1
|
Stanistreet-Welsh K, Kerridge A. Quantifying Covalency and Environmental Effects in RASSCF-Simulated O K-Edge XANES of Uranyl. Inorg Chem 2024; 63:15115-15126. [PMID: 39091118 PMCID: PMC11323269 DOI: 10.1021/acs.inorgchem.4c02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
A RASSCF approach to simulate the O K-edge XANES spectra of uranyl is employed, utilizing three models that progressively improve the representation of the local crystal environment. Simulations successfully reproduce the observed three-peak profile of the experimental spectrum and confirm peak assignments made by Denning. The [UO2Cl4]2- model offers the best agreement with experiment, with peak positions (to within 1 eV) and relative peak separations accurately reproduced. Establishing a direct link between a specific electronic transition and peak intensity is complicated, as a large number of possible transitions can contribute to the overall peak profile. Furthermore, a relationship between oxygen character in the antibonding orbital and the strength of the transition breaks down when using a variety of orbital composition approaches at larger excitation energy. Covalency analysis of the U-O bond in both the ground- and excited-state reveals a dependence on the crystal environment. Orbital composition analysis reveals an underestimation of the uranium contribution to ground-state bonding orbitals when probing O K-edge core-excited states, regardless of the uranyl model employed. However, improving the environmental model provides core-excited state electronic structures that are better representative of that of the ground-state, validating their use in the determination of covalency and bonding.
Collapse
Affiliation(s)
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, U.K.
| |
Collapse
|
2
|
Autillo M, Illy MC, Briscese L, Islam MA, Bolvin H, Berthon C. Paramagnetic Properties of [An IV(NO 3) 6] 2- Complexes (An = U, Np, Pu) Probed by NMR Spectroscopy and Quantum Chemical Calculations. Inorg Chem 2024; 63:12969-12980. [PMID: 38951989 DOI: 10.1021/acs.inorgchem.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Actinide +IV complexes with six nitrates [AnIV(NO3)6]2- (An = Th, U, Np, and Pu) have been studied by 15N and 17O NMR spectroscopy in solution and first-principles calculations. Magnetic susceptibilities were evaluated experimentally using the Evans method and are in good agreement with the ab initio values. The evolution in the series of the crystal field parameters deduced from ab initio calculations is discussed. The NMR paramagnetic shifts are analyzed based on ab initio calculations. Because the cubic symmetry of the complex quenches the dipolar contribution, they are only of Fermi contact origin. They are evaluated from first-principles based on a complete active space/density functional theory (DFT) strategy, in good accordance with the experimental one. The ligand hyperfine coupling constants are deduced from paramagnetic shifts and calculated using unrestricted DFT. The latter are decomposed in terms of the contribution of molecular orbitals. It highlights two pathways for the delocalization of the spin density from the metallic open-shell 5f orbitals to the NMR active nuclei, either through the valence 5f hybridized with 6d to the valence 2p molecular orbitals of the ligands, or by spin polarization of the metallic 6p orbitals which interact with the 2s-based molecular orbitals of the ligands.
Collapse
Affiliation(s)
- Matthieu Autillo
- CEA, DES, ISEC, DPME, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Marie-Claire Illy
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Luca Briscese
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Md Ashraful Islam
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs─CRMN, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| |
Collapse
|
3
|
Majumder R, Sokolov AY. Consistent Second-Order Treatment of Spin-Orbit Coupling and Dynamic Correlation in Quasidegenerate N-Electron Valence Perturbation Theory. J Chem Theory Comput 2024; 20:4676-4688. [PMID: 38795071 DOI: 10.1021/acs.jctc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
We present a formulation and implementation of second-order quasidegenerate N-electron valence perturbation theory (QDNEVPT2) that provides a balanced and accurate description of spin-orbit coupling and dynamic correlation effects in multiconfigurational electronic states. In our approach, the energies and wave functions of electronic states are computed by treating electron repulsion and spin-orbit coupling operators as equal perturbations to the nonrelativistic complete active-space wave functions, and their contributions are incorporated fully up to the second order. The spin-orbit effects are described using the Breit-Pauli (BP) or exact two-component Douglas-Kroll-Hess (DKH) Hamiltonians within spin-orbit mean-field approximation. The resulting second-order methods (BP2- and DKH2-QDNEVPT2) are capable of treating spin-orbit coupling effects in nearly degenerate electronic states by diagonalizing an effective Hamiltonian expanded in a compact non-relativistic basis. For a variety of atoms and small molecules across the entire periodic table, we demonstrate that DKH2-QDNEVPT2 is competitive in accuracy with variational two-component relativistic theories. BP2-QDNEVPT2 shows high accuracy for the second- and third-period elements, but its performance deteriorates for heavier atoms and molecules. We also consider the first-order spin-orbit QDNEVPT2 approximations (BP1- and DKH1-QDNEVPT2), among which DKH1-QDNEVPT2 is reliable but less accurate than DKH2-QDNEVPT2. Both DKH1- and DKH2-QDNEVPT2 hold promise as efficient and accurate electronic structure methods for treating electron correlation and spin-orbit coupling in a variety of applications.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Sarkar A, Gagliardi L. Multiconfiguration Pair-Density Functional Theory for Vertical Excitation Energies in Actinide Molecules. J Phys Chem A 2023; 127:9389-9397. [PMID: 37889499 DOI: 10.1021/acs.jpca.3c05803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Modeling actinides with electronic structure theories is challenging because these systems present a strong ligand field and metal-ligand covalency. We systematically investigate the effectiveness of pair-density functional theory (PDFT) for the calculation of vertical excitation energies in An(III), [AnIIICl6]3-, and [AnVIO2]2+ (An = U, Np, Pu, and Am). We compare the performance of PDFT, hybrid PDFT, and multistate PDFT with traditional active-space methods followed by perturbation theory, like multistate CASPT2, and with experimental data. Overall, multistate PDFT gives quantitative agreement with multistate CASPT2 at a significantly reduced computational cost.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Director of the Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
5
|
Stanistreet-Welsh K, Kerridge A. Bounding [AnO 2] 2+ (An = U, Np) covalency by simulated O K-edge and An M-edge X-ray absorption near-edge spectroscopy. Phys Chem Chem Phys 2023; 25:23753-23760. [PMID: 37615175 DOI: 10.1039/d3cp03149g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Restricted active space simulations are shown to accurately reproduce and characterise both O K-edge and U M4,5-edge spectra of uranyl in excellent agreement with experimental peak positions and are extended to the Np analogue. Analysis of bonding orbital composition in the ground and O K-edge core-excited states demonstrates that metal contribution is underestimated in the latter. In contrast, An M4/5-edge core-excited states produce bonding orbital compositions significantly more representative of those in the ground state. Quantum Theory of Atoms in Molecules analysis is employed to explain the discrepancy between K- and M-edge data and demonstrates that the location of the core-hole impacts the pattern of electron localisation in core-excited states. An apparent contradiction to this behaviour in neptunyl is rationalised in terms interelectronic repulsion between the unpaired 5f electron and the excited core-electron.
Collapse
Affiliation(s)
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
6
|
Islam MA, Autillo M, Poulin-Ponnelle C, Tamain C, Bolvin H, Berthon C. Are Actinyl Cations Good Probes for Structure Determination in Solution by NMR? Inorg Chem 2023. [PMID: 37368989 DOI: 10.1021/acs.inorgchem.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
We report on NMR spectroscopy, CAS-based method calculations, and X-ray diffraction of AnV and AnVI complexes with a neutral and slightly flexible TEDGA ligand. After checking that pNMR shifts mainly arise from pseudocontact interactions, we analyze pNMR shifts considering the axial and rhombic anisotropy of the actinyl magnetic susceptibilities. The results are compared to those of a previous study performed on [AnVIO2]2+ complexes with dipicolinic acid. It is shown that 5f2 cations (PuVI and NpV) make very good candidates for determining the structure of actinyl complexes in solution by 1H NMR spectroscopy as shown by the invariance of the magnetic properties to the equatorial ligands, as opposed to the NpVI complexes with a 5f1 configuration.
Collapse
Affiliation(s)
- Md Ashraful Islam
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Matthieu Autillo
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols sur Cèze 30207, France
| | | | - Christelle Tamain
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols sur Cèze 30207, France
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols sur Cèze 30207, France
| |
Collapse
|
7
|
Pikulová P, Misenkova D, Marek R, Komorovsky S, Novotný J. Quadratic Spin-Orbit Mechanism of the Electronic g-Tensor. J Chem Theory Comput 2023; 19:1765-1776. [PMID: 36896579 DOI: 10.1021/acs.jctc.2c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Understanding how the electronic g-tensor is linked to the electronic structure is desirable for the correct interpretation of electron paramagnetic resonance spectra. For heavy-element compounds with large spin-orbit (SO) effects, this is still not completely clear. We report our investigation of quadratic SO contributions to the g-shift in heavy transition metal complexes. We implemented third-order perturbation theory in order to analyze the contributions arising from frontier molecular spin orbitals (MSOs). We show that the dominant quadratic SO term─spin-Zeeman (SO2/SZ)─generally makes a negative contribution to the g-shift, irrespective of the particular electronic configuration or molecular symmetry. We further analyze how the SO2/SZ contribution adds to or subtracts from the linear orbital-Zeeman (SO/OZ) contribution to the individual principal components of the g-tensor. Our study suggests that the SO2/SZ mechanism decreases the anisotropy of the g-tensor in early transition metal complexes and increases it in late transition metal complexes. Finally, we apply MSO analysis to the investigation of g-tensor trends in a set of closely related Ir and Rh pincer complexes and evaluate the influence of different chemical factors (the nuclear charge of the central atom and the terminal ligand) on the magnitudes of the g-shifts. We expect our conclusions to aid the understanding of spectra in magnetic resonance investigations of heavy transition metal compounds.
Collapse
Affiliation(s)
- Petra Pikulová
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
| | - Debora Misenkova
- Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| | - Radek Marek
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| | - Jan Novotný
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| |
Collapse
|
8
|
Wang X, Sharma S. Relativistic Semistochastic Heat-Bath Configuration Interaction. J Chem Theory Comput 2023; 19:848-855. [PMID: 36700783 DOI: 10.1021/acs.jctc.2c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work we present the extension of semistochastic heat-bath configuration interaction (SHCI) to work with any two-component and four-component Hamiltonian. The vertical detachment energy (VDE) of AuH2- and zero-field splitting (ZFS) of NpO22+ is calculated by correlating more than 100 spinors in both cases. This work demonstrates the capability of SHCI to treat problems where both relativistic effect and electron correlation are important.
Collapse
Affiliation(s)
- Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado80309, United States
| |
Collapse
|
9
|
Majumder R, Sokolov AY. Simulating Spin-Orbit Coupling with Quasidegenerate N-Electron Valence Perturbation Theory. J Phys Chem A 2023; 127:546-559. [PMID: 36599072 DOI: 10.1021/acs.jpca.2c07952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We present the first implementation of spin-orbit coupling effects in fully internally contracted second-order quasidegenerate N-electron valence perturbation theory (SO-QDNEVPT2). The SO-QDNEVPT2 approach enables the computations of ground- and excited-state energies and oscillator strengths combining the description of static electron correlation with an efficient treatment of dynamic correlation and spin-orbit coupling. In addition to SO-QDNEVPT2 with the full description of one- and two-body spin-orbit interactions at the level of two-component Breit-Pauli Hamiltonian, our implementation also features a simplified approach that takes advantage of spin-orbit mean-field approximation (SOMF-QDNEVPT2). The accuracy of these methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides (neptunyl and plutonyl dications). The zero-field splittings of group 14 and 16 molecules computed using SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the available experimental data. For the 3d transition metal ions, the SO-QDNEVPT2 method is significantly more accurate than SOMF-QDNEVPT2, while no substantial difference in the performance of two methods is observed for the 4d ions. Finally, we demonstrate that for the actinide dioxides the results of SO-QDNEVPT2 and SOMF-QDNEVPT2 are in good agreement with the data from previous theoretical studies of these systems. Overall, our results demonstrate that SO-QDNEVPT2 and SOMF-QDNEVPT2 are promising multireference methods for treating spin-orbit coupling with a relatively low computational cost.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
10
|
Yu X, Sergentu DC, Feng R, Autschbach J. Covalency of Trivalent Actinide Ions with Different Donor Ligands: Do Density Functional and Multiconfigurational Wavefunction Calculations Corroborate the Observed "Breaks"? Inorg Chem 2021; 60:17744-17757. [PMID: 34747167 DOI: 10.1021/acs.inorgchem.1c02374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A comprehensive ab initio study of periodic actinide-ligand bonding trends for trivalent actinides is performed. Relativistic density functional theory (DFT) and complete active-space (CAS) self-consistent field wavefunction calculations are used to dissect the chemical bonding in the [AnCl6]3-, [An(CN)6]3-, [An(NCS)6]3-, [An(S2PMe2)3], [An(DPA)3]3-, and [An(HOPO)]- series of actinide (An = U-Es) complexes. Except for some differences for the early actinide complexes with DPA, bond orders and excess 5f-shell populations from donation bonding show qualitatively similar trends in 5f n active-space CAS vs DFT calculations. The influence of spin-orbit coupling on donation bonding is small for the tested systems. Along the actinide series, chemically soft vs chemically harder ligands exhibit clear differences in bonding trends. There are pronounced changes in the 5f populations when moving from Pu to Am or Cm, which correlate with previously noted "breaks" in chemical trends. Bonding involving 5f becomes very weak beyond Cm/Bk. We propose that Cm(III) is a borderline case among the trivalent actinides that can be meaningfully considered to be involved in ground-state 5f covalent bonding.
Collapse
Affiliation(s)
- Xiaojuan Yu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Rulin Feng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
11
|
Autillo M, Islam MA, Héron J, Guérin L, Acher E, Tamain C, Illy MC, Moisy P, Colineau E, Griveau JC, Berthon C, Bolvin H. Temperature Dependence of 1 H Paramagnetic Chemical Shifts in Actinide Complexes, Beyond Bleaney's Theory: The An VI O 2 2+ -Dipicolinic Acid Complexes (An=Np, Pu) as an Example. Chemistry 2021; 27:7138-7153. [PMID: 33406305 DOI: 10.1002/chem.202005147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Indexed: 01/02/2023]
Abstract
Actinide +VI complexes ( A n V I = U V I , N p V I and P u V I ) with dipicolinic acid derivatives were synthesized and characterized by powder XRD, SQUID magnetometry and NMR spectroscopy. In addition, N p V I and P u V I complexes were described by first principles CAS based and two-component spin-restricted DFT methods. The analysis of the 1 H paramagnetic NMR chemical shifts for all protons of the ligands according to the X-rays structures shows that the Fermi contact contribution is negligible in agreement with spin density determined by unrestricted DFT. The magnetic susceptibility tensor is determined by combining SQUID, pNMR shifts and Evans' method. The SO-RASPT2 results fit well the experimental magnetic susceptibility and pNMR chemical shifts. The role of the counterions in the solid phase is pointed out; their presence impacts the magnetic properties of the N p V I complex. The temperature dependence of the pNMR chemical shifts has a strong 1 / T contribution, contrarily to Bleaney's theory for lanthanide complexes. The fitting of the temperature dependence of the pNMR chemical shifts and SQUID magnetic susceptibility by a two-Kramers-doublet model for the N p V I complex and a non-Kramers-doublet model for the P u V I complex allows for the experimental evaluation of energy gaps and magnetic moments of the paramagnetic center.
Collapse
Affiliation(s)
- Matthieu Autillo
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207, Bagnols sur Cèze, France
| | - Md Ashraful Islam
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| | - Julie Héron
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315, Oslo, Norway
| | - Laetitia Guérin
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207, Bagnols sur Cèze, France
| | - Eleonor Acher
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207, Bagnols sur Cèze, France
| | - Christelle Tamain
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207, Bagnols sur Cèze, France
| | - Marie-Claire Illy
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207, Bagnols sur Cèze, France.,Planitec, CEA Marcoule, 30207, Bagnols/Cèze, France
| | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207, Bagnols sur Cèze, France
| | - Eric Colineau
- European Commission Joint Research Centre (JRC), 76125, Karlsruhe, Germany
| | | | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ Montpellier, 30207, Bagnols sur Cèze, France
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
12
|
Pidchenko I, März J, Hunault MOJY, Bauters S, Butorin SM, Kvashnina KO. Synthesis, Structural, and Electronic Properties of K 4Pu VIO 2(CO 3) 3(cr): An Environmentally Relevant Plutonium Carbonate Complex. Inorg Chem 2020; 59:11889-11893. [PMID: 32846087 DOI: 10.1021/acs.inorgchem.0c01335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chemical properties of actinide materials are often predefined and described based on the data available for isostructural species. This is the case for potassium plutonyl (PuVI) carbonate, K4PuVIO2(CO3)3(cr), a complex relevant for nuclear technology and the environment, of which the crystallographic and thermodynamic properties of which are still lacking. We report here the synthesis and characterization of PuVI achieved by single-crystal X-ray diffraction analysis and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure at the Pu M4-edge coupled with electronic structure calculations. The crystallographic properties of PuVI are compared with isostructural uranium (U) and neptunium (Np) compounds. Actinyl (AnVI) axial bond lengths, [O-AnVI-O]2+, are correlated between solid, K4AnVIO2(CO3)3(cr), and aqueous, [AnVIO2(CO3)3]4-(aq) species for the UVI-NpVI-PuVI series. The spectroscopic data are compared to KPuVO2CO3(cr) and PuIVO2(cr) to tackle the trend in the electronic structure of PuVI regarding the oxidation state changes and local structural modifications around the Pu atom.
Collapse
Affiliation(s)
- Ivan Pidchenko
- Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble, Cedex 9, France.,Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
| | - Juliane März
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
| | - Myrtille O J Y Hunault
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, 91192 Gif-sur-Yvette, France
| | - Stephen Bauters
- Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble, Cedex 9, France.,Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
| | - Sergei M Butorin
- Molecular and Condensed Matter Physics, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75236 Uppsala, Sweden
| | - Kristina O Kvashnina
- Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble, Cedex 9, France.,Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, 01314 Dresden, Germany
| |
Collapse
|
13
|
Li XB, Wu QY, Wang CZ, Lan JH, Ning SY, Wei YZ. Theoretical study on structures of Am(III) carbonate complexes. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07254-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Martel L, Kovács A, Popa K, Bregiroux D, Charpentier T. 31P MAS NMR and DFT study of crystalline phosphate matrices. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 105:101638. [PMID: 31810014 DOI: 10.1016/j.ssnmr.2019.101638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
We present the study of the phosphorus local environment by using 31P MAS NMR in a series of seven double monophosphates MIIMIV(PO4)2 (MII and MIV being divalent and tetravalent cations, respectively) of yavapaiite and low-yavapaiite type crystal structures. Solid-state and cluster DFT calculations were found to be efficient for predicting the 31P isotropic chemical shift and chemical shift anisotropy. To achieve this performance, however, a proper computational optimisation of the experimental structural data was required. From the three optimisation methods tested, the full optimisation provided the best reference structure for the calculation of the NMR parameters of the studied phosphates. Also, a better prediction of the chemical shifts was possible by using a correction to the GIPAW calculated shielding.
Collapse
Affiliation(s)
- Laura Martel
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125, Karlsruhe, Germany.
| | - Attila Kovács
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125, Karlsruhe, Germany
| | - Karin Popa
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125, Karlsruhe, Germany
| | - Damien Bregiroux
- Sorbonne Université, CNRS, Chimie de la Matière Condensée de Paris, LCMCP, F-75005, Paris, France
| | - Thibault Charpentier
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Fdez. Galván I, Vacher M, Alavi A, Angeli C, Aquilante F, Autschbach J, Bao JJ, Bokarev SI, Bogdanov NA, Carlson RK, Chibotaru LF, Creutzberg J, Dattani N, Delcey MG, Dong SS, Dreuw A, Freitag L, Frutos LM, Gagliardi L, Gendron F, Giussani A, González L, Grell G, Guo M, Hoyer CE, Johansson M, Keller S, Knecht S, Kovačević G, Källman E, Li Manni G, Lundberg M, Ma Y, Mai S, Malhado JP, Malmqvist PÅ, Marquetand P, Mewes SA, Norell J, Olivucci M, Oppel M, Phung QM, Pierloot K, Plasser F, Reiher M, Sand AM, Schapiro I, Sharma P, Stein CJ, Sørensen LK, Truhlar DG, Ugandi M, Ungur L, Valentini A, Vancoillie S, Veryazov V, Weser O, Wesołowski TA, Widmark PO, Wouters S, Zech A, Zobel JP, Lindh R. OpenMolcas: From Source Code to Insight. J Chem Theory Comput 2019; 15:5925-5964. [DOI: 10.1021/acs.jctc.9b00532] [Citation(s) in RCA: 399] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Fdez. Galván
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
| | - Morgane Vacher
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Ali Alavi
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Celestino Angeli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Francesco Aquilante
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Sergey I. Bokarev
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Nikolay A. Bogdanov
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Rebecca K. Carlson
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Liviu F. Chibotaru
- Theory of Nanomaterials Group, University of Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Joel Creutzberg
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Nike Dattani
- Harvard Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, United States
| | - Mickaël G. Delcey
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Sijia S. Dong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
| | - Leon Freitag
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Manuel Frutos
- Departamento de Química Analítica, Química Física e Ingeniería Química, and Instituto de Investigación Química “Andrés M. del Río”, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Angelo Giussani
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
- Instituto de Ciencia Molecular, Universitat de València, Apartado 22085, ES-46071 Valencia, Spain
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Gilbert Grell
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23-24, 18059 Rostock, Germany
| | - Meiyuan Guo
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Chad E. Hoyer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marcus Johansson
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Keller
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Knecht
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Goran Kovačević
- Division of Materials Physics, Ruđer Bošković Institute, P.O.B. 180, Bijenička 54, HR-10002 Zagreb, Croatia
| | - Erik Källman
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Giovanni Li Manni
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Marcus Lundberg
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Yingjin Ma
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - João Pedro Malhado
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Per Åke Malmqvist
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Stefanie A. Mewes
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 205 A, 69120 Heidelberg, Germany
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag
102904, Auckland 0632, New Zealand
| | - Jesper Norell
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
- USIAS and Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg-CNRS, 67034 Strasbourg, France
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Quan Manh Phung
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Andrew M. Sand
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prachi Sharma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Stein
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Lasse Kragh Sørensen
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Mihkel Ugandi
- Department of Chemistry − Ångström Laboratory, Uppsala University, P.O. Box 538, SE-751 21 Uppsala, Sweden
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, 117543 Singapore
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Steven Vancoillie
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Valera Veryazov
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Oskar Weser
- Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Tomasz A. Wesołowski
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - Per-Olof Widmark
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Sebastian Wouters
- Brantsandpatents, Pauline van Pottelsberghelaan 24, 9051 Sint-Denijs-Westrem, Belgium
| | - Alexander Zech
- Département de Chimie Physique, Université de Genève, 30 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
| | - J. Patrick Zobel
- Division of Theoretical Chemistry, Kemicentrum, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Roland Lindh
- Department of Chemistry − BMC, Uppsala University, P.O. Box 576, SE-751 23 Uppsala, Sweden
- Uppsala Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
16
|
Martel L, Capelli E, Body M, Klipfel M, Beneš O, Maksoud L, Raison PE, Suard E, Visscher L, Bessada C, Legein C, Charpentier T, Kovács A. Insight into the Crystalline Structure of ThF4 with the Combined Use of Neutron Diffraction, 19F Magic-Angle Spinning-NMR, and Density Functional Theory Calculations. Inorg Chem 2018; 57:15350-15360. [DOI: 10.1021/acs.inorgchem.8b02683] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura Martel
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125 Karlsruhe, Germany
| | - Elisa Capelli
- Radiation Science & Technology Department, Nuclear Energy and Radiation Applications (NERA), Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Monique Body
- Institut des Molécules et des Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Marco Klipfel
- Kerntechnische Entsorgung Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ondrej Beneš
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125 Karlsruhe, Germany
| | - Louis Maksoud
- CNRS, CEMHTI, UPR 3079, Université d’Orléans, F-45071 Orléans, France
| | - Phillipe E. Raison
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125 Karlsruhe, Germany
| | - Emmanuelle Suard
- Institut Laue Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
| | - Lucas Visscher
- Division of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Catherine Bessada
- CNRS, CEMHTI, UPR 3079, Université d’Orléans, F-45071 Orléans, France
| | - Christophe Legein
- Institut des Molécules et des Matériaux du Mans (IMMM), UMR 6283 CNRS, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | - Thibault Charpentier
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Attila Kovács
- European Commission, Joint Research Centre (JRC), Postfach 2340, D-76125 Karlsruhe, Germany
| |
Collapse
|
17
|
Hu SX, Liu HT, Liu JJ, Zhang P, Ao B. Electronic Structure and Chemical Bonding of [AmO 2(H 2O) n ] 2+/1. ACS OMEGA 2018; 3:13902-13912. [PMID: 31458086 PMCID: PMC6644428 DOI: 10.1021/acsomega.8b01324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/20/2018] [Indexed: 06/10/2023]
Abstract
Systematic americyl-hydration cations were investigated theoretically to understand the electronic structures and bonding in [(AmO2)(H2O) n ]2+/1+ (n = 1-6). We obtained the binding energy using density functional theory methods with scalar relativistic and spin-orbit coupling effects. The geometric structures of these species have been investigated in aqueous solution via an implicit solvation model. Computational results reveal that the complexes of five equatorial water molecules coordinated to americyl ions are the most stable due to the enhanced ionic interactions between the AmO2 2+/1+ cation and multiple oxygen atoms as electron donors. As expected, Am-Owater bonds in such series are electrostatic in nature and contain a generally decreasing covalent character when hydration number increases.
Collapse
Affiliation(s)
- Shu-Xian Hu
- Beijing
Computational Science Research Center, Beijing 100193, China
| | - Hai-Tao Liu
- Institute
of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Jing-Jing Liu
- Beijing
Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Institute
of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Bingyun Ao
- Science
and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China
| |
Collapse
|
18
|
Sergentu DC, Duignan TJ, Autschbach J. Ab Initio Study of Covalency in the Ground versus Core-Excited States and X-ray Absorption Spectra of Actinide Complexes. J Phys Chem Lett 2018; 9:5583-5591. [PMID: 30180572 DOI: 10.1021/acs.jpclett.8b02412] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Relativistic multireference ab initio wave function calculations within the restricted active space (RAS) framework were performed to calculate metal and ligand X-ray absorption (XAS) near-edge spectroscopy (XANES) intensities for the metal M4,5 edges of [PuO2(H2O)5]2+, [AnVIO2]2+ (An = U, Np, Pu), and [AmCl6]3- and the Cl K edge of the Am complex. The extent of An(5f)-ligand bonding was determined via natural localized molecular orbital analyses of the relevant spin-orbit coupled multireference states. The calculated spectra are in good agreement with experiments and allow a detailed assignment of the observed spectral features. The XANES M4,5-edge spectra are representative of the actinide orbital covalency in the probed core-excited states, which may be different from the ground-state covalency. An assignment of ground-state An orbital covalency based on XAS spectra should therefore be made with caution.
Collapse
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| | - Thomas J Duignan
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| | - Jochen Autschbach
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
19
|
Mussard B, Sharma S. One-Step Treatment of Spin–Orbit Coupling and Electron Correlation in Large Active Spaces. J Chem Theory Comput 2017; 14:154-165. [DOI: 10.1021/acs.jctc.7b01019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bastien Mussard
- Department of Chemistry and
Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, United States
| | - Sandeep Sharma
- Department of Chemistry and
Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, United States
| |
Collapse
|
20
|
Flores LA, Murphy JG, Copeland WB, Dixon DA. Reaction of CO2 with UO3 Nanoclusters. J Phys Chem A 2017; 121:8518-8524. [DOI: 10.1021/acs.jpca.7b09107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis A. Flores
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - Julia G. Murphy
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - William B. Copeland
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| | - David A. Dixon
- Department of Chemistry, The University of Alabama, Shelby Hall, Tuscaloosa, Alabama 35487-0336, United States
| |
Collapse
|
21
|
Marchenko A, Truflandier LA, Autschbach J. Uranyl Carbonate Complexes in Aqueous Solution and Their Ligand NMR Chemical Shifts and 17O Quadrupolar Relaxation Studied by ab Initio Molecular Dynamics. Inorg Chem 2017; 56:7384-7396. [PMID: 28598146 DOI: 10.1021/acs.inorgchem.7b00396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic structural effects, NMR ligand chemical shifts, and 17O NMR quadrupolar relaxation rates are investigated in the series of complexes UO22+, UO2(CO3)34-, and (UO2)3(CO3)66-. Car-Parrinello molecular dynamics (CPMD) is used to simulate the dynamics of the complexes in water. NMR properties are computed on clusters extracted from the CPMD trajectories. In the UO22+ complex, coordination at the uranium center by water molecules causes a decrease of around 300 ppm for the uranyl 17O chemical shift. The final value of this chemical shift is within 40 ppm of the experimental range. The UO2(CO3)34- and (UO2)3(CO3)66- complexes show a solvent dependence of the terminal carbonate 17O and 13C chemical shifts that is less pronounced than that for the uranyl oxygen atom. Corrections to the chemical shift from hybrid functionals and spin-orbit coupling improve the accuracy of chemical shifts if the sensitivity of the uranyl chemical shift to the uranyl bond length (estimated at 140 ppm per 0.1 Å from trajectory data) is taken into consideration. The experimentally reported trend in the two unique 13C chemical shifts is correctly reproduced for (UO2)3(CO3)66-. NMR relaxation rate data support large 17O peak widths, but remain below those noted in the experimental literature. Comparison of relaxation data for solvent-including versus solvent-free models suggest that carbonate ligand motion overshadows explicit solvent effects.
Collapse
Affiliation(s)
- Alex Marchenko
- Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260-3000, United States
| | - Lionel A Truflandier
- Institut des Sciences Moleculaires, Universite Bordeaux , CNRS UMR 5255, 33405 Talence cedex, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York , Buffalo, New York 14260-3000, United States
| |
Collapse
|
22
|
Damjanović M, Samuel PP, Roesky HW, Enders M. NMR analysis of an Fe(i)–carbene complex with strong magnetic anisotropy. Dalton Trans 2017; 46:5159-5169. [PMID: 28352888 DOI: 10.1039/c7dt00408g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A paramagnetic, easy-plane anisotropic FeI complex, bearing cyclic-alkyl(amino) carbene (cAAC) ligands, is studied by means of NMR and DFT.
Collapse
Affiliation(s)
- Marko Damjanović
- Institute of Inorganic Chemistry
- Heidelberg University
- D-69120 Heidelberg
- Germany
| | - Prinson P. Samuel
- Universität Göttingen
- Institut für Anorganische Chemie
- Göttingen
- Germany
| | - Herbert W. Roesky
- Universität Göttingen
- Institut für Anorganische Chemie
- Göttingen
- Germany
| | - Markus Enders
- Institute of Inorganic Chemistry
- Heidelberg University
- D-69120 Heidelberg
- Germany
| |
Collapse
|
23
|
Solis-Céspedes E, Páez-Hernández D. Modeling the electronic states and magnetic properties derived from the f1 configuration in lanthanocene and actinocene compounds. Dalton Trans 2017; 46:4834-4843. [DOI: 10.1039/c7dt00111h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structure and magnetic properties of a series of Kramers ions with f1 configuration in axial symmetry have been analyzed with a combination of theoretical methods: ab initio relativistic wavefunction methods as well as a crystal-field (CF) model with parameters extracted from the ab initio calculations.
Collapse
Affiliation(s)
- Eduardo Solis-Céspedes
- Centro de Nanociencias Aplicadas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
- Chile
| | - Dayán Páez-Hernández
- Centro de Nanociencias Aplicadas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
- Chile
| |
Collapse
|
24
|
Knecht S, Keller S, Autschbach J, Reiher M. A Nonorthogonal State-Interaction Approach for Matrix Product State Wave Functions. J Chem Theory Comput 2016; 12:5881-5894. [PMID: 27951678 DOI: 10.1021/acs.jctc.6b00889] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present a state-interaction approach for matrix product state (MPS) wave functions in a nonorthogonal molecular orbital basis. Our approach allows us to calculate, for example, transition and spin-orbit coupling matrix elements between arbitrary electronic states, provided that they share the same one-electron basis functions and size of the active orbital space, respectively. The key element is the transformation of the MPS wave functions of different states from a nonorthogonal to a biorthonormal molecular orbital basis representation, by exploiting a sequence of nonunitary transformations, following a proposal by Malmqvist [Int. J. Quantum Chem. 1986, 30, 479]. This is well-known for traditional wave function parametrizations but has not yet been exploited for MPS wave functions.
Collapse
Affiliation(s)
- Stefan Knecht
- Laboratorium für Physikalische Chemie, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Keller
- Laboratorium für Physikalische Chemie, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York , New York 14260-3000, United States
| | - Markus Reiher
- Laboratorium für Physikalische Chemie, ETH Zürich , Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
25
|
Remigio RD, Repisky M, Komorovsky S, Hrobarik P, Frediani L, Ruud K. Four-component relativistic density functional theory with the polarisable continuum model: application to EPR parameters and paramagnetic NMR shifts. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1239846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Roberto Di Remigio
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| | - Michal Repisky
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| | - Stanislav Komorovsky
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| | - Peter Hrobarik
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Luca Frediani
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Ruud
- Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Tromsø– The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Gendron F, Autschbach J. Ligand NMR Chemical Shift Calculations for Paramagnetic Metal Complexes: 5f1 vs 5f2 Actinides. J Chem Theory Comput 2016; 12:5309-5321. [DOI: 10.1021/acs.jctc.6b00462] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
27
|
Mounce AM, Yasuoka H, Koutroulakis G, Lee JA, Cho H, Gendron F, Zurek E, Scott BL, Trujillo JA, Slemmons AK, Cross JN, Thompson JD, Kozimor SA, Bauer ED, Autschbach J, Clark DL. Nuclear Magnetic Resonance Measurements and Electronic Structure of Pu(IV) in [(Me)4N]2PuCl6. Inorg Chem 2016; 55:8371-80. [PMID: 27513717 DOI: 10.1021/acs.inorgchem.6b00735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew M. Mounce
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Hiroshi Yasuoka
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Georgios Koutroulakis
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
- University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jeongseop A. Lee
- Department
of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
| | - Herman Cho
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Frédéric Gendron
- Department
of Chemistry, University of Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Eva Zurek
- Department
of Chemistry, University of Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Brian L. Scott
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Julie A. Trujillo
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Alice K. Slemmons
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Justin N. Cross
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Joe D. Thompson
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Stosh A. Kozimor
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Eric D. Bauer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Jochen Autschbach
- Department
of Chemistry, University of Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - David L. Clark
- Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
28
|
|
29
|
Martin B, Autschbach J. Kohn–Sham calculations of NMR shifts for paramagnetic 3d metal complexes: protocols, delocalization error, and the curious amide proton shifts of a high-spin iron(ii) macrocycle complex. Phys Chem Chem Phys 2016; 18:21051-68. [DOI: 10.1039/c5cp07667f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ligand chemical shifts (pNMR shifts) are analyzed using DFT. A large difference in the amide proton shifts of a high-spin Fe(ii) complex arises from O → Fe dative bonding which only transfers β spin density to the metal.
Collapse
Affiliation(s)
- Bob Martin
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
30
|
Gohr S, Hrobárik P, Repiský M, Komorovský S, Ruud K, Kaupp M. Four-Component Relativistic Density Functional Theory Calculations of EPR g- and Hyperfine-Coupling Tensors Using Hybrid Functionals: Validation on Transition-Metal Complexes with Large Tensor Anisotropies and Higher-Order Spin–Orbit Effects. J Phys Chem A 2015; 119:12892-905. [DOI: 10.1021/acs.jpca.5b10996] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Gohr
- Institut für Chemie, Theoretische
Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni
135, 10623 Berlin, Germany
| | - Peter Hrobárik
- Institut für Chemie, Theoretische
Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni
135, 10623 Berlin, Germany
| | - Michal Repiský
- Department of Chemistry, Centre for Theoretical
and Computational Chemistry (CTCC), UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Stanislav Komorovský
- Department of Chemistry, Centre for Theoretical
and Computational Chemistry (CTCC), UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kenneth Ruud
- Department of Chemistry, Centre for Theoretical
and Computational Chemistry (CTCC), UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Martin Kaupp
- Institut für Chemie, Theoretische
Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni
135, 10623 Berlin, Germany
| |
Collapse
|
31
|
Aquilante F, Autschbach J, Carlson RK, Chibotaru LF, Delcey MG, De Vico L, Fdez Galván I, Ferré N, Frutos LM, Gagliardi L, Garavelli M, Giussani A, Hoyer CE, Li Manni G, Lischka H, Ma D, Malmqvist PÅ, Müller T, Nenov A, Olivucci M, Pedersen TB, Peng D, Plasser F, Pritchard B, Reiher M, Rivalta I, Schapiro I, Segarra-Martí J, Stenrup M, Truhlar DG, Ungur L, Valentini A, Vancoillie S, Veryazov V, Vysotskiy VP, Weingart O, Zapata F, Lindh R. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. J Comput Chem 2015; 37:506-41. [PMID: 26561362 DOI: 10.1002/jcc.24221] [Citation(s) in RCA: 1129] [Impact Index Per Article: 125.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022]
Abstract
In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.
Collapse
Affiliation(s)
- Francesco Aquilante
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260-3000, USA
| | - Rebecca K Carlson
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Liviu F Chibotaru
- Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Celestijnenlaan, 200F, 3001, Belgium
| | - Mickaël G Delcey
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Luca De Vico
- Department of Chemistry, Copenhagen University, Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Ignacio Fdez Galván
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Nicolas Ferré
- Université d'Aix-Marseille, CNRS, Institut de Chimie Radicalaire, Campus Étoile/Saint-Jérôme Case 521, Avenue Esc. Normandie Niemen, Marseille Cedex 20, 13397, France
| | - Luis Manuel Frutos
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Laura Gagliardi
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy.,Université de Lyon, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, F-69364, France
| | - Angelo Giussani
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Chad E Hoyer
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Giovanni Li Manni
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA.,Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Memorial Circle and Boston, Lubbock, Texas, 79409-1061, USA.,Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria
| | - Dongxia Ma
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA.,Max Planck Institut für Festkörperforschung, Heisenbergstraße 1, Stuttgart, 70569, Germany
| | - Per Åke Malmqvist
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Thomas Müller
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Institute for Advanced Simulation (IAS), Wilhelm-Johnen-Straße, Jülich, 52425, Germany
| | - Artur Nenov
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena, 53100, Italy.,Chemistry Department, Bowling Green State University, 141 Overman Hall, Bowling Green, Ohio, 43403, USA.,Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 Rue du Loess, Strasbourg, 67034, France
| | - Thomas Bondo Pedersen
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, Oslo, 0315, Norway
| | - Daoling Peng
- College of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| | - Felix Plasser
- Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, Vienna, A-1090, Austria
| | - Ben Pritchard
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York, 14260-3000, USA
| | - Markus Reiher
- ETH Zurich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, Zurich, CH-8093, Switzerland
| | - Ivan Rivalta
- Université de Lyon, CNRS, École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon Cedex 07, F-69364, France
| | - Igor Schapiro
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE, Université de Strasbourg, CNRS UMR 7504, 23 Rue du Loess, Strasbourg, 67034, France.,Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, via Selmi 2, IT-40126, Bologna, Italy
| | - Michael Stenrup
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| | - Donald G Truhlar
- Department of Chemistry, Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota, 55455-0431, USA
| | - Liviu Ungur
- Division of Quantum and Physical Chemistry, and INPAC, Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven Celestijnenlaan, 200F, 3001, Belgium
| | - Alessio Valentini
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, Siena, 53100, Italy
| | - Steven Vancoillie
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Valera Veryazov
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Victor P Vysotskiy
- Department of Theoretical Chemistry, Lund University, Chemical Center, P.O.B 124 S-221 00, Lund, Sweden
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, Germany
| | - Felipe Zapata
- Unidad Docente de Química Física, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Roland Lindh
- Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University, Box 518, Uppsala, 751 20, Sweden.,Uppsala Center for Computational Chemistry - UC3, Uppsala University, Box 518, Uppsala, 751 20, Sweden
| |
Collapse
|
32
|
Edelstein NM. Reanalysis of the Aqueous Spectrum of the Neptunyl(V) [NpO2+] Ion. J Phys Chem A 2015; 119:11146-53. [DOI: 10.1021/acs.jpca.5b08576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Norman M. Edelstein
- Chemical Sciences Division,
MS 70A-1150, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
33
|
Kovács A, Infante I. Theoretical study of the electronic spectra of neutral and cationic NpO and NpO2. J Chem Phys 2015; 143:074305. [PMID: 26298132 DOI: 10.1063/1.4928588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The electronic spectra of neutral NpO and NpO2 as well as of their mono- (NpO(+), NpO2(+)) and dications (NpO(2+), NpO2(2+)) were studied using multiconfigurational relativistic quantum chemical calculations at the complete active space self-consistent field/CASPT2 level of theory taking into account spin-orbit coupling. The active space included 16 orbitals: all the 7s, 6d, and 5f orbitals of neptunium together with selected orbitals of oxygen. The vertical excitation energies on the ground state geometries have been computed up to ca. 35,000 cm(-1). The gas-phase electronic spectra were evaluated on the basis of the computed Einstein coefficients at 298 K and 3000 K. The computed vertical transition energies show good agreement with previous condensed-phase results on NpO2(+) and NpO2(2+).
Collapse
Affiliation(s)
- Attila Kovács
- European Commission, Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe, Germany
| | - Ivan Infante
- Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
34
|
Martin B, Autschbach J. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules. J Chem Phys 2015; 142:054108. [PMID: 25662637 DOI: 10.1063/1.4906318] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using a recently proposed equation for NMR nuclear magnetic shielding for molecules with unpaired electrons [A. Soncini and W. Van den Heuvel, J. Chem. Phys. 138, 021103 (2013)], equations for the temperature (T) dependent isotropic shielding for multiplets with an effective spin S equal to 1/2, 1, 3/2, 2, and 5/2 in terms of electron paramagnetic resonance spin Hamiltonian parameters are derived and then expanded in powers of 1/T. One simplifying assumption used is that a matrix derived from the zero-field splitting (ZFS) tensor and the Zeeman coupling matrix (g-tensor) share the same principal axis system. The influence of the rhombic ZFS parameter E is only investigated for S = 1. Expressions for paramagnetic contact shielding (from the isotropic part of the hyperfine coupling matrix) and pseudo-contact or dipolar shielding (from the anisotropic part of the hyperfine coupling matrix) are considered separately. The leading order is always 1/T. A temperature dependence of the contact shielding as 1/T and of the dipolar shielding as 1/T(2), which is sometimes assumed in the assignment of paramagnetic chemical shifts, is shown to arise only if S ≥ 1 and zero-field splitting is appreciable, and only if the Zeeman coupling matrix is nearly isotropic (Δg = 0). In such situations, an assignment of contact versus dipolar shifts may be possible based only on linear and quadratic fits of measured variable-temperature chemical shifts versus 1/T. Numerical data are provided for nickelocene (S = 1). Even under the assumption of Δg = 0, a different leading order of contact and dipolar shifts in powers of 1/T is not obtained for S = 3/2. When Δg is not very small, dipolar and contact shifts both depend in leading order in 1/T in all cases, with sizable contributions in order 1/T(n) with n = 2 and higher.
Collapse
Affiliation(s)
- Bob Martin
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, USA
| |
Collapse
|
35
|
Affiliation(s)
- Richard E. Wilson
- Chemical Sciences and Engineering
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
36
|
Gendron F, Sharkas K, Autschbach J. Calculating NMR Chemical Shifts for Paramagnetic Metal Complexes from First-Principles. J Phys Chem Lett 2015; 6:2183-2188. [PMID: 26266589 DOI: 10.1021/acs.jpclett.5b00932] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Paramagnetic effects on NMR shifts (pNMR) for paramagnetic metal complexes are calculated from first-principles, without recourse to spin Hamiltonian parameters. A newly developed code based on complete active space (CAS) and restricted active space (RAS) techniques in conjunction with treating spin-orbit (SO) coupling via state interaction is applied to (13)C NMR shifts of actinyl tris-carbonate complexes, specifically [UO2(CO3)3](5-) and [NpO2(CO3)3](4-). The experimental pNMR shifts as well as the sizable difference of the (13)C NMR shift for these iso-electronic species are well reproduced by the calculations. Approximations to the pNMR shift equations using spin Hamiltonian parameters or the magnetic susceptibility are calculated for the same systems at the same level of theory, and it is shown how the approximations relate to the ab initio data.
Collapse
Affiliation(s)
- Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Kamal Sharkas
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
37
|
Maurice R, Réal F, Gomes ASP, Vallet V, Montavon G, Galland N. Effective bond orders from two-step spin–orbit coupling approaches: The I2, At2, IO+, and AtO+ case studies. J Chem Phys 2015; 142:094305. [DOI: 10.1063/1.4913738] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Rémi Maurice
- SUBATECH, CNRS UMR 6457, IN2P3/EMN Nantes/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
| | - Florent Réal
- Laboratoire PhLAM, CNRS UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq Cedex, France
| | | | - Valérie Vallet
- Laboratoire PhLAM, CNRS UMR 8523, Université de Lille, 59655 Villeneuve d’Ascq Cedex, France
| | - Gilles Montavon
- SUBATECH, CNRS UMR 6457, IN2P3/EMN Nantes/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
| | - Nicolas Galland
- CEISAM, UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
38
|
Maurice R, Renault E, Gong Y, Rutkowski PX, Gibson JK. Synthesis and Structures of Plutonyl Nitrate Complexes: Is Plutonium Heptavalent in PuO3(NO3)2– ? Inorg Chem 2015; 54:2367-73. [DOI: 10.1021/ic502969w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rémi Maurice
- SUBATECH, UMR CNRS
6457, IN2P3/EMN Nantes/Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes Cedex 3, France
| | - Eric Renault
- CEISAM, UMR CNRS 6230,
Université de Nantes, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Yu Gong
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Philip X. Rutkowski
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John K. Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Sharkas K, Pritchard B, Autschbach J. Effects from Spin–Orbit Coupling on Electron–Nucleus Hyperfine Coupling Calculated at the Restricted Active Space Level for Kramers Doublets. J Chem Theory Comput 2015; 11:538-49. [DOI: 10.1021/ct500988h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kamal Sharkas
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Ben Pritchard
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
40
|
Gendron F, Pritchard B, Bolvin H, Autschbach J. Single-ion 4f element magnetism: an ab-initio look at Ln(COT)2−. Dalton Trans 2015; 44:19886-900. [DOI: 10.1039/c5dt02858b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The orbital and spin magnetizations of the ground state of the Ln(COT)2− series are investigated at the ab-initio level.
Collapse
Affiliation(s)
- Frédéric Gendron
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Benjamin Pritchard
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Hélène Bolvin
- Laboratoire de Physique et de Chimie Quantiques
- Université Toulouse 3
- 31062 Toulouse
- France
| | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
41
|
NMR Calculations for Paramagnetic Molecules and Metal Complexes. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1016/bs.arcc.2015.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Gendron F, Le Guennic B, Autschbach J. Magnetic Properties and Electronic Structures of Ar3UIV–L Complexes with Ar = C5(CH3)4H– or C5H5 – and L = CH3, NO, and Cl. Inorg Chem 2014; 53:13174-87. [DOI: 10.1021/ic502365h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Frédéric Gendron
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Boris Le Guennic
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|