1
|
Du T, Shi Z, Mou X, Zhu Y. Axial assembly of AuNR for tumor theranostics via Zn 2+-GSH chelation induced degradation of AuNR@ZIF-8 heterostructures. Colloids Surf B Biointerfaces 2024; 234:113706. [PMID: 38176334 DOI: 10.1016/j.colsurfb.2023.113706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024]
Abstract
Tumor microenvironment responsive photothermal ablation is a noninvasive and accurately targeted approach for cancer therapy. Herein, an intracellular directional assembly strategy for enhanced photothermal therapy (PTT) was realized by using ZIF-8 encapsulated Au nanorod (AuNR) heterostructure as the precursor of photothermal convertible material. The ZIF-8 shell selectively degraded in tumor cells upon the chelation between GSH and Zn2+, while the as-formed Zn(SG) connected the released AuNR in end-to-end fashion. The coating of ZIF-8 shell significantly improves the stability and targeting of AuNR, and the released Zn2+ shielded the GSH binding site on the lateral side of AuNR, increased the plasmonic coupling efficiency of AuNR assembly geometer. This design enabled atomic-economical, efficient and low-side effect targeted photothermal therapy through the effective integration of heterostructures.
Collapse
Affiliation(s)
- Tianyu Du
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zewen Shi
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xianbo Mou
- Health Science Center, Ningbo University, Ningbo 315211, China; Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning 530021, China; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning 530021, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Int J Mol Sci 2022; 23:ijms232415957. [PMID: 36555599 PMCID: PMC9782655 DOI: 10.3390/ijms232415957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Metal chelation can provide structural stability and form reactive centers in metalloproteins. Approximately one third of known protein structures are metalloproteins, and metal binding, or the lack thereof, is often implicated in disease, making it necessary to be able to study these systems in detail. Peptide-metal complexes are both present in nature and can provide a means to focus on the binding region of a protein and control experimental variables to a high degree. Structural studies of peptide complexes with metal ions by nuclear magnetic resonance (NMR) were surveyed for all the essential metal complexes and many non-essential metal complexes. The various methods used to study each metal ion are presented together with examples of recent research. Many of these metal systems have been individually reviewed and this current overview of NMR studies of metallopeptide complexes aims to provide a basis for inspiration from structural studies and methodology applied in the field.
Collapse
|
3
|
Gaucher JF, Reille-Seroussi M, Gagey-Eilstein N, Broussy S, Coric P, Seijo B, Lascombe MB, Gautier B, Liu WQ, Huguenot F, Inguimbert N, Bouaziz S, Vidal M, Broutin I. Biophysical Studies of the Induced Dimerization of Human VEGF Receptor 1 Binding Domain by Divalent Metals Competing with VEGF-A. PLoS One 2016; 11:e0167755. [PMID: 27942001 PMCID: PMC5152890 DOI: 10.1371/journal.pone.0167755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/18/2016] [Indexed: 12/29/2022] Open
Abstract
Angiogenesis is tightly regulated through the binding of vascular endothelial growth factors (VEGFs) to their receptors (VEGFRs). In this context, we showed that human VEGFR1 domain 2 crystallizes in the presence of Zn2+, Co2+ or Cu2+ as a dimer that forms via metal-ion interactions and interlocked hydrophobic surfaces. SAXS, NMR and size exclusion chromatography analyses confirm the formation of this dimer in solution in the presence of Co2+, Cd2+ or Cu2+. Since the metal-induced dimerization masks the VEGFs binding surface, we investigated the ability of metal ions to displace the VEGF-A binding to hVEGFR1: using a competition assay, we evidenced that the metals displaced the VEGF-A binding to hVEGFR1 extracellular domain binding at micromolar level.
Collapse
Affiliation(s)
- Jean-François Gaucher
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
- * E-mail:
| | - Marie Reille-Seroussi
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Nathalie Gagey-Eilstein
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Sylvain Broussy
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Pascale Coric
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Bili Seijo
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Marie-Bernard Lascombe
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Benoit Gautier
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Wang-Quing Liu
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Florent Huguenot
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Nicolas Inguimbert
- Centre de Recherche Insulaire et Observatoire de l’Environnement USR CNRS 3278 CRIOBE, Université de Perpignan Via Domitia, Perpignan, France
| | - Serge Bouaziz
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| | - Michel Vidal
- UMR 8638 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
- UF Pharmacocinétique et Pharmacochimie, hôpital Cochin, AP-HP, Paris, France
| | - Isabelle Broutin
- UMR 8015 CNRS - Université Paris Descartes, Faculté de Pharmacie, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
4
|
Shoshan MS, Tshuva EY. Effective Inhibition of Cellular ROS Production by MXCXXC-Type Peptides: Potential Therapeutic Applications in Copper-Homeostasis Disorders. Chemistry 2016; 22:9077-81. [DOI: 10.1002/chem.201601017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Michal S. Shoshan
- Institute of Chemistry; The Hebrew University of Jerusalem; 9190401 Jerusalem Israel
| | - Edit Y. Tshuva
- Institute of Chemistry; The Hebrew University of Jerusalem; 9190401 Jerusalem Israel
| |
Collapse
|
5
|
Shoshan MS, Dekel N, Goch W, Shalev DE, Danieli T, Lebendiker M, Bal W, Tshuva EY. Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins. J Inorg Biochem 2016; 159:29-36. [PMID: 26901629 DOI: 10.1016/j.jinorgbio.2016.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/17/2023]
Abstract
The effect of position II in the binding sequence of copper metallochaperones, which varies between Thr and His, was investigated through structural analysis and affinity and oxidation kinetic studies of model peptides. A first Cys-Cu(I)-Cys model obtained for the His peptide at acidic and neutral pH, correlated with higher affinity and more rapid oxidation of its complex; in contrast, the Thr peptide with the Cys-Cu(I)-Met coordination under neutral conditions demonstrated weaker and pH dependent binding. Studies with human antioxidant protein 1 (Atox1) and three of its mutants where S residues were replaced with Ala suggested that (a) the binding affinity is influenced more by the binding sequence than by the protein fold (b) pH may play a role in binding reactivity, and (c) mutating the Met impacted the affinity and oxidation rate more drastically than did mutating one of the Cys, supporting its important role in protein function. Position II thus plays a dominant role in metal binding and transport.
Collapse
Affiliation(s)
- Michal S Shoshan
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Noa Dekel
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Deborah E Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Tsafi Danieli
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Mario Lebendiker
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa 02106, Poland
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel.
| |
Collapse
|
6
|
Shoshan MS, Lehman Y, Goch W, Bal W, Tshuva EY, Metanis N. Selenocysteine containing analogues of Atx1-based peptides protect cells from copper ion toxicity. Org Biomol Chem 2016; 14:6979-84. [DOI: 10.1039/c6ob00849f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Seleno-substituted model peptides of copper metallochaperone proteins display particularly high Cu(i) affinity andin vitroanti-oxidative reactivity.
Collapse
Affiliation(s)
| | - Yonat Lehman
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- Warszawa 02106
- Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- Warszawa 02106
- Poland
| | - Edit Y. Tshuva
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| | - Norman Metanis
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| |
Collapse
|
7
|
T versus D in the MTCXXC motif of copper transport proteins plays a role in directional metal transport. J Biol Inorg Chem 2014; 19:1037-47. [DOI: 10.1007/s00775-014-1147-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/28/2014] [Indexed: 01/06/2023]
|
8
|
Zhu Z, Gao C, Wu Y, Sun L, Huang X, Ran W, Shen Q. Removal of heavy metals from aqueous solution by lipopeptides and lipopeptides modified Na-montmorillonite. BIORESOURCE TECHNOLOGY 2013; 147:378-386. [PMID: 23999267 DOI: 10.1016/j.biortech.2013.08.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
The removal of Cu(2+), Zn(2+), Cd(2+), Pb(2+) and Hg(2+) from aqueous solution by lipopeptides produced from solid-state fermentation (LPSSF) and LPSSF modified Na-montmorillonite clays (LPSSF/Na-MMT) was investigated. The results showed that the LPSSF had certain adsorption capability for the metal ions and the modification of Na-MMT with LPSSF at a weight ratio of 1:50 (LPSSF:Na-MMT) had the best adsorption capacity and adsorption rate. The adsorption of heavy metal ion on these adsorbents was monolayer sorption. And the rate limiting step of the adsorption process was thought as chemical sorption. The N-C-O and CC/CN groups of the LPSSF are the functional groups that were responsible for complexing the metal ions. The desorption rate of metal ions reached over 80% at 500 mg/L of LPSSF. The LPSSF/Na-MMT (1:50) was reusable and performed well in the complex system, indicating its potential application in wastewater treatment.
Collapse
Affiliation(s)
- Zhen Zhu
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chao Gao
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanliang Wu
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lifei Sun
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Huang
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Ran
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qirong Shen
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Badarau A, Baslé A, Firbank SJ, Dennison C. Investigating the role of zinc and copper binding motifs of trafficking sites in the cyanobacterium Synechocystis PCC 6803. Biochemistry 2013; 52:6816-23. [PMID: 24050657 PMCID: PMC3793899 DOI: 10.1021/bi400492t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although zinc and copper are required by proteins with very different functions, these metals can be delivered to cellular locations by homologous metal transporters within the same organism, as demonstrated by the cyanobacterial ( Synechocystis PCC 6803) zinc exporter ZiaA and thylakoidal copper importer PacS. The N-terminal metal-binding domains of these transporters (ZiaAN and PacSN, respectively) have related ferredoxin folds also found in the metallochaperone Atx1, which delivers copper to PacS, but differ in the residues found in their M/IXCXXC metal-binding motifs. To investigate the role of the nonconserved residues in this region on metal binding, the sequence from ZiaAN has been introduced into Atx1 and PacSN, and the motifs of Atx1 and PacSN swapped. The motif sequence can tune Cu(I) affinity only approximately 3-fold. However, the introduction of the ZiaAN motif (MDCTSC) dramatically increases the Zn(II) affinity of both Atx1 and PacSN by up to 2 orders of magnitude. The Atx1 mutant with the ZiaAN motif crystallizes as a side-to-side homodimer very similar to that found for [Cu(I)2-Atx1]2 ( Badarau et al. Biochemistry 2010 , 49 , 7798 ). In a crystal structure of the PacSN mutant possessing the ZiaAN motif (PacSN(ZiaAN)), the Asp residue from the metal-binding motif coordinates Zn(II). This demonstrates that the increased Zn(II) affinity of this variant and the high Zn(II) affinity of ZiaAN are due to the ability of the carboxylate to ligate this metal ion. Comparison of the Zn(II) sites in PacSN(ZiaAN) structures provides additional insight into Zn(II) trafficking in cyanobacteria.
Collapse
Affiliation(s)
- Adriana Badarau
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University , Newcastle upon Tyne, NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|