylonitrile Cellulose Membrane for Colorimetric Copper(II) Determination. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
The natural compound chrysosplenol-D is a novel, ultrasensitive optical sensor for detection of Cu(II). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Mal K, Naskar B, Chaudhuri T, Prodhan C, Goswami S, Chaudhuri K, Mukhopadhyay C. Synthesis of quinoline functionalized fluorescent chemosensor for Cu (II), DFT studies and its application in imaging in living HEK 293 cells. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Hossain SM, Prakash V, Mamidi P, Chattopadhyay S, Singh AK. Pyrene-appended bipyridine hydrazone ligand as a turn-on sensor for Cu2+ and its bioimaging application. RSC Adv 2020; 10:3646-3658. [PMID: 35492648 PMCID: PMC9048802 DOI: 10.1039/c9ra09376a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/05/2020] [Indexed: 12/03/2022] Open
Abstract
A pyrene-appended bipyridine hydrazone-based ligand, HL, was synthesized and characterized by spectroscopic methods. Upon complexation with Cu(ii), HL formed a hexanuclear paddlewheel metal–organic macrocycle (MOM) via self-assembly with a high association constant with the molecular formula of [Cu6L6(NO3)6]. Intermolecular and intramolecular π–π interactions were demonstrated in this hexanuclear Cu(ii) complex. Further, it was observed that HL had the potential to detect a trace level of Cu(ii) ion selectively among a wide range of biologically relevant metal ions in aqueous medium at physiological pH. Using HL, it was feasible to sense copper(ii) ions in living cells due to its good cell permeability and high solubility under physiological conditions along with its high IC50 value. The low detection limit, high sensitivity and good reproducibility make this Cu–sensor very promising. The complex (MOM) formed between the ligand and Cu(ii) was found to be 1 : 1 on the basis of fluorescence titrations and was confirmed by ESI-MS. Moreover, single-crystal study of the hexanuclear self-assembled fluorescent species provided better insight into its chemistry, e.g. coordination environment and binding mode, unlike most of the metal sensors due to the lack of a single-crystal structure of the metal sensor complex. Cytotoxicity assay and bioimaging were performed in living cells (Vero cells), giving green fluorescent images. Fluorescence lifetime measurements and theoretical calculations were carried out. The morphology and topographic details on the surface of the metal–organic macrocycle (MOM) were studied by field-emission scanning electron microscopy (FESEM). A pyrene-based “turn-on” Cu(ii) sensor provides a chemiluminescent Cu6 metal organic macrocycle (MOM) applicable for live cell imaging.![]()
Collapse
Affiliation(s)
- Sayed Muktar Hossain
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar
- India
| | - Ved Prakash
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar
- India
| | | | | | - Akhilesh Kumar Singh
- School of Basic Sciences
- Indian Institute of Technology Bhubaneswar
- Bhubaneswar
- India
| |
Collapse
|
24
|
Qu Y, Wu Y, Wang C, Zhao K, Wu H. A selective fluorescence probe for copper(II) ion in aqueous solution based on a 1,8-naphthalimide Schiff base derivative. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2019. [DOI: 10.1515/znb-2019-0095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Abstract
In order to realize real-time monitoring of Cu2+, a new fluorescent probe HL, a Schiff base derivative of N-n-butyl-4-[2]-1,8-naphthalimide, has been designed and synthesized. In methanol-HEPES [2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid] solution (1:1, v/v, pH = 7.4) HL showed excellent selectivity towards Cu2+ over other common coexisting metal ions. The fluorescence intensity for HL showed a good linearity with the concentration of Cu2+ ions in the range of 0.5–5.0 μm. Based on combined fluorescence titration, Job’s plot analysis, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry results, Cu2+ forms a 1:2 complex with L. The fluorescence intensity of HL exhibits significant quenching after binding with Cu2+, owing to the strong, intrinsic paramagnetic behavior of Cu2+. Ultimately, in order to test the performance of the synthesized probe, HL was preliminarily applied to the determination of Cu2+ in the Yellow River and in tap water with satisfying results.
Collapse
Affiliation(s)
- Yao Qu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Yancong Wu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Cong Wang
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Kun Zhao
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| | - Huilu Wu
- School of Chemical and Biological Engineering , Lanzhou Jiaotong University , Lanzhou, Gansu, 730070 , P.R. China
| |
Collapse
|
25
|
Synthesis, crystal structure and spectroscopic properties of a new type of pentanuclear zinc(II) complex. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Jayaraman J, Pavadai N, Venugopal T, Ramaiyan R. Interfacial charge-transfer in Cu-TiO2-HBDPPIN-Ag film and AIEE-active chemosensor. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Wang Z, Cui S, Qiu S, Pu S. A dual-functional fluorescent sensor based on diarylethene for Zn2+ and Al3+ in different solvents. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Desai A, Roy H, Jadeja R. Calix-salen cavitand as colorimetric chemosensor for Cu2+ and anticancer activity of copper cavitate. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2018.10.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
A new colorimetric sensor for visible detection of Cu(II) based on photoreductive ability of quantum dots. Anal Chim Acta 2018; 1021:140-146. [DOI: 10.1016/j.aca.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 01/21/2023]
|
30
|
Synthesis and characterization of cyclophane: The highly selective recognition of Fe3+ in aqueous solution and H2PO4− in acetonitrile solution. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Shen Y, Zhang X, Zhang C, Zhang Y, Jin J, Li H. A simple fluorescent probe for the fast sequential detection of copper and biothiols based on a benzothiazole derivative. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 191:427-434. [PMID: 29073543 DOI: 10.1016/j.saa.2017.09.069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
A simple benzothiazole fluorescent chemosensor was developed for the fast sequential detection of Cu2+ and biothiols through modulating the excited-state intramolecular proton transfer (ESIPT) process. The compound 1 exhibits highly selective and sensitive fluorescence "on-off" recognition to Cu2+ with a 1:1 binding stoichiometry by ESIPT hinder. The in situ generated 1-Cu2+ complex can serve as an "on-off" fluorescent probe for high selectivity toward biothiols via Cu2+ displacement approach, which exerts ESIPT recovery. It is worth pointing out that the 1-Cu2+ complex shows faster for cysteins (within 1min) than other biothiols such as homocysteine (25min) and glutathione (25min). Moreover, the compound 1 displays 160nm Stoke-shift for reversibly monitoring Cu2+ and biothiols. In addition, the probe is successfully used for fluorescent cellular imaging. This strategy via modulation the ESIPT state has been used for determination of Cu2+ and Cys with satisfactory results, which further demonstrates its value of practical applications.
Collapse
Affiliation(s)
- Youming Shen
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China; Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Preparation and Application of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, PR China
| | - Xiangyang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China.
| | - Chunxiang Zhang
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Junling Jin
- Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, PR China
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
32
|
Fang H, Cai G, Hu Y, Zhang J. A tetraphenylethylene-based acylhydrazone gel for selective luminescence sensing. Chem Commun (Camb) 2018. [DOI: 10.1039/c8cc00008e] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A supramolecular gel based on dynamic covalent acylhydrazone bonding for selective and sensitive Cu2+ and subsequent CN− detection has been reported.
Collapse
Affiliation(s)
- Haobin Fang
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering
- Guangzhou 510275
- China
| | - Guangmei Cai
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering
- Guangzhou 510275
- China
| | - Ya Hu
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering
- Guangzhou 510275
- China
| | - Jianyong Zhang
- Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Materials Science and Engineering
- Guangzhou 510275
- China
| |
Collapse
|
33
|
Paul S, Ghosh P, Bhuyan S, Mukhopadhyay SK, Banerjee P. Nanomolar-level selective dual channel sensing of Cu2+and CN−from an aqueous medium by an opto-electronic chemoreceptor. Dalton Trans 2018; 47:1082-1091. [DOI: 10.1039/c7dt03802j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel chromogenic and fluorogenic chemoreceptor exhibiting a proclivity towards Cu2+and CN−, with applications in bioimaging and molecular electronics, was developed.
Collapse
Affiliation(s)
- Suparna Paul
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| | - Pritam Ghosh
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
| | - Samuzal Bhuyan
- Department of Chemistry
- Sikkim University
- Gangtok-737102
- India
| | | | - Priyabrata Banerjee
- Surface Engineering & Tribology Group
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
34
|
Averin AD, Yakushev AA, Maloshitskaya OA, Surby SA, Koifman OI, Beletskaya IP. Synthesis of porphyrin-diazacrown ether and porphyrin-cryptand conjugates for fluorescence detection of copper(II) ions. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1908-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Yu T, Yang Q, Zhu Z, Zhao Y, Liu X, Wei C, Zhang H. Synthesis, characterization and photophysical properties of a new Cu 2+ selective phosphorescent sensor. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.10.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Lu L, Ren XK, Liu R, Jiang XQ, Geng LY, Zheng JF, Feng Y, Chen EQ. Ionic Self-Assembled Derivative of Tetraphenylethylene: Synthesis, Enhanced Solid-State Emission, Liquid-Crystalline Structure, and Cu2+
Detection Ability. Chemphyschem 2017; 18:3605-3613. [DOI: 10.1002/cphc.201700926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/23/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Lin Lu
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300350 P.R. China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300350 P.R. China
| | - Rui Liu
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300350 P.R. China
| | - Xu-Qiang Jiang
- Beijing National Laboratory for Molecular Sciences; College of Chemistry; Peking University; Beijing 100871 P.R. China
| | - Lai-Yao Geng
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300350 P.R. China
| | - Jun-Feng Zheng
- College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 P.R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300350 P.R. China
- Collaborative Innovation Center of Chemical Science; and Chemical Engineering (Tianjin); Key Laboratory of Systems Bioengineering of Ministry of Education; Tianjin University; Weijin Road 92 Tianjin 300072 P.R. China
| | - Er-Qiang Chen
- Beijing National Laboratory for Molecular Sciences; College of Chemistry; Peking University; Beijing 100871 P.R. China
| |
Collapse
|
37
|
Wang Y, Qiu D, Li M, Liu Y, Chen H, Li H. A new "on-off-on" fluorescent probe containing triarylimidazole chromophore to sequentially detect copper and sulfide ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:256-262. [PMID: 28587945 DOI: 10.1016/j.saa.2017.05.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
A novel compound TPI-H containing triphenylimidazole chromophore is synthesized and employed as fluorescent probe for sequential detection of Cu2+ and S2-. With three binding sites in its molecular structure, TPI-H exhibits highly selective binding towards Cu2+ and results in an apparent fluorescence "on-off" behavior. Fluorescence intensity is linear with the Cu2+ concentration, and the detection limit can be down to 8.7nM. Furthermore, the in-situ generated ensemble between TPI-H and Cu2+ (TPI-H-Cu(II)) can be used to detect S2- with a low detection limit of 15.6nM through Cu2+ displacement method. In addition, the potential utility of the probe for the detection of Cu2+ and further S2- in biological system is investigated by cell imaging.
Collapse
Affiliation(s)
- Yongpeng Wang
- College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Dali Qiu
- College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Mengnan Li
- State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yijiang Liu
- College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Hongbiao Chen
- College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China.
| | - Huaming Li
- College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, China; Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, Hunan Province, China; Key Laboratory of Advanced Functional Polymeric Materials of College of Hunan Province, Xiangtan University, Xiangtan 411105, Hunan Province, China; Key Laboratory of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan Province, China
| |
Collapse
|
38
|
Wani MA, Pandey MD, Pandey R, Maurya SK, Goswami D. A Dual-Signaling Ferrocene-Pyrene Dyad: Triple-Mode Recognition of the Cu(II) Ions in Aqueous Medium. J Fluoresc 2017; 27:2279-2286. [PMID: 28840438 DOI: 10.1007/s10895-017-2169-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/10/2017] [Indexed: 11/29/2022]
Abstract
We report a structure of ferrocene-pyrene conjugate (1) comprising electro and photo-active dual-signaling units. In particular, 1 upon interaction with Cu(II), displays selectively one-photon fluorescence quenching, but it shows two-photon absorption (TPA) cross-section 1230 GM (at 780 nm). Further, 1 displayed two irreversible oxidative waves at 0.39 V and 0.80 V (vs Ag/AgCl), in the electrochemical analysis which upon addition of Cu2+, led to the negative potential shift in both the oxidative waves to appear at 0.25 V and 0.68 V. The triple mode changes in presence of Cu(II) suggesting the possible application of 1 for the detection of Cu(II) in aqueous media. Graphical Abstract.
Collapse
Affiliation(s)
- Manzoor Ahmad Wani
- Department of Chemistry, Dr. H. S. Gour Central University, Sagar, 470003, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Dr. H. S. Gour Central University, Sagar, 470003, India.
| | - Rampal Pandey
- Department of Chemistry, Dr. H. S. Gour Central University, Sagar, 470003, India.
| | - Sandeep Kumar Maurya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Debabrata Goswami
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
39
|
Gao Y, Liu H, Li P, Liu Q, Wang W, Zhao B. Coumarin-based fluorescent chemosensor for the selective quantification of Zn 2+ and AcO − in an aqueous solution and living cells. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Yang T, Zhu F, Zhou T, Cao J, Xie Y, Zhang M, Wang Y, Cao DS, Lin Q, Zhang L. Label-free, Water-soluble Fluorescent Peptide Probe for a Sensitive and Selective Determination of Copper Ions. ANAL SCI 2017; 33:191-196. [PMID: 28190839 DOI: 10.2116/analsci.33.191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to develop a label-free, sensitive, selective, and environment-friendly fluorescent peptide probe His-His-Trp-His (HHWH) for determining the concentration of copper ion (Cu2+) in aqueous solutions. The results demonstrated that the designed HHWH has a high selectivity and sensitivity for monitoring the concentration of free Cu2+ via quenching of the probe fluorescence upon a binding of Cu2+. The fluorescence intensity of the HHWH had a linear relationship with the concentration of Cu2+ between 10 nM and 10 μM, and the detection limit was 8 nM. Furthermore, HHWH could be regenerated with sulfide ions at least five times. The concentrations of Cu2+ in three different real water samples were detected using this probe, and the results were consistent with the one detected using an atomic absorption spectrometer. Thus, HHWH can be used as an accurate and feasible fluorescent peptide probe for detecting Cu2+ in aqueous solutions.
Collapse
Affiliation(s)
- Tao Yang
- National Engineering Laboratory for Rice and By-products Further Processing, Central South University of Forestry and Technology
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lv RG, Chen SW, Gao Y. A selective fluorescence probe based on benzothiazole for the detection of Cr3+. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2017-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA novel benzothiazole-functionalized Schiff-base derivative
Collapse
|
42
|
Naskar B, Modak R, Maiti DK, Bauzá A, Frontera A, Maiti PK, Mandal S, Goswami S. A highly selective “ON–OFF” probe for colorimetric and fluorometric sensing of Cu2+in water. RSC Adv 2017. [DOI: 10.1039/c6ra27017d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new diformyl phenol based probe for selective detection of Cu2+in aqueous medium, applicable for cell imaging in Vero cells. Theoretical studies were performed to establish the underlying keto–enol tautomerism and optimization of the Cu2+complex.
Collapse
Affiliation(s)
- Barnali Naskar
- Department of Chemistry
- University of Calcutta
- Kolkata-700 009
- India
| | - Ritwik Modak
- Department of Chemistry
- University of Calcutta
- Kolkata-700 009
- India
| | - Dilip K. Maiti
- Department of Chemistry
- University of Calcutta
- Kolkata-700 009
- India
| | - Antonio Bauzá
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma de Mallorca
- Spain
| | | | - Sukhendu Mandal
- Department of Microbiology
- University of Calcutta
- Kolkata
- India
| | - Sanchita Goswami
- Department of Chemistry
- University of Calcutta
- Kolkata-700 009
- India
| |
Collapse
|
43
|
Chen PH, Lin C, Guo KH, Yeh YC. Development of a pigment-based whole-cell biosensor for the analysis of environmental copper. RSC Adv 2017. [DOI: 10.1039/c7ra03778c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A engineered whole-cell biosensor is developed to generate output signals for the environmental copper analysis.
Collapse
Affiliation(s)
- Pei-Hsuan Chen
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Chieh Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Kai-Hong Guo
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry
- National Taiwan Normal University
- Taipei 11677
- Taiwan
| |
Collapse
|
44
|
Liu H, Zhang B, Tan C, Liu F, Cao J, Tan Y, Jiang Y. Simultaneous bioimaging recognition of Al 3+ and Cu 2+ in living-cell, and further detection of F - and S 2- by a simple fluorogenic benzimidazole-based chemosensor. Talanta 2016; 161:309-319. [PMID: 27769411 DOI: 10.1016/j.talanta.2016.08.061] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/16/2022]
Abstract
A simple Schiff base (BMSA) prepared from salicylaldehyde and 2-(1H-benzo[d]imidazol-2-yl)aniline was evaluated as an efficient fluorescent chemosensor for the selective recognition of Al3+and Cu2+ over other common metal ions. This sensor could detect Al3+ in CH3OH/PBS with distinct emission red-shift (the detection limit 0.31μM)and Cu2+in CH3OH/Tris-HCL (the detection limit 0.54μM) with obvious fluorescence quenching. The obtained BMSA-Al3+ and BMSA-Cu2+ complexes could act as cascade sensors for detecting F- and S2-, respectively. The recognizing behavior of BMSA toward Al3+and Cu2+ has been investigated in detail through Job's Plot, FT-IR NMR, and HRMS analysis. Moreover, this chemosensor was verified to be of low cytotoxicity and good imaging characteristics for the detection of Al3+ and Cu2+, and further for the recognition of F- and S2- in living cells, suggesting that BMSA was proved to be a useful tool for tracking Al3+/Cu2+and F-/S2- ions in vivo.
Collapse
Affiliation(s)
- Haiyang Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Bibo Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Chunyan Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Feng Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Jiakun Cao
- Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, Guangdong, China
| | - Ying Tan
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China.
| | - Yuyang Jiang
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
45
|
Senthil Murugan A, Abel Noelson ER, Annaraj J. Solvent dependent colorimetric, ratiometric dual sensor for copper and fluoride ions: Real sample analysis, cytotoxicity and computational studies. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Gupta AK, Dhir A, Pradeep CP. Multifunctional Zn(II) Complexes: Photophysical Properties and Catalytic Transesterification toward Biodiesel Synthesis. Inorg Chem 2016; 55:7492-500. [PMID: 27439021 DOI: 10.1021/acs.inorgchem.6b00804] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Using 4-substituted derivatives of phenol-based compartmental Schiff-base hydroxyl-rich ligand, four multifunctional binuclear Zn(II) complexes have been synthesized and characterized. The photophysical properties of these complexes were explored in the solid state, in solutions, and in poly(methyl methacrylate) (PMMA) matrix, which revealed their good potential as tunable solid state emitters. Some of these complexes acted as efficient catalysts for the transesterification of esters and canola oil showing their potential in biodiesel generation. Mechanistic investigations using ESI-MS revealed that the transesterification catalyzed by these complexes proceeds through two types of acyl intermediates.
Collapse
Affiliation(s)
- Abhishek Kumar Gupta
- School of Basic Sciences, Indian Institute of Technology Mandi , Kamand 175 005, Himachal Pradesh, India
| | - Abhimanew Dhir
- School of Basic Sciences, Indian Institute of Technology Mandi , Kamand 175 005, Himachal Pradesh, India
| | - Chullikkattil P Pradeep
- School of Basic Sciences, Indian Institute of Technology Mandi , Kamand 175 005, Himachal Pradesh, India
| |
Collapse
|
47
|
Qin JC, Yang ZY. Fluorescent chemosensor for detection of Zn2+ and Cu2+ and its application in molecular logic gate. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
48
|
Nair RR, Raju M, Patel NP, Raval IH, Suresh E, Haldar S, Chatterjee PB. Naked eye instant reversible sensing of Cu(2+) and its in situ imaging in live brine shrimp Artemia. Analyst 2016; 140:5464-8. [PMID: 26145434 DOI: 10.1039/c5an00957j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Cu(2+)-specific colorimetric reversible fluorescent receptor was designed and synthesized which showed a naked eye observable colour change from colourless to pink on addition of an aqueous buffer (pH 7.4) solution of 30 ppb Cu(2+). Short response time (≤5 s) and low detection limit (nearly 3 ppb) make suitable as a reliable "dip-in" open eye sensor for Cu(2+). Bio-imaging application in live brine shrimp Artemia enabled to detect Cu(2+) at as low as 10 ppb exposure.
Collapse
Affiliation(s)
- Ratish R Nair
- Analytical Discipline and Centralized Instrumental Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ge JZ, Zou Y, Yan YH, Lin S, Zhao XF, Cao QY. A new ferrocene–anthracene dyad for dual-signaling sensing of Cu(II) and Hg(II). J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Liu H, Wu F, Zhang B, Tan C, Chen Y, Hao G, Tan Y, Jiang Y. A simple quinoline-derived fluorescent sensor for the selective and sequential detection of copper(ii) and sulfide ions and its application in living-cell imaging. RSC Adv 2016. [DOI: 10.1039/c6ra15938a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|