1
|
Du T, Zhang P, Jiao Z, Zhou J, Ding Y. Homogeneous and Heterogeneous Frustrated Lewis Pairs for the Activation and Transformation of CO 2. Chem Asian J 2024; 19:e202400208. [PMID: 38607325 DOI: 10.1002/asia.202400208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Due to the serious ecological problems caused by the high CO2 content in the atmosphere, reducing atmospheric CO2 has attracted widespread attention from academia and governments. Among the many ways to mitigate CO2 concentration, the capture and comprehensive utilization of CO2 through chemical methods have obvious advantages, whose key is to develop suitable adsorbents and catalysts. Frustrated Lewis pairs (FLPs) are known to bind CO2 through the interaction between unquenched Lewis acid sites/Lewis base sites with the O/C of CO2, simultaneously achieving CO2 capture and activation, which render FLP better potential for CO2 utilization. However, how to construct efficient FLP targeted for CO2 utilization and the mechanism of CO2 activation have not been systematically reported. This review firstly provides a comprehensive summary of the recent advances in the field of CO2 capture, activation, and transformation with the help of FLP, including the construction of homogeneous and heterogeneous FLPs, their interaction with CO2, reaction activity, and mechanism study. We also illustrated the challenges and opportunities faced in this field to shed light on the prospective research.
Collapse
Affiliation(s)
- Tao Du
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, Peoples R. China
- School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Rd, Nanjing, 211189, Jiangsu, Peoples R. China
| | - Peng Zhang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, Peoples R. China
| | - Zhen Jiao
- School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Rd, Nanjing, 211189, Jiangsu, Peoples R. China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, 2 Dongnandaxue Rd, Nanjing, 211189, Jiangsu, Peoples R. China
| | - Yuxiao Ding
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, Peoples R. China
| |
Collapse
|
2
|
Pu M, Nielsen CDT, Senol E, Sperger T, Schoenebeck F. Post-Transition-State Dynamic Effects in the Transmetalation of Pd(II)-F to Pd(II)-CF 3. JACS AU 2024; 4:263-275. [PMID: 38274253 PMCID: PMC10806791 DOI: 10.1021/jacsau.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
The observation of post-transition-state dynamic effects in the context of metal-based transformation is rare. To date, there has been no reported case of a dynamic effect for the widely employed class of palladium-mediated coupling reactions. We performed an experimental and computational study of the trifluoromethylation of Pd(II)F, which is a key step in the Pd(0)/Pd(II)-catalyzed trifluoromethylation of aryl halides or acid fluorides. Our experiments show that the cis/trans speciation of the formed Pd(II)CF3 is highly solvent- and transmetalation reagent-dependent. We employed GFN2-xTB- and B3LYP-D3-based molecular dynamics trajectory calculations (with and without explicit solvation) along with high-level QM calculations and found that depending on the medium, different transmetalation mechanisms appear to be operative. A statistically representative number of Born-Oppenheimer molecular dynamics (MD) simulations suggest that in benzene, a difluorocarbene is generated in the transmetalation with R3SiCF3, which subsequently recombines with the Pd via two distinct pathways, leading to either the cis- or trans-Pd(II)CF3. Conversely, GFN2-xTB simulations in MeCN suggest that in polar/coordinating solvents an ion-pair mechanism is dominant. A CF3 anion is initially liberated and then rebinds with the Pd(II) cation to give a cis- or trans-Pd(II). In both scenarios, a single transmetalation transition state gives rise to both cis- and trans-species directly, owing to bifurcation after the transition state. The potential subsequent cis- to trans isomerization of the Pd(II)CF3 was also studied and found to be strongly inhibited by free phosphine, which in turn was experimentally identified to be liberated through displacement by a polar/coordinating solvent from the cis-Pd(II)CF3 complex. The simulations also revealed how the variation of the Pd-coordination sphere results in divergent product selectivities.
Collapse
Affiliation(s)
- Maoping Pu
- Institute of Organic Chemistry,
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Erdem Senol
- Institute of Organic Chemistry,
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry,
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry,
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Abstract
Roaming reactions were first clearly identified in photodissociation of formaldehyde 15 years ago, and roaming dynamics are now recognized as a universal aspect of chemical reactivity. These reactions typically involve frustrated near-dissociation of a quasibound system to radical fragments, followed by reorientation at long range and intramolecular abstraction. The consequences can be unexpected formation of molecular products, depletion of the radical pool in chemical systems, and formation of products with unusual internal state distributions. In this review, I examine some current aspects of roaming reactions with an emphasis on experimental results, focusing on possible quantum effects in roaming and roaming dynamics in bimolecular systems. These considerations lead to a more inclusive definition of roaming reactions as those for which key dynamics take place at long range.
Collapse
Affiliation(s)
- Arthur G. Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
4
|
Gallardo-Fuentes S, Ormazábal-Toledo R. Theoretical insights into the activation of N2O by a model Frustrated Lewis Pair. An ab-initio metadynamics study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Zhuang D, Rouf AM, Li Y, Dai C, Zhu J. Aromaticity‐promoted CO
2
Capture by P/N‐Based Frustrated Lewis Pairs: A Theoretical Study. Chem Asian J 2019; 15:266-272. [DOI: 10.1002/asia.201901415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Danling Zhuang
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Alvi Muhammad Rouf
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials (iChem)Fujian Provincial Key Laboratory of Theoretical Computational ChemistryDepartment of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
6
|
Merk A, Großekappenberg H, Schmidtmann M, Luecke M, Lorent C, Driess M, Oestreich M, Klare HFT, Müller T. Einelektronenübertragungsreaktionen in frustrierten und klassischen Silyliumion/Phosphan‐Lewis‐Paaren. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201808922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anastasia Merk
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Henning Großekappenberg
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Marc Schmidtmann
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| | - Marcel‐Philip Luecke
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Christian Lorent
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Matthias Driess
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Martin Oestreich
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Hendrik F. T. Klare
- Institut für ChemieTechnische Universität Berlin Straße des 17. Juni 115 10623 Berlin Deutschland
| | - Thomas Müller
- Institut für ChemieCarl von Ossietzky Universität Oldenburg Carl von Ossietzky-Straße 9–11 26129 Oldenburg Deutschland
| |
Collapse
|
7
|
Merk A, Großekappenberg H, Schmidtmann M, Luecke MP, Lorent C, Driess M, Oestreich M, Klare HFT, Müller T. Single-Electron Transfer Reactions in Frustrated and Conventional Silylium Ion/Phosphane Lewis Pairs. Angew Chem Int Ed Engl 2018; 57:15267-15271. [PMID: 30178534 DOI: 10.1002/anie.201808922] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/31/2018] [Indexed: 01/08/2023]
Abstract
Silylium ions undergo a single-electron reduction with phosphanes, leading to transient silyl radicals and the corresponding stable phosphoniumyl radical cations. As supported by DFT calculations, phosphanes with electron-rich 2,6-disubstituted aryl groups are sufficiently strong reductants to facilitate this single-electron transfer (SET). Frustration as found in kinetically stabilized triarylsilylium ion/phosphane Lewis pairs is not essential, and silylphosphonium ions, which are generated by conventional Lewis adduct formation of solvent-stabilized trialkylsilylium ions and phosphanes, engage in the same radical mechanism. The trityl cation, a Lewis acid with a higher electron affinity, even oxidizes trialkylphosphanes, such as tBu3 P, which does not react with either B(C6 F5 )3 or silylium ions.
Collapse
Affiliation(s)
- Anastasia Merk
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Henning Großekappenberg
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| | - Marcel-Philip Luecke
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Christian Lorent
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Matthias Driess
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Hendrik F T Klare
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Thomas Müller
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Strasse 9-11, 26129, Oldenburg, Germany
| |
Collapse
|
8
|
Pu M, Heshmat M, Privalov T. Liberation of H 2 from (o-C 6H 4Me) 3P-H (+) + (-)H-B(p-C 6F 4H) 3 ion-pair: A transition-state in the minimum energy path versus the transient species in Born-Oppenheimer molecular dynamics. J Chem Phys 2018; 147:014303. [PMID: 28688388 DOI: 10.1063/1.4989672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using Born-Oppenheimer molecular dynamics (BOMD) with density functional theory, transition-state (TS) calculations, and the quantitative energy decomposition analysis (EDA), we examined the mechanism of H2-liberation from LB-H(+) + (-)H-LA ion-pair, 1, in which the Lewis base (LB) is (o-C6H4Me)3P and the Lewis acid (LA) is B(p-C6F4H)3. BOMD simulations indicate that the path of H2 liberation from the ion-pair 1 goes via the short-lived transient species, LB⋯H2⋯LA, which are structurally reminiscent of the TS-structure in the minimum-energy-path describing the reversible reaction between H2 and (o-C6H4Me)3P/B(p-C6F4H)3 frustrated Lewis pair (FLP). With electronic structure calculations performed on graphics processing units, our BOMD data-set covers more than 1 ns of evolution of the ion-pair 1 at temperature T ≈ 400 K. BOMD simulations produced H2-recombination events with various durations of H2 remaining fully recombined as a molecule within a LB/LA attractive "pocket"-from very short vibrational-time scale to time scales in the range of a few hundred femtoseconds. With the help of perturbational approach to trajectory-propagation over a saddle-area, we directly examined dynamics of H2-liberation. Using EDA, we elucidated interactions between the cationic and anionic fragments in the ion-pair 1 and between the molecular fragments in the TS-structure. We have also considered a model that qualitatively takes into account the potential energy characteristics of H-H recombination and H2-release plus inertia of molecular motion of the (o-C6H4Me)3P/B(p-C6F4H)3 FLP.
Collapse
Affiliation(s)
- Maoping Pu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Mojgan Heshmat
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Timofei Privalov
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Liu L(L, Cao LL, Shao Y, Ménard G, Stephan DW. A Radical Mechanism for Frustrated Lewis Pair Reactivity. Chem 2017. [DOI: 10.1016/j.chempr.2017.05.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
|
11
|
Ye J, Johnson JK. Catalytic hydrogenation of CO2 to methanol in a Lewis pair functionalized MOF. Catal Sci Technol 2016. [DOI: 10.1039/c6cy01245k] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Capture and conversion of CO2 to methanol using a renewable source of H2 is a promising way to reduce net CO2 emissions while producing valuable fuels.
Collapse
Affiliation(s)
- Jingyun Ye
- Department of Chemical & Petroleum Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | - J. Karl Johnson
- Department of Chemical & Petroleum Engineering
- University of Pittsburgh
- Pittsburgh
- USA
- Pittsburgh Quantum Institute
| |
Collapse
|
12
|
Zhang C, Lv X, Lu G, Wang ZX. Metal-free homolytic hydrogen activation: a quest through density functional theory computations. NEW J CHEM 2016. [DOI: 10.1039/c6nj00557h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT computations reveal that heavier analogs of 1,3-butadiene could activate H2homolyticallyvia1,4-addition.
Collapse
Affiliation(s)
- Chenggen Zhang
- Department of Chemistry and Materials Science
- Langfang Teachers University
- Langfang 065000
- People's Republic of China
| | - Xiangying Lv
- School of Environment
- Henan Normal University
- Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control
- Ministry of Education
- Henan Key Laboratory for Environmental Pollution Control
| | - Gang Lu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zhi-Xiang Wang
- School of Chemistry and Chemical Engineering
- University of the Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
13
|
Pu M, Privalov T. Ab Initio Molecular Dynamics with Explicit Solvent Reveals a Two-Step Pathway in the Frustrated Lewis Pair Reaction. Chemistry 2015; 21:17708-20. [DOI: 10.1002/chem.201502926] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Indexed: 11/06/2022]
|
14
|
Ye J, Johnson JK. Screening Lewis Pair Moieties for Catalytic Hydrogenation of CO2 in Functionalized UiO-66. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01191] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingyun Ye
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - J. Karl Johnson
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Pittsburgh Quantum Institute, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Gyömöre Á, Bakos M, Földes T, Pápai I, Domján A, Soós T. Moisture-Tolerant Frustrated Lewis Pair Catalyst for Hydrogenation of Aldehydes and Ketones. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01299] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ádám Gyömöre
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Mária Bakos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Tamás Földes
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Attila Domján
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| |
Collapse
|
16
|
Catalytic reduction of polar substrates without metals: A thermodynamic and kinetic study of heterolytic activation of hydrogen by vacancies in frustrated Lewis pairs. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.10.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Fujiwara K, Yasuda S, Mizuta T. Reduction of CO2 to Trimethoxyboroxine with BH3 in THF. Organometallics 2014. [DOI: 10.1021/om5008488] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Koji Fujiwara
- Department
of Chemistry,
Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan
| | - Shogo Yasuda
- Department
of Chemistry,
Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan
| | - Tsutomu Mizuta
- Department
of Chemistry,
Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
18
|
Pu M, Privalov T. Ab Initio Molecular Dynamics Study of Hydrogen Cleavage by a Lewis Base [tBu3P] and a Lewis Acid [B(C6F5)3] at the Mesoscopic Level-Dynamics in the Solute-Solvent Molecular Clusters. Chemphyschem 2014; 15:3714-9. [DOI: 10.1002/cphc.201402519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 11/05/2022]
|
19
|
Pu M, Privalov T. How Frustrated Lewis Acid/Base Systems Pass through Transition-State Regions: H2Cleavage by [tBu3P/B(C6F5)3]. Chemphyschem 2014; 15:2936-44. [DOI: 10.1002/cphc.201402450] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 11/07/2022]
|