1
|
Kumada R, Sakama A, Shindo Y, Kuronuma Y, Iwasawa N, Citterio D, Oka K, Hiruta Y. Development of Phosphinate Ligand-Based Low-Affinity Ca 2+ Fluorescent Probes and Application to Intracellular Ca 2+ Imaging. Anal Chem 2023; 95:16683-16691. [PMID: 37922450 DOI: 10.1021/acs.analchem.3c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Divalent metal cations such as calcium ion (Ca2+) and magnesium ion (Mg2+) are indispensable to the regulation of various cellular activities. In this research, we developed the KLCA series utilizing o-aminophenol-N,N-diacetate-O-methylene-methylphosphinate (APDAP) as a target binding site, which was reported recently as a highly free Mg2+-selective ligand. KLCA-301 with orange fluorescence based on a rhodamine fluorophore and KLCA-501 with near-infrared (NIR) fluorescence based on a Si-rhodamine fluorophore were synthesized, intended for application to multicolor imaging. The evaluation of the fluorescence response to Ca2+ and Mg2+ of the KLCA series indicated the applicability as low-affinity Ca2+ probes. While KLCA-301 mainly localized in the cytosol in cultured rat hippocampal neurons, KLCA-501 localized to the cytosol and granular organelles in neurons. Comparison of the fluorescence response of KLCA-301 and the high-affinity Ca2+ probe Fluo-4 upon stimulation by glutamate in stained neurons revealed that KLCA-301 could reflect the secondary large rise of intracellular Ca2+, which Fluo-4 could not detect. In addition, KLCA-501 showed a fluorescence response similar to the low-affinity Ca2+ probe Fluo-5N upon stimulation by glutamate in stained neurons, concluding that KLCA-301 and KLCA-501 could be used as low-affinity Ca2+ probes. The KLCA series offers new options for low-affinity Ca2+ probes. Moreover, KLCA-501 achieved simultaneous visualization of the change in Ca2+ and ATP concentrations and also in mitochondrial inner membrane potential in neurons. KLCA-501 is expected to be a strong tool that enables simultaneous multicolor imaging of multiple targets and elucidation of their relationship in cells.
Collapse
Affiliation(s)
- Rei Kumada
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akihiro Sakama
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yutaka Shindo
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- School of Frontier Engineering, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Yuzuka Kuronuma
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Naoko Iwasawa
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
- School of Frontier Engineering, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
- College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
2
|
Brady M, Shchepetkina VI, González-Recio I, Martínez-Chantar ML, Buccella D. Ratiometric Fluorescent Sensors Illuminate Cellular Magnesium Imbalance in a Model of Acetaminophen-Induced Liver Injury. J Am Chem Soc 2023; 145:21841-21850. [PMID: 37782839 PMCID: PMC10571084 DOI: 10.1021/jacs.3c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 10/04/2023]
Abstract
Magnesium(II) plays catalytic, structural, regulatory, and signaling roles in living organisms. Abnormal levels of this metal have been associated with numerous pathologies, including cardiovascular disease, diabetes, metabolic syndrome, immunodeficiency, cancer, and, most recently, liver pathologies affecting humans. The role of Mg2+ in the pathophysiology of liver disease, however, has been occluded by concomitant changes in concentration of interfering divalent cations, such as Ca2+, which complicates the interpretation of experiments conducted with existing molecular Mg2+ indicators. Herein, we introduce a new quinoline-based fluorescent sensor, MagZet1, that displays a shift in its excitation and emission wavelengths, affording ratiometric detection of cellular Mg2+ by both fluorescence microscopy and flow cytometry. The new sensor binds the target metal with a submillimolar dissociation constant─well suited for detection of changes in free Mg2+ in cells─and displays a 10-fold selectivity against Ca2+. Furthermore, the fluorescence ratio is insensitive to changes in pH in the physiological range, providing an overall superior performance over existing indicators. We provide insights into the metal selectivity profile of the new sensor based on computational modeling, and we apply it to shed light on a decrease in cytosolic free Mg2+ and altered expression of metal transporters in cellular models of drug-induced liver injury caused by acetaminophen overdose.
Collapse
Affiliation(s)
- Michael Brady
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | | | - Irene González-Recio
- Liver
Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE),
Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
801A, 48160 Derio, Spain
| | - María L. Martínez-Chantar
- Liver
Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE),
Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
801A, 48160 Derio, Spain
- Centro
de Investigación Biomédica en Red de Enfermedades Hepáticas
y Digestivas (CIBERehd), Carlos III National
Health Institute, 28029 Madrid, Spain
| | - Daniela Buccella
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
3
|
Pinto-Pacheco B, Lin Q, Yan CW, de Melo Silva S, Buccella D. Lanthanide-based luminescent probes for biological magnesium: accessing polyphosphate-bound Mg 2. Chem Commun (Camb) 2023; 59:3586-3589. [PMID: 36883365 PMCID: PMC10408037 DOI: 10.1039/d2cc07095b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Biomolecule-bound Mg2+ species, particularly polyphosphate complexes, represent a large and dynamic fraction of the total cellular magnesium that is essential for cellular function but remains invisible to most indicators. Here we report a new family of Eu(III)-based indicators, the MagQEu family, functionalized with a 4-oxo-4H-quinolizine-3-carboxylic acid metal recognition group/sensitization antenna for turn-on, luminescence-based detection of biologically relevant Mg2+ species.
Collapse
Affiliation(s)
- Brismar Pinto-Pacheco
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Qitian Lin
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Claudia W Yan
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Symara de Melo Silva
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Daniela Buccella
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| |
Collapse
|
4
|
Shen H, Liu J, Pan P, Yang X, Yang Z, Li P, Liu G, Zhang X, Zhou J. One-step synthesis of nanosilver embedding laser-induced graphene for H 2O 2 sensor. SYNTHETIC METALS 2023; 293:117235. [PMID: 36567724 PMCID: PMC9768471 DOI: 10.1016/j.synthmet.2022.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
During the novel coronavirus pandemic, hydrogen peroxide (H2O2) played an important role as a disinfectant. However, high concentrations of H2O2 can also cause damage to the skin and eyes. Therefore, the quantitative and qualitative detection of H2O2 is an important research direction. In this work, we report a one-step laser-induced synthesis of graphene doped with Ag NPs composites. It directly trims screen printed electrodes (SPE). Firstly, we did the timekeeping current method (CA) test on H2O2 using a conventional platinum sheet as the counter electrode, and obtained linear ranges of 1-110 μM and 110-800 μM with a sensitivity of 118.7 and 96.3 μAmM-1cm-2 and a low detection limit of (LOD) 0.24 μM and 0.31 μM. On this basis we have also achieved a good result in CA testing using Screen printed carbon electrodes (SPCE), laying the foundation for portable testing. The sensor has excellent interference immunity and high selectivity.
Collapse
Affiliation(s)
- Haodong Shen
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Jun Liu
- School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
| | - Peng Pan
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoping Yang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Zhengchun Yang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Peng Li
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Guanying Liu
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaodong Zhang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Jie Zhou
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
5
|
Li L, Ding Y, Zhang C, Xian H, Chen S, Dai G, Wang X, Ye C. Ratiometric Fluorescence Detection of Mg 2+ Based on Regulating Crown-Ether Modified Annihilators for Triplet–Triplet Annihilation Upconversion. J Phys Chem B 2022; 126:3276-3282. [DOI: 10.1021/acs.jpcb.2c00928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lin Li
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yilei Ding
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Chun Zhang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Haiyu Xian
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Shuoran Chen
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, P.R. China
| | - Xiaomei Wang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Changqing Ye
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
6
|
Kowada T, Mizukami S. Fluorescent Probes for the Quantification of Labile Metal Ions in Living Cells. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|
7
|
Chattopadhyay K, Datta S, Dhara S, Bertolasi V, Ray D. Exploration of varying coordination reactivity of Schiff base H3L toward CdII, ZnII and MgII: Hydroxido-bridged dimer, acetato-directed chain and live cell-imaging. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Hiruta Y, Shindo Y, Oka K, Citterio D. Small Molecule-based Alkaline-earth Metal Ion Fluorescent Probes for Imaging Intracellular and Intercellular Multiple Signals. CHEM LETT 2021. [DOI: 10.1246/cl.200917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yutaka Shindo
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
9
|
|
10
|
Azadbakht R, Koolivand M, Menati S. Salicylimine-based fluorescent chemosensor for magnesium ions in aqueous solution. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lazarou TS, Buccella D. Advances in imaging of understudied ions in signaling: A focus on magnesium. Curr Opin Chem Biol 2020; 57:27-33. [PMID: 32408221 PMCID: PMC7483230 DOI: 10.1016/j.cbpa.2020.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
Abstract
The study of metal ions in the context of cell signaling has historically focused mainly on Ca2+, the second messenger par excellence. But recent studies support an emerging paradigm in which other metals, including magnesium and d-block metals, play a role in signal transduction as well. Armed with the right indicators, fluorescence microscopy offers a unique combination of spatial and temporal resolution perfectly suited to reveal metal transients in real time, while also helping identify possible sources of ion mobilization and molecular targets. With a focus on Mg2+, we highlight recent advancements in the development of molecular indicators and imaging strategies for the study of metal ions in signaling. We discuss remaining conceptual and technical challenges in the field, and we illustrate through the case of Mg2+ how the study of nontraditional ions in signaling is inspiring technological developments applicable more broadly to the study of metals in biology.
Collapse
Affiliation(s)
- Tomas S Lazarou
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Daniela Buccella
- Department of Chemistry, New York University, New York, NY, 10003, USA.
| |
Collapse
|
12
|
Bazany-Rodríguez IJ, Salomón-Flores MK, Bautista-Renedo JM, González-Rivas N, Dorazco-González A. Chemosensing of Guanosine Triphosphate Based on a Fluorescent Dinuclear Zn(II)-Dipicolylamine Complex in Water. Inorg Chem 2020; 59:7739-7751. [PMID: 32391691 DOI: 10.1021/acs.inorgchem.0c00777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Guanosine triphosphate (GTP) is a key biomarker of multiple cellular processes and human diseases. The new fluorescent dinuclear complex [Zn2(L)(S)][OTf]4, 1 (asymmetric ligand, L = 5,8-Bis{[bis(2-pyridylmethyl)amino] methyl}quinoline, S = solvent, and OTf = triflate anion) was synthesized and studied in-depth as a chemosensor for nucleoside polyphosphates and inorganic anions in pure water. Additions at neutral pH of nucleoside triphosphates, guanosine diphosphate, guanosine monophosphate, and pyrophosphate (PPi) to 1 quench its blue emission (λem = 410 nm) with a pronounced selectivity toward GTP over other anions, including adenosine triphosphate (ATP), uridine triphosphate (UTP), and cytidine triphosphate (CTP). The efficient quenching response by the addition of GTP was observed in the presence of coexisting species in blood plasma and urine with a detection limit of 9.2 μmol L-1. GTP also shows much tighter binding to the receptor 1 on a submicromolar level. On the basis of multiple spectroscopic tools (1H, 31P NMR, UV-vis, and fluorescence) and DFT calculations, the binding mode is proposed through three-point recognition involving the simultaneous coordination of the N7 atom of the guanosine motif and two phosphate groups to the two Zn(II) atoms. Spectroscopic studies, MS-ESI, and DFT suggested that GTP bound to 1 in 1:1 and 2:2 models with high overall binding constants of log β1 (1:1) = 6.05 ± 0.01 and log β2 = 10.91 ± 0.03, respectively. The optical change and selectivity are attributed to the efficient binding of GTP to 1 by the combination of a strong electrostatic contribution and synergic effects of coordination bonds. Such GTP selectivity of an asymmetric metal-based receptor in water is still rare.
Collapse
Affiliation(s)
- Iván J Bazany-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México, 04510, Distrito Federal de México, México
| | - María K Salomón-Flores
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México, 04510, Distrito Federal de México, México
| | - Joanatan M Bautista-Renedo
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, km 14.5 Carrera Toluca-Atlacomulco, Campus UAEMex "El Rosedal" San Cayetano-Toluca, 50200 Toluca de Lerdo, Estado de México, México
| | - Nelly González-Rivas
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM, km 14.5 Carrera Toluca-Atlacomulco, Campus UAEMex "El Rosedal" San Cayetano-Toluca, 50200 Toluca de Lerdo, Estado de México, México
| | - Alejandro Dorazco-González
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México, 04510, Distrito Federal de México, México
| |
Collapse
|
13
|
Guan JF, Huang ZN, Zou J, Jiang XY, Peng DM, Yu JG. A sensitive non-enzymatic electrochemical sensor based on acicular manganese dioxide modified graphene nanosheets composite for hydrogen peroxide detection. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110123. [PMID: 31891837 DOI: 10.1016/j.ecoenv.2019.110123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel manganese dioxide-graphene nanosheets (MnO2-GNSs) composite was synthesized by a facile one-step hydrothermal method, in which manganese dioxide (MnO2) was fabricated by hydrothermal reduction of KMnO4 with GNSs. The structure and morphology of MnO2-GNSs composite were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis and X-ray photoelectron spectroscopy (XPS). A sensitive non-enzymatic electrochemical sensor based on MnO2-GNSs composite for the detection of low concentration hydrogen peroxide (H2O2) was fabricated. The electrochemical properties of MnO2-GNSs composite modified glassy carbon electrode (MnO2-GNSs/GCE) were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometry. The observations confirmed that the fabricated sensor exhibited high electrocatalytic activity for oxidation of H2O2 owing to the catalytic ability of MnO2 particles and the conductivity of GNSs. Under the optimum conditions, the calibration curve was linear for the amperometric response versus H2O2 concentration over the range 0.5-350 μM with a low detection limit of 0.19 μM (S/N = 3) and high sensitivity of 422.10 μA mM-1 cm-2. The determination and quantitative analysis of H2O2 in antiseptic solution on MnO2-GNSs/GCE exhibited percent recovery of 96.50%-101.22% with relative standard deviation (RSD) of 1.48%-4.47%. The developed MnO2-GNSs/GCE might be a promising platform for the practical detection of H2O2 due to its prominent properties including excellent reproducibility, good anti-interference and repeatability.
Collapse
Affiliation(s)
- Jin-Feng Guan
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan, 410083, China
| | - Zhao-Ning Huang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan, 410083, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan, 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan, 410083, China
| | - Dong-Ming Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
14
|
Bansal D, Gupta R. Selective sensing of ATP by hydroxide-bridged dizinc(ii) complexes offering a hydrogen bonding cavity. Dalton Trans 2020; 48:14737-14747. [PMID: 31549128 DOI: 10.1039/c9dt02404b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work illustrates the highly selective fluorescence detection of ATP in the presence of other competing anions, such as AMP, ADP, PPi and other phosphates by using a set of hydroxide-bridged dizinc(ii) complexes offering a cavity lined with hydrogen bonds and other interactive forces. ATP, as a whole, was recognized by the synergic combination of Zn-phosphate bonding, ππ stacking between the adenine ring of ATP and the pyridine ring of the dizinc complex and hydrogen bonding interactions that modulate the cavity structure of the dizinc complexes.
Collapse
Affiliation(s)
- Deepak Bansal
- Department of Chemistry, University of Delhi, Delhi - 110 007, India.
| | | |
Collapse
|
15
|
Zarate X, Rodriguez-Serrano A, Schott E, Tatchen J. DFT/MRCI assessment of the excited-state interplay in a coumarin-schiff Mg 2+ fluorescent sensor. J Comput Chem 2020; 41:136-146. [PMID: 31646679 DOI: 10.1002/jcc.26086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/21/2019] [Accepted: 09/24/2019] [Indexed: 11/11/2022]
Abstract
Fluorescent sensors with selectivity and sensitivity to metal ions are an active field in supramolecular chemistry for biochemical, analytical, and environmental problems. Mg2+ is one of the most abundant divalent ions in the cell, and it plays a critical role in many biological processes. Coumarin-based sensors are widely used as desirable fluorophore and binding moieties showing a remarkable sensitivity and fluorometric enhancement for Mg2+ . In this work, density functional theory/multireference configuration interaction (DFT/MRCI) calculations were performed in order to understand the sensing behavior of the organic fluorescent sensor 7-hydroxy-4-methyl-8-((2-(pyridin-2-yl)hydrazono)methyl)-2H-chromen-2-one (PyHC) in ethanol to solvated Mg2+ ions. The computed optical properties reproduce well-reported experimental data. Our results suggest that after photoexcitation of the free PyHC, a photo-induced electron transfer (PET) mechanism may compete with the fluorescence decay to the ground state. In contrast, this PET channel is no longer available in the complex with Mg2+ making the emissive decay more efficient. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | | | - Eduardo Schott
- Departamento de Química Inorgánica, UC Energy Research Center, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile. Avda. Vicuña Mackenna, 4860, Santiago, Chile.,Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
| | - Jörg Tatchen
- Department of Computational Biochemistry, Universität Duisburg-Essen, 45117, Essen, Germany
| |
Collapse
|
16
|
Murata O, Shindo Y, Ikeda Y, Iwasawa N, Citterio D, Oka K, Hiruta Y. Near-Infrared Fluorescent Probes for Imaging of Intracellular Mg 2+ and Application to Multi-Color Imaging of Mg 2+, ATP, and Mitochondrial Membrane Potential. Anal Chem 2019; 92:966-974. [PMID: 31724392 DOI: 10.1021/acs.analchem.9b03872] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The magnesium ion (Mg2+) is an essential cation to maintain proper cellular activities. To visualize the dynamics and functions of Mg2+, there is a great need for the development of Mg2+-selective fluorescent probes. However, conventional Mg2+ fluorescent probes are falling behind in low selectivity and poor fluorescence color variation. In this report, to make available a distinct color window for multi-color imaging, we designed and synthesized highly Mg2+-selective and near-infrared (NIR) fluorescent probes, the KMG-500 series consisting of a charged β-diketone as a selective binding site for Mg2+ and a Si-rhodamine residue as the NIR fluorophore, which showed photoinduced electron transfer (PeT)-type OFF-ON response to the concentration of Mg2+. Two types of KMG-500 series probes, tetramethyl substituted Si-rhodamine KMG-501 and tetraethyl substituted Si-rhodamine KMG-502, were synthesized for the evaluation of cell permeability. For intracellular application, the membrane-permeable acetoxymethyl derivative KMG-501 (KMG-501AM) was synthesized and allowed to stably stain cultured rat hippocampal neurons during imaging of intracellular Mg2+. On the other hand, KMG-502 was cell membrane permeable without AM modification, preventing the probe from staying inside cells during imaging. KMG-501 distributed mainly in the cytoplasm and partially localized in lysosomes and mitochondria in cultured rat hippocampal neurons. Mg2+ increase in response to the FCCP uncoupler inducing depolarization of the mitochondrial inner membrane potential was detected in the KMG-501 stained neurons. For the first time, KMG-501 succeeded in imaging intracellular Mg2+ dynamics with NIR fluorescence. Moreover, it allows one to simultaneously visualize changes in Mg2+ and ATP concentration and also mitochondrial inner membrane potential and their interactions. This probe is expected to be a strong tool for multi-color imaging of intracellular Mg2+.
Collapse
Affiliation(s)
- Osamu Murata
- Department of Applied Chemistry , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama , Kanagawa , Japan
| | - Yutaka Shindo
- Department of Biosciences and Informatics , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama , Kanagawa , Japan
| | - Yuma Ikeda
- Department of Applied Chemistry , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama , Kanagawa , Japan
| | - Naoko Iwasawa
- Department of Applied Chemistry , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama , Kanagawa , Japan
| | - Daniel Citterio
- Department of Applied Chemistry , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama , Kanagawa , Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama , Kanagawa , Japan.,Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan.,Waseda Research Institute for Science and Engineering , 2-2 Wakamatsucho , Shinjuku , Tokyo , Japan
| | - Yuki Hiruta
- Department of Applied Chemistry , Keio University , 3-14-1 Hiyoshi, Kohoku-ku , Yokohama , Kanagawa , Japan
| |
Collapse
|
17
|
Agafontsev AM, Ravi A, Shumilova TA, Oshchepkov AS, Kataev EA. Molecular Receptors for Recognition and Sensing of Nucleotides. Chemistry 2018; 25:2684-2694. [PMID: 30289184 DOI: 10.1002/chem.201802978] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/05/2018] [Indexed: 12/15/2022]
Abstract
Nucleotides are constituents of nucleic acids and they have a variety of functions in cellular metabolism. Synthetic receptors and sensors are required to reveal the role of nucleotides in living organisms and mechanisms of signal transduction events. In recent years, a large number of nucleotide-selective synthetic receptors have been devised, which utilize different molecular designs and sensing mechanisms. This Minireview presents recent progress in the design of synthetic molecular receptors for selective recognition of nucleotides in aqueous solution. The binding properties of receptors and the origins of their selectivity for a particular nucleotide are discussed.
Collapse
Affiliation(s)
- Aleksandr M Agafontsev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany.,N. N. Vorozhtsov Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova St. 1, 630090, Novosibirsk, Russia
| | - Anil Ravi
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Tatiana A Shumilova
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| | - Aleksandr S Oshchepkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow, 117198, Russia
| | - Evgeny A Kataev
- Institute of Chemistry, Technische Universität Chemnitz, 09107, Chemnitz, Germany
| |
Collapse
|
18
|
Walter ERH, Williams JAG, Parker D. APTRA-Based Luminescent Lanthanide Complexes Displaying Enhanced Selectivity for Mg2+. Chemistry 2018. [DOI: 10.1002/chem.201800745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - David Parker
- Department of Chemistry; Durham University; South Road Durham DH1 3LE UK
| |
Collapse
|
19
|
Walter ERH, Williams JAG, Parker D. Tuning Mg(II) Selectivity: Comparative Analysis of the Photophysical Properties of Four Fluorescent Probes with an Alkynyl-Naphthalene Fluorophore. Chemistry 2018; 24:6432-6441. [DOI: 10.1002/chem.201800013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - David Parker
- Department of Chemistry; Durham University; South Road Durham DH1 3LE UK
| |
Collapse
|
20
|
Brady M, Piombo SD, Hu C, Buccella D. Structural and spectroscopic insight into the metal binding properties of the o-aminophenol-N,N,O-triacetic acid (APTRA) chelator: implications for design of metal indicators. Dalton Trans 2018; 45:12458-64. [PMID: 27430930 DOI: 10.1039/c6dt01557c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The o-aminophenol-N,N,O-triacetic acid (APTRA) chelator is employed extensively as a metal-recognition moiety in fluorescent indicators for biological free Mg(2+), as well as in low-affinity indicators for the detection of high levels of cellular Ca(2+). Despite its widespread use in sensor design, the limited metal selectivity of this chelating moiety can lead to binding of competing cations that complicate the fluorescence-based detection of metals of interest in complex samples. Reported herein are the structural characterization of APTRA complexes with various biologically relevant cations, and the thermodynamic analysis of complex formation with Mg(2+), Ca(2+) and Zn(2+). Our results indicate that the low affinity of APTRA for Mg(2+), which makes it a suitable metal-recognition moiety for sensitive analysis of typical millimolar levels of this metal in cells, stems from a much higher enthalpic cost of Mg(2+) binding compared to that of other cations. The results are discussed in the context of indicator design, highlighting the aspects that may aid the future development of fluorescent sensors with enhanced metal selectivity profiles.
Collapse
Affiliation(s)
- Michael Brady
- Department of Chemistry, New York University, New York, NY 10003, USA.
| | | | - Chunhua Hu
- Department of Chemistry, New York University, New York, NY 10003, USA.
| | - Daniela Buccella
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
21
|
Matsui Y, Mizukami S, Kikuchi K. Ratiometric Imaging of Intracellular Mg2+ Dynamics Using a Red Fluorescent Turn-off Probe and a Green Fluorescent Turn-on Probe. CHEM LETT 2018. [DOI: 10.1246/cl.170918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yusuke Matsui
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kazuya Kikuchi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Walter ERH, Fox MA, Parker D, Williams JAG. Enhanced selectivity for Mg2+with a phosphinate-based chelate: APDAPversusAPTRA. Dalton Trans 2018; 47:1879-1887. [DOI: 10.1039/c7dt04698g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AnO-methylene-methylphosphinate analogue of APTRA shows a much greater reduction in affinity for Ca2+than Mg2+, offering a way to improved magnesium-selective ligands.
Collapse
Affiliation(s)
| | - Mark A. Fox
- Department of Chemistry
- Durham University
- Durham
- UK
| | - David Parker
- Department of Chemistry
- Durham University
- Durham
- UK
| | | |
Collapse
|
23
|
Matsui Y, Sadhu KK, Mizukami S, Kikuchi K. Highly selective tridentate fluorescent probes for visualizing intracellular Mg2+ dynamics without interference from Ca2+ fluctuation. Chem Commun (Camb) 2017; 53:10644-10647. [DOI: 10.1039/c7cc06141b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Novel fluorescent probes based on a tridentate Mg2+-selective chelator enabled the detection of intracellular Mg2+ concentration change without any response to Ca2+.
Collapse
Affiliation(s)
- Yusuke Matsui
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Kalyan K. Sadhu
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai
- Japan
| | - Kazuya Kikuchi
- Department of Material and Life Science
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| |
Collapse
|
24
|
Recognition of Mg²⁺ by a new fluorescent "turn-on" chemosensor based on pyridyl-hydrazono-coumarin. Talanta 2016; 152:432-7. [PMID: 26992539 DOI: 10.1016/j.talanta.2016.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 01/19/2023]
Abstract
A new fluoroionophore PyHC bearing 2-pyridylhydrazone and 7-hydroxycoumarin moieties for selective detection of Mg(2+) was synthesized and characterized. This chemosensor exhibited "turn-on" fluorescence behavior and was sensitive to Mg(2+) concentrations as low as 105 nmol L(-1) in ethanol-water solution. Detailed spectroscopic studies revealed the binding mode of a 1:1 complex between PyHC and Mg(2+) that leads to a fluorescence enhancement.
Collapse
|
25
|
Yamanaka R, Shindo Y, Karube T, Hotta K, Suzuki K, Oka K. Neural depolarization triggers Mg2+ influx in rat hippocampal neurons. Neuroscience 2015; 310:731-41. [DOI: 10.1016/j.neuroscience.2015.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/26/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022]
|
26
|
Liu Z, Xu H, Chen S, Sheng L, Zhang H, Hao F, Su P, Wang W. Solvent-dependent "turn-on" fluorescence chemosensor for Mg(2+) based on combination of C=N isomerization and inhibition of ESIPT mechanisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:83-89. [PMID: 25942089 DOI: 10.1016/j.saa.2015.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/01/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
A fluorescent chemosensor (L) for Mg(2+) has been synthesized and characterized, which exhibits turn-on fluorescence response for Mg(2+) only in alcohol solvent (methanol or ethanol) with high sensitivity and selectivity. But in both nonpolar and polar solvents (cyclohexane, DCM, DMSO or MeCN), L showed negligible fluorescent response for Mg(2+). In order to discover the unique phenomenon, optical measurements, liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and a high performance liquid chromatography with a fluorescence detector (HPLC-FLD) of L and L with Mg(2+) ions in solvents were studied. In alcohol solvent, [L+alcohol molecule] was formed and the mechanism aspect of L concerning the remarkable fluorescence response for Mg(2+) has been discussed.
Collapse
Affiliation(s)
- Zhaodi Liu
- Department of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, China.
| | - Huajie Xu
- Department of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, China
| | - Shuisheng Chen
- Department of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, China
| | - Liangquan Sheng
- Department of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, China.
| | - Hong Zhang
- Department of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, China
| | - Fuying Hao
- Department of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, China
| | - Pengfei Su
- Xi'an Modern Chemistry Research Institute, Xi'an, Shanxi, China
| | - Wenlong Wang
- Department of Chemistry and Materials Engineering, Fuyang Normal College, Fuyang, China
| |
Collapse
|
27
|
Hariharan PS, Anthony SP. Selective fluorescence sensing of Mg2+ ions by Schiff base chemosensor: effect of diamine structural rigidity and solvent. RSC Adv 2014. [DOI: 10.1039/c4ra05827e] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Highly selective strong turn-on fluorescence for Mg2+ (Φ = 0.03 to 0.57) was realized with a simple Salen based Schiff base chemosensor (1a) using dimethylformamide (DMF) or dimethyl sulfoxide (DMSO) as solvent.
Collapse
Affiliation(s)
- P. S. Hariharan
- School of Chemical & Biotechnology
- SASTRA University
- Thanjavur-613401, India
| | | |
Collapse
|