1
|
Synthesis of environment-friendly and label-free SERS probe for Iron(III) detection in integrated circuit cleaning solution waste. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
Zhang H, Nie P, Xia Z, Feng X, Liu X, He Y. Rapid Quantitative Detection of Deltamethrin in Corydalis yanhusuo by SERS Coupled with Multi-Walled Carbon Nanotubes. Molecules 2020; 25:molecules25184081. [PMID: 32906783 PMCID: PMC7570915 DOI: 10.3390/molecules25184081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
With the increase in demand, artificially planting Chinese medicinal materials (CHMs) has also increased, and the ensuing pesticide residue problems have attracted more and more attention. An optimized quick, easy, cheap, effective, rugged and safe (QuEChERS) method with multi-walled carbon nanotubes as dispersive solid-phase extraction sorbents coupled with surface-enhanced Raman spectroscopy (SERS) was first proposed for the detection of deltamethrin in complex matrix Corydalis yanhusuo. Our results demonstrate that using the optimized QuEChERS method could effectively extract the analyte and reduce background interference from Corydalis. Facile synthesized gold nanoparticles with a large diameter of 75 nm had a strong SERS enhancement for deltamethrin determination. The best prediction model was established with partial least squares regression of the SERS spectra ranges of 545~573 cm−1 and 987~1011 cm−1 with a coefficient of determination (R2) of 0.9306, a detection limit of 0.484 mg/L and a residual predictive deviation of 3.046. In summary, this article provides a new rapid and effective method for the detection of pesticide residues in CHMs.
Collapse
Affiliation(s)
- Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Pengcheng Nie
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
- West Electronic Business Company Limited, Yinchuan 750000, China
| | - Zhengyan Xia
- School of Medcine, Zhejiang University City College, Hangzhou 310015, China
- Correspondence: ; Tel.: +86-0571-8828-4325
| | - Xuping Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Xiaoxi Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (H.Z.); (P.N.); (X.F.); (X.L.); (Y.H.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhang L, Weng YJ, Liu X, Gu W, Zhang X, Han L. Fe(III) Mixed IP6@Au NPs with Enhanced SERS Activity for Detection of 4-ATP. Sci Rep 2020; 10:5752. [PMID: 32238822 PMCID: PMC7113261 DOI: 10.1038/s41598-020-62495-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Surface Enhanced Raman Scattering (SERS) has been widely applied in many research fields such as biological detection and chemical analysis. However, for the common Au nanoparticles, it's too hard to guarante the three aspects: the great enhanced effect, the controllable aggregation and the uniformity of nanoparticles, the environmental friendliness and biocompatibility of nanoparticles. In this paper, phytate acid (IP6)-coated Au nanoparticles (IP6@Au NPs) are more stable and have a higher enhancement factor than Au nanoparticles. In order to achieve the uniformity of the spherical IP6-coated@Au nanoparticles (IP6@Au NPs), IP6 was used as a soft template. In the presence of IP6, IP6@Ag nanoparticles were first synthesized by reducing AgNO3 with trisodium citrate, then IP6@Au NPs were obtained by reducing HAuCl4 with Ag nanoparticles. The IP6@Au NPs exhibit excellent Raman signal enhancement by using p-aminothiophenol (4-ATP) as the probe molecules. The effects of Fe3+ on the performance of IP6@Au NPs SERS substrates were also studied. The results show that SERS has the best enhancement effect when adding proper amount of Fe3+ (0.56 PPM), and the limit of detection was 10-7 M 4-ATP.
Collapse
Affiliation(s)
- Lei Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yi-Jin Weng
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xiao Liu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Wen Gu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Xia Zhang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
4
|
Shrivas K, Ghosale A, Kant T, Bajpai PK, Shankar R. The direct-writing of low cost paper based flexible electrodes and touch pad devices using silver nano-ink and ZnO nanoparticles. RSC Adv 2019; 9:17868-17876. [PMID: 35520587 PMCID: PMC9064668 DOI: 10.1039/c9ra02599e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
We report a novel and simple approach for the synthesis of silver nanoparticles capped with inositol (Ag NPs/Ino) by the reduction of silver salt with ascorbic acid under basic conditions. UV-vis, TEM, FTIR and TGA techniques were used to characterize the Ag NPs/Ino to determine the size, shape and surface modification of the NPs. Stable silver nano-ink was prepared in aqueous solution containing 1% PVP (stabilizer) and glycerol (cosolvent) and was used for the direct-writing of a paper electrode with a roller ball-point pen for electrochemical applications. The solvent, stabilizing agents, concentration of NPs (10%), paper substrate, sintering temperature (40 °C) and sintering time (15 min) were optimized to obtain a uniform coating of Ag NPs on the paper substrate. Further, the synthesis and fabrication of ZnO NPs on a paper substrate was put forward to design a touch pad device based on the piezoelectric effect. The preparation of paper based devices suggests a direction for the development of a simple, low cost and compatible approach for the direct-writing of paper based flexible electrodes and electronics for future applications.
Collapse
Affiliation(s)
- Kamlesh Shrivas
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Koni Bilaspur CG India .,School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur 492010 CG India
| | - Archana Ghosale
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Koni Bilaspur CG India
| | - Tushar Kant
- School of Studies in Chemistry, Pt. Ravishankar Shukla University Raipur 492010 CG India
| | - P K Bajpai
- Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Koni Bilaspur CG India
| | - Ravi Shankar
- Nanoscience and Nanoengineering Program, South Dakota School of Mines and Technology Rapid City South Dakota 57701 USA
| |
Collapse
|
5
|
Xiao S, He Y. Analysis of Sildenafil in Liquor and Health Wine Using Surface Enhanced Raman Spectroscopy. Int J Mol Sci 2019; 20:ijms20112722. [PMID: 31163601 PMCID: PMC6600386 DOI: 10.3390/ijms20112722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
The illegal adulteration of sildenafil in herbal food supplements and alcoholic drinks immensely threatens human health due to its harmful side-effects. Therefore, it is important to accurately detect and identify the presence of sildenafil in alcoholic drinks. In this study, Opto Trace Raman 202 (OTR 202) was used as surface enhanced Raman spectroscopy (SERS) active colloids to detect sildenafil. The results demonstrated that the Raman enhancement factor (EF) of OTR 202 colloids reached 1.84 × 107 and the limits of detection (LODs) of sildenafil in health wine and liquor were found to be as low as 0.1 mg/L. Moreover, the SERS peaks of 645, 814, 1235, 1401, 1530 and 1584 cm−1 could be qualitatively determined as sildenafil characteristic peaks and the relationship between Raman peak intensity and sildenafil concentration in health wine and liquor were different. There was a good linear correlation between Raman peak intensity, and sildenafil concentration in health wine ranged 0.1–1 mg/L (0.9687< R2 < 0.9891) and 1–10 mg/L (0.9701 < R2 < 0.9840), and in liquor ranged 0.1–1 mg/L (0.9662 < R2 < 0.9944) and 1–20 mg/L (0.9625 < R2 < 0.9922). The relative standard deviations (RSD) were less than 5.90% (sildenafil in health wine) and 9.16% (sildenafil in liquor). The recovery ranged 88.92–104.42% (sildenafil in health wine) and 90.09–104.55% (sildenafil in liquor). In general, the sildenafil in health wine and liquor could be rapidly and quantitatively determined using SERS technique, which offered a simple and accurate alternative for the determination of sildenafil in alcoholic drinks.
Collapse
Affiliation(s)
- Shupei Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
A novel fluorescent nanosensor based on small-sized conjugated polyelectrolyte dots for ultrasensitive detection of phytic acid. Talanta 2019; 202:214-220. [PMID: 31171173 DOI: 10.1016/j.talanta.2019.04.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 11/23/2022]
Abstract
A novel nanosensor is developed for selective and highly sensitive detection of phytic acid (PA) based on small-sized conjugated polyelectrolyte dots (Pdots) fabricated from a new conjugated polymer (P1) by a modified reprecipitation method. P1 featuring a π-delocalized backbone bearing meta-substituted pyridyl groups can be endowed with enhanced flexibility and hence is beneficial for the synthesis of ultrasmall Pdots (i.e. Pdot-1, ∼3.8 nm in average diameter) as well as for the binding of Fe3+, thus leading to the obvious fluorescence quenching of Pdot-1 (∼444 nm) in the presence of Fe3+ via an electron transfer (ET) process. In addition, phytic acid with six phosphate groups exhibits strong chelating ability. When phytic acid is added, phytic acid readily binds to Fe3+ and the fluorescence of Pdot-1 around 444 nm can be recovered, rendering the supersensitive and selective sensing of PA. Under the optimum conditions, this ultra-small Pdot-based nanoprobe favors the fluorescent determination of PA with the detection limit as low as 10 nM. Particularly, Pdot-1 with bright blue fluorescence exhibits low cytotoxicity. Furthermore, the small-sized and biocompatible Pdot-1 can be applied to the sensitive fluorescence assay for PA in cell extracts and the efficient imaging of PA in live cells.
Collapse
|
7
|
Cai Y, Wu Y, Xuan T, Guo X, Wen Y, Yang H. Core-Shell Au@Metal-Organic Frameworks for Promoting Raman Detection Sensitivity of Methenamine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15412-15417. [PMID: 29664285 DOI: 10.1021/acsami.8b01765] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Abuse of methenamine in foodstuff is harmful to the health of people. Routine methods recommended by the national standard are indirect assays with complicated pretreatment of samples or less sensitivity. In this work, core-shell Au nanoparticles@inositol hexaphosphate@MIL-101(Fe) nanoparticles, designated as Au@MIL-101, are successfully synthesized by layer-by-layer assembly. Metal-organic framework (MOF; MIL-101)-modified AuNPs could narrow the distance between neighboring Au@MIL-101, which increases the amount of "hot spots" and contributes excellent enhancement of Raman scattering. In addition, certain target molecules could access the proximity to the "hot spots" by the strong interaction capability of MOF with -COOH groups. Taking the syngeneic effect of "hot spots" and chemical enhancement via specific binding, Au@MIL-101-based Raman protocol with huge sensitivity is developed to achieve direct detection of methenamine. It has good linearity of dynamic concentration from 3.16 × 10-6 to 1.0 × 10-8 M with correlation coefficient ( R2) of 0.9908. The limit of detection reaches 5.0 × 10-10 M. As a practical application, such an Au@MIL-101-based Raman protocol could be used for the direct determination of trace methenamine in vermicelli, which meets the requirements of the national standard.
Collapse
Affiliation(s)
- Yanzheng Cai
- Department of Chemistry , Key Laboratory of Resource Chemistry of Ministry of Education , 100 Guilin Road , Shanghai 200234 , People's Republic of China
| | - Yiping Wu
- Department of Chemistry , Key Laboratory of Resource Chemistry of Ministry of Education , 100 Guilin Road , Shanghai 200234 , People's Republic of China
| | - Tong Xuan
- Department of Chemistry , Key Laboratory of Resource Chemistry of Ministry of Education , 100 Guilin Road , Shanghai 200234 , People's Republic of China
| | - Xiaoyu Guo
- Department of Chemistry , Key Laboratory of Resource Chemistry of Ministry of Education , 100 Guilin Road , Shanghai 200234 , People's Republic of China
| | - Ying Wen
- Department of Chemistry , Key Laboratory of Resource Chemistry of Ministry of Education , 100 Guilin Road , Shanghai 200234 , People's Republic of China
| | - Haifeng Yang
- Department of Chemistry , Key Laboratory of Resource Chemistry of Ministry of Education , 100 Guilin Road , Shanghai 200234 , People's Republic of China
| |
Collapse
|
8
|
Vanaamudan A, Soni H, Padmaja Sudhakar P. Palm shell extract capped silver nanoparticles — As efficient catalysts for degradation of dyes and as SERS substrates. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Pan Y, Guo X, Zhu J, Wang X, Zhang H, Kang Y, Wu T, Du Y. A new SERS substrate based on silver nanoparticle functionalized polymethacrylate monoliths in a capillary, and it application to the trace determination of pesticides. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1514-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|