1
|
Azaiza‐Dabbah D, Vogt C, Wang F, Masip‐Sánchez A, Graaf C, Poblet JM, Haviv E, Neumann R. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxide–Carbon Monoxide Transformation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dima Azaiza‐Dabbah
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 76100 Rehovot Israel
| | - Charlotte Vogt
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 76100 Rehovot Israel
| | - Fei Wang
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Domingo 1 43007 Tarragona Spain
| | - Albert Masip‐Sánchez
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Domingo 1 43007 Tarragona Spain
| | - Coen Graaf
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Domingo 1 43007 Tarragona Spain
- ICREA Passeig Lluís Companys 23 08010 Barcelona Spain
| | - Josep M. Poblet
- Department de Química Física i Inorgànica Universitat Rovira i Virgili Domingo 1 43007 Tarragona Spain
| | - Eynat Haviv
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 76100 Rehovot Israel
| | - Ronny Neumann
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science 76100 Rehovot Israel
| |
Collapse
|
2
|
Azaiza-Dabbah D, Vogt C, Wang F, Masip-Sánchez A, de Graaf C, Poblet JM, Haviv E, Neumann R. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxide-Carbon Monoxide Transformation. Angew Chem Int Ed Engl 2021; 61:e202112915. [PMID: 34842316 DOI: 10.1002/anie.202112915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Indexed: 11/09/2022]
Abstract
Carbon monoxide dehydrogenase (CODH) enzymes are active for the reversible CO oxidation-CO2 reduction reaction and are of interest in the context of CO2 abatement and carbon-neutral solar fuels. Bioinspired by the active-site composition of the CODHs, polyoxometalates triply substituted with first-row transition metals were modularly synthesized. The polyanions, in short, {SiM3 W9 } and {SiM'2 M''W9 }, M, M', M''=CuII , NiII , FeIII are shown to be electrocatalysts for reversible CO oxidation-CO2 reduction. A catalytic Tafel plot showed that {SiCu3 W9 } was the most reactive for CO2 reduction, and electrolysis reactions yielded significant amounts of CO with 98 % faradaic efficiency. In contrast, Fe-Ni compounds such as {SiFeNi2 W9 } preferably catalyzed the oxidation of CO to CO2 similar to what is observed for the [NiFe]-CODH enzyme. Compositional control of the heterometal complexes, now and in the future, leads to control of reactivity and selectivity for CO2 electrocatalytic reduction.
Collapse
Affiliation(s)
- Dima Azaiza-Dabbah
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Charlotte Vogt
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Fei Wang
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Domingo 1, 43007, Tarragona, Spain
| | - Albert Masip-Sánchez
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Domingo 1, 43007, Tarragona, Spain
| | - Coen de Graaf
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Domingo 1, 43007, Tarragona, Spain.,ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Josep M Poblet
- Department de Química Física i Inorgànica, Universitat Rovira i Virgili, Domingo 1, 43007, Tarragona, Spain
| | - Eynat Haviv
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ronny Neumann
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100, Rehovot, Israel
| |
Collapse
|
3
|
Chu X, Jin J, Ming B, Pang M, Yu X, Tung CH, Wang W. Bimetallic nickel-cobalt hydrides in H 2 activation and catalytic proton reduction. Chem Sci 2019; 10:761-767. [PMID: 30746109 PMCID: PMC6340403 DOI: 10.1039/c8sc04346a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 12/18/2022] Open
Abstract
The synergism of the electronic properties of nickel and cobalt enables bimetallic NiCo complexes to process H2. The nickel-cobalt hydride [(dppe)Ni(pdt)(H)CoCp*]+ ([1H]+ ) arising from protonation of the reduced state 1 was found to be an efficient electrocatalyst for H2 evolution with Cl2CHCOOH, and the oxidized [Ni(ii)Co(iii)]2+ form is capable of activating H2 to produce [1H]+ . The features of stereodynamics, acid-base properties, redox chemistry and reactivity of these bimetallic NiCo complexes in processing H2 are potentially related to the active site of [NiFe]-H2ases.
Collapse
Affiliation(s)
- Xiaoxiao Chu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
- School of Chemistry and Materials Science , Ludong University , Yantai , 264025 , China
| | - Jihao Jin
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Bangrong Ming
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Maofu Pang
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Xin Yu
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| | - Wenguang Wang
- Key Lab for Colloid and Interface Chemistry of Education Ministry , School of Chemistry and Chemical Engineering , Shandong University , 250100 , China .
| |
Collapse
|
4
|
Ghosh P, Quiroz M, Wang N, Bhuvanesh N, Darensbourg MY. Complexes of MN 2S 2·Fe(η 5-C 5R 5)(CO) as platform for exploring cooperative heterobimetallic effects in HER electrocatalysis. Dalton Trans 2018; 46:5617-5624. [PMID: 28174781 DOI: 10.1039/c6dt04666e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The control of aggregation at sulfur by metallodithiolates (MN2S2) has made them prime candidates as building blocks for the synthesis of biomimetics of various bimetallic enzyme active sites, with reactivity consequences implicating redox control by both metal centers. Recent studies of MN2S2 (M = Ni2+, Fe(NO)2+) bound to [(η5-C5H5)Fe(CO)]+ as electrocatalysts for proton reduction, the hydrogen evolution reaction, demonstrated reduction-induced hemi-lability of the bridging cis-dithiolates as a key step in the electrochemical proton reduction process (Ding, et al., J. Am. Chem. Soc., 2016, 138, 12920-12927). The MN2S2·Fe(η5-C5R5)(CO) platform offers numerous possibilities for tuning the electronic character of the M(μ-S2)Fe core. As well as modifying M within the metallodithiolate ligand, replacing H by CH3 at the η5-C5R5 moiety increases the electron density at the Fe center, which might facilitate the reductive Fe-S bond cleavage. Although release of a free thiolate in these hemi-labile ligands creates a needed internal pendant base, this benefit might be countered by the increase in over-potential for addition of the first electron. Herein we report the preparation and characterization of four bimetallic aggregates with the (η5-C5R5)Fe(CO) (R = H, CH3; Fe' or Fe*', respectively) or the dicarbonyl (η5-C5R5)Fe(CO)2 scaffold (R = H, CH3; Fe'' or Fe*'', respectively) bound to redox active MN2S2 ligands (M = Ni2+, Co(NO)2+; N2S2 = bismercaptoethane diazacycloheptane) Co-Fe*', Ni-Fe*', Co-Fe' and Co-Fe*'' complexes. The bidentate complexes were found to be electrocatalysts for proton reduction, although at high over-potential, especially for the derivatives of the electron-rich (η5-C5(CH3)5)Fe(CO)+. The turnover (TON) and turnover frequencies (TOF) were determined and found to be comparable to the previously reported MN2S2·Fe(η5-C5H5)(CO)+ analogues.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
5
|
Ghosh P, Ding S, Chupik RB, Quiroz M, Hsieh CH, Bhuvanesh N, Hall MB, Darensbourg MY. A matrix of heterobimetallic complexes for interrogation of hydrogen evolution reaction electrocatalysts. Chem Sci 2017; 8:8291-8300. [PMID: 29619175 PMCID: PMC5858031 DOI: 10.1039/c7sc03378h] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Experimental and computational studies address key questions in a structure-function analysis of bioinspired electrocatalysts for the HER. Combinations of NiN2S2 or [(NO)Fe]N2S2 as donors to (η5-C5H5)Fe(CO)+ or [Fe(NO)2]+/0 generate a series of four bimetallics, gradually "softened" by increasing nitrosylation, from 0 to 3, by the non-innocent NO ligands. The nitrosylated NiFe complexes are isolated and structurally characterized in two redox levels, demonstrating required features of electrocatalysis. Computational modeling of experimental structures and likely transient intermediates that connect the electrochemical events find roles for electron delocalization by NO, as well as Fe-S bond dissociation that produce a terminal thiolate as pendant base well positioned to facilitate proton uptake and transfer. Dihydrogen formation is via proton/hydride coupling by internal S-H+···-H-Fe units of the "harder" bimetallic arrangements with more localized electron density, while softer units convert H-···H-via reductive elimination from two Fe-H deriving from the highly delocalized, doubly reduced [Fe2(NO)3]- derivative. Computational studies also account for the inactivity of a Ni2Fe complex resulting from entanglement of added H+ in a pinched -S δ-···H+··· δ-S- arrangement.
Collapse
Affiliation(s)
- Pokhraj Ghosh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Shengda Ding
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Rachel B Chupik
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Manuel Quiroz
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Chung-Hung Hsieh
- Department of Chemistry , Tamkang University , New Taipei City , Taiwan 25157
| | - Nattami Bhuvanesh
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | - Michael B Hall
- Department of Chemistry , Texas A & M University , College Station , TX 77843 , USA .
| | | |
Collapse
|
6
|
Das UK, Daifuku SL, Iannuzzi TE, Gorelsky SI, Korobkov I, Gabidullin B, Neidig ML, Baker RT. Iron(II) Complexes of a Hemilabile SNS Amido Ligand: Synthesis, Characterization, and Reactivity. Inorg Chem 2017; 56:13766-13776. [PMID: 29112382 DOI: 10.1021/acs.inorgchem.7b01802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We report an easily prepared bis(thioether) amine ligand, SMeNHSMe, along with the synthesis, characterization, and reactivity of the paramagnetic iron(II) bis(amido) complex, [Fe(κ3-SMeNSMe)2] (1). Binding of the two different thioethers to Fe generates both five- and six-membered rings with Fe-S bonds in the five-membered rings (av 2.54 Å) being significantly shorter than those in the six-membered rings (av 2.71 Å), suggesting hemilability of the latter thioethers. Consistent with this hypothesis, magnetic circular dichroism (MCD) and computational (TD-DFT) studies indicate that 1 in solution contains a five-coordinate component [Fe(κ3-SMeNSMe)(κ2-SMeNSMe)] (2). This ligand hemilability was demonstrated further by reactivity studies of 1 with 2,2'-bipyridine, 1,2-bis(dimethylphosphino)ethane, and 2,6-dimethylphenyl isonitrile to afford iron(II) complexes [L2Fe(κ2-SMeNSMe)2] (3-5). Addition of a Brønsted acid, HNTf2, to 1 produces the paramagnetic, iron(II) amine-amido cation, [Fe(κ3-SMeNSMe)(κ3-SMeNHSMe)](NTf2) (6; Tf = SO2CF3). Cation 6 readily undergoes amine ligand substitution by triphos, affording the 16e- complex [Fe(κ2-SMeNSMe)(κ3-triphos)](NTf2) (7; triphos = bis(2-diphenylphosphinoethyl)phenylphosphine). These complexes are characterized by elemental analysis; 1H NMR, Mössbauer, IR, and UV-vis spectroscopy; and single-crystal X-ray diffraction. Preliminary results of amine-borane dehydrogenation catalysis show complex 7 to be a selective and particularly robust precatalyst.
Collapse
Affiliation(s)
- Uttam K Das
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Stephanie L Daifuku
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Theresa E Iannuzzi
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - Serge I Gorelsky
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Ilia Korobkov
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Bulat Gabidullin
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Michael L Neidig
- Department of Chemistry, University of Rochester , Rochester, New York 14627, United States
| | - R Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Song H, Ye K, Geng P, Han X, Liao R, Tung CH, Wang W. Activation of Epoxides by a Cooperative Iron–Thiolate Catalyst: Intermediacy of Ferrous Alkoxides in Catalytic Hydroboration. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02527] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heng Song
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, 250100, China
| | - Ke Ye
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Peiyu Geng
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, 250100, China
| | - Xiao Han
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, 250100, China
| | - Rongzhen Liao
- School
of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China
| | - Chen-Ho Tung
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, 250100, China
| | - Wenguang Wang
- School
of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Jinan, 250100, China
| |
Collapse
|
8
|
Quantum chemical approaches to [NiFe] hydrogenase. Essays Biochem 2017; 61:293-303. [PMID: 28487405 DOI: 10.1042/ebc20160079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
Abstract
The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes.
Collapse
|
9
|
Lunsford AM, Goldstein KF, Cohan MA, Denny JA, Bhuvanesh N, Ding S, Hall MB, Darensbourg MY. Comparisons of MN2S2vs. bipyridine as redox-active ligands to manganese and rhenium in (L–L)M′(CO)3Cl complexes. Dalton Trans 2017; 46:5175-5182. [DOI: 10.1039/c7dt00600d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Electronic communication was established for a heterobimetallic complex which upon reduction at one metal center modulates ligand loss and subsequent electron uptake at the second metal.
Collapse
Affiliation(s)
| | | | | | - Jason A. Denny
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Shengda Ding
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Michael B. Hall
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | |
Collapse
|
10
|
Chu X, Yu X, Raje S, Angamuthu R, Ma J, Tung CH, Wang W. Synthetic [NiFe] models with a fluxional CO ligand. Dalton Trans 2017; 46:13681-13685. [DOI: 10.1039/c7dt02892j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A [NiFe] complex [(dppe)Ni(pdt)FeCp*(CO)]BF4 was characterized as two isomers, and their interconversions were established by thermal process and electrochemistry.
Collapse
Affiliation(s)
- Xiaoxiao Chu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Xin Yu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Sakthi Raje
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Raja Angamuthu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Jianping Ma
- College of Chemistry
- Chemical Engineering and Materials Science Shandong Normal University
- Jinan 250014
- PR China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
11
|
Gezer G, Verbeek S, Siegler MA, Bouwman E. Nickel–ruthenium-based complexes as biomimetic models of [NiFe] and [NiFeSe] hydrogenases for dihydrogen evolution. Dalton Trans 2017; 46:13590-13596. [PMID: 28952642 DOI: 10.1039/c7dt02631e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrocatalytic proton reduction was studied using nickel–ruthenium complexes that were developed as models for [NiFe] and [NiFeSe] hydrogenases.
Collapse
Affiliation(s)
- Gamze Gezer
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- the Netherlands
| | - Sjoerd Verbeek
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- the Netherlands
| | | | - Elisabeth Bouwman
- Leiden Institute of Chemistry
- Leiden University
- 2300 RA Leiden
- the Netherlands
| |
Collapse
|
12
|
Chu X, Xu X, Su H, Raje S, Angamuthu R, Tung CH, Wang W. Heteronuclear assembly of Ni–Cu dithiolato complexes: synthesis, structures, and reactivity studies. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00536e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild route was discovered to synthesize heterometallic [NiIICuI] complexes featuring square-planar Ni(ii) and distorted tetrahedral Cu(i).
Collapse
Affiliation(s)
- Xiaoxiao Chu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Xin Xu
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Hao Su
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Sakthi Raje
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC)
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Raja Angamuthu
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC)
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Wenguang Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
13
|
Ding S, Ghosh P, Lunsford AM, Wang N, Bhuvanesh N, Hall MB, Darensbourg MY. Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts. J Am Chem Soc 2016; 138:12920-12927. [DOI: 10.1021/jacs.6b06461] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shengda Ding
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Pokhraj Ghosh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Allen M. Lunsford
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Ning Wang
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Michael B. Hall
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| | - Marcetta Y. Darensbourg
- Department of Chemistry, Texas A & M University, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Sun P, Yang D, Li Y, Zhang Y, Su L, Wang B, Qu J. Thiolate-Bridged Nickel–Iron and Nickel–Ruthenium Complexes Relevant to the CO-Inhibited State of [NiFe]-Hydrogenase. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b01035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Puhua Sun
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Dawei Yang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Ying Li
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Yahui Zhang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Linan Su
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Baomin Wang
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Jingping Qu
- State Key Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| |
Collapse
|
15
|
Weber K, Weyhermüller T, Bill E, Erdem ÖF, Lubitz W. Design and Characterization of Phosphine Iron Hydrides: Toward Hydrogen-Producing Catalysts. Inorg Chem 2015; 54:6928-37. [DOI: 10.1021/acs.inorgchem.5b00911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katharina Weber
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Özlen F. Erdem
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse
34-36, D-45470 Mülheim
an der Ruhr, Germany
| |
Collapse
|
16
|
Yang D, Li Y, Su L, Wang B, Qu J. Versatile Reactivity of CH3CN-Coordinated Nickel-Iron Heterodimetallic Complexes with Cp* Ligand on Diazadithiolate (N2S2) or Dithiadithiolate (S4) Platforms. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|