1
|
Manu Manohar E, Roy S, Li XL, Tothadi S, Mok JG, Tang J, Herchel R, Lee J, Dey A, Das S. Halide mediated modulation of magnetic interaction and anisotropy in dimeric Co(II) complexes. Dalton Trans 2024; 53:10499-10510. [PMID: 38841816 DOI: 10.1039/d4dt00927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The burgeoning interest in the field of molecular magnetism is to perceive the high magnetic anisotropy in different geometries of metal complexes and hence to draw a magneto-structural correlation. Despite a handful of examples to exemplify the magnetic anisotropy in various coordination geometries of mononuclear complexes, the magnetic anisotropies for two different coordination geometries are underexplored. Employing an appropriate synthetic strategy utilizing the ligand LH2 [2,2'-{(1E,1'E)-pyridine2,6-diyl-bis(methaneylylidine)}-bis(azaneylylidine)diphenol] and cobalt halide salts in a 1 : 2 stoichiometric ratio in the presence of triethylamine allowed us to report a new family of dinuclear cobalt complexes [CoII2X2(L)(P)(Q)]·S with varying terminal halides [X = Cl, P = CH3CN, Q = H2O, S = H2O (1), X = Br, P = CH3CN, Q = H2O, S = H2O (2), X = I, P = CH3CN, and Q = CH3CN (3)]. All these complexes are characterized through single crystal X-ray crystallography, which reveals their crystallization in the monoclinic system P21/n space group with nearly identical structural features. These complexes share vital components, including Co(II) centers, a fully deprotonated ligand [L]2-, halide ions, and solvent molecules. The [L]2- ligand contains two Co(II) centers, where phenolate oxygen atoms bridge the Co(II) centers, forming a Co2O2 four-membered ring. Co1 demonstrates a distorted pentagonal-bipyramidal geometry with axial positions for solvent molecules, while Co2 displays a distorted tetrahedral geometry involving phenolate oxygen atoms and halide ions. Temperature-dependent dc magnetic susceptibility measurements were conducted on 1-3 within a range of 2 to 300 K at 1 kOe. The χmT vs. T plots exhibit similar trends, with χmT values at 300 K higher than the spin-only value, signifying a significant orbital contribution. As the temperature decreases, χmT decreases smoothly in all the complexes; however, no clear saturation at low temperatures is observed. Field-dependent magnetization measurements indicate a rapid increase below 20 kOe, with no hysteresis and a low magnetic blocking temperature. DFT and CASSCF/NEVPT2 theoretical calculations were performed to perceive the magnetic interaction and single-ion anisotropies of Co(II) ions in various ligand-field environments.
Collapse
Affiliation(s)
- Ezhava Manu Manohar
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Near Khokhra Circle, Maninagar East, Ahmedabad-380026, Gujarat, India.
| | - Soumalya Roy
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China.
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Jun-Gwi Mok
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic.
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, 561203 Karnataka, India.
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure Technology Research and Management, Near Khokhra Circle, Maninagar East, Ahmedabad-380026, Gujarat, India.
| |
Collapse
|
2
|
Manohar EM, Dhandapani HN, Roy S, Pełka R, Rams M, Konieczny P, Tothadi S, Kundu S, Dey A, Das S. Tetranuclear Co II4O 4 Cubane Complex: Effective Catalyst Toward Electrochemical Water Oxidation. Inorg Chem 2024; 63:4883-4897. [PMID: 38494956 DOI: 10.1021/acs.inorgchem.3c03956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The reaction of Co(OAc)2·6H2O with 2,2'-[{(1E,1'E)-pyridine-2,6-diyl-bis(methaneylylidene)bis(azaneylylidene)}diphenol](LH2) a multisite coordination ligand and Et3N in a 1:2:3 stoichiometric ratio forms a tetranuclear complex Co4(L)2(μ-η1:η1-OAc)2(η2-OAc)2]· 1.5 CH3OH· 1.5 CHCl3 (1). Based on X-ray diffraction investigations, complex 1 comprises a distorted Co4O4 cubane core consisting of two completely deprotonated ligands [L]2- and four acetate ligands. Two distinct types of CoII centers exist in the complex, where the Co(2) center has a distorted octahedral geometry; alternatively, Co(1) has a distorted pentagonal-bipyramidal geometry. Analysis of magnetic data in 1 shows predominant antiferromagnetic coupling (J = -2.1 cm-1), while the magnetic anisotropy is the easy-plane type (D1 = 8.8, D2 = 0.76 cm-1). Furthermore, complex 1 demonstrates an electrochemical oxygen evolution reaction (OER) with an overpotential of 325 mV and Tafel slope of 85 mV dec-1, required to attain a current density of 10 mA cm-2 and moderate stability under alkaline conditions (pH = 14). Electrochemical impedance spectroscopy studies reveal that compound 1 has a charge transfer resistance (Rct) of 2.927 Ω, which is comparatively lower than standard Co3O4 (5.242 Ω), indicating rapid charge transfer kinetics between electrode and electrolyte solution that enhances higher catalytic activity toward OER kinetics.
Collapse
Affiliation(s)
- Ezhava Manu Manohar
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Hariharan N Dhandapani
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| | - Robert Pełka
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, Kraków 30348, Poland
| | - Piotr Konieczny
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, Krakow PL-31342, Poland
| | - Srinu Tothadi
- Analytical and Environmental Sciences Division and Centralized Instrumentation Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, India
| | - Subrata Kundu
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu 630003, India
| | - Atanu Dey
- Department of Chemistry, Gandhi Institute of Technology and Management (GITAM), NH 207, Nagadenehalli, Doddaballapur Taluk, Bengaluru, Karnataka 561203, India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline, Institute of Infrastructure, Technology, Research, and Management, Near Khokhra Circle, Maninagar East, Ahmedabad, Gujarat 380026, India
| |
Collapse
|
3
|
Wang LX, Wu XF, Jin XX, Li JY, Wang BW, Liu JY, Xiang J, Gao S. Slow magnetic relaxation in 8-coordinate Mn(II) compounds. Dalton Trans 2023; 52:14797-14806. [PMID: 37812439 DOI: 10.1039/d3dt02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The design and synthesis of high-spin Mn(II)-based single-molecule magnets (SMMs) have not been well developed to a great extent, as compared with a large number of SMMs based on the other first row transition metal complexes. In light of our success in designing Fe(II), Co(II) and Fe(III)-based SMMs with a high coordination number of 8, it is of great interest to design Mn(II) analogues with such a strategy. In this contribution, four Mn(II) compounds, [MnII(Ln)2](ClO4)2 (1-4) were obtained from reactions of neutral tetradentate ligands, L1-L4, with hydrated MnII(ClO4)2 (L1 = 2,9-bis(carbomethoxy)-1,10-phenanthroline, L2 = 2,9-bis(carbomethoxy)-2,2'-dipyridine, L3 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide, L4 = 6,6'-bis(2-(tert-butyl)-2H-tetrazol-5-yl)-2,2'-bipyridine). Their crystal structures have been determined by X-ray crystallography and it clearly shows that the Mn(II) centers in these compounds have an oversaturated coordination number of 8. Their magnetic properties have been investigated in detail; to our surprise, all of these Mn(II) compounds show interesting slow magnetic relaxation behaviors under an applied direct current field, although they have very small negative D values.
Collapse
Affiliation(s)
- Li-Xin Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Jia-Yi Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Ji-Yan Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
| | - Jing Xiang
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
- School of Chemistry, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Sasnovskaya VD, Zorina LV, Simonov SV, Talantsev AD, Yagubskii EB. [M II(H 2dapsc)]-[Cr(CN) 6] (M = Mn, Co) Chain and Trimer Complexes: Synthesis, Crystal Structure, Non-Covalent Interactions and Magnetic Properties. Molecules 2022; 27:8518. [PMID: 36500611 PMCID: PMC9737345 DOI: 10.3390/molecules27238518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Four new heterometallic complexes combining [MII(H2dapsc)]2+ cations with the chelating H2dapsc {2,6-diacetylpyridine-bis(semicarbazone)} Schiff base ligand and [Cr(CN)6]3- anion were synthesized: {[MII(H2dapsc)]CrIII(CN)6K(H2O)2.5(EtOH)0.5}n·1.2n(H2O), M = Mn (1) and Co (2), {[Mn(H2dapsc)]2Cr(CN)6(H2O)2}Cl·H2O (3) and {[Co(H2dapsc)]2Cr(CN)6(H2O)2}Cl·2EtOH·3H2O (4). In all the compounds, M(II) centers are seven-coordinated by N3O2 atoms of H2dapsc in the equatorial plane and N or O atoms of two apical -CN/water ligands. Crystals 1 and 2 are isostructural and contain infinite negatively charged chains of alternating [MII(H2dapsc)]2+ and [CrIII(CN)6]3- units linked by CN-bridges. Compounds 3 and 4 consist of centrosymmetric positively charged trimers in which two [MII(H2dapsc)]2+ cations are bound through one [CrIII(CN)6]3- anion. All structures are regulated by π-stacking of coplanar H2dapsc moieties as well as by an extensive net of hydrogen bonding. Adjacent chains in 1 and 2 interact also by coordination bonds via a pair of K+ ions. The compounds containing MnII (1, 3) and CoII (2, 4) show a significant difference in magnetic properties. The ac magnetic measurements revealed that complexes 1 and 3 behave as a spin glass and a field-induced single-molecule magnet, respectively, while 2 and 4 do not exhibit slow magnetic relaxation in zero and non-zero dc fields. The relationship between magnetic properties and non-covalent interactions in the structures 1-4 was traced.
Collapse
Affiliation(s)
- Valentina D. Sasnovskaya
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| | - Leokadiya V. Zorina
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia
| | - Sergey V. Simonov
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia
| | - Artem D. Talantsev
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| | - Eduard B. Yagubskii
- Institute of Problems of Chemical Physics RAS, Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka 142432, Russia
| |
Collapse
|
5
|
Huang XC, Yong W, Moorthy S, Su ZY, Kong JJ, Kumar Singh S. A pentagonal bipyramidal Co(II) single-ion magnet based on an asymmetric tetradentate ligand with easy plane anisotropy. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Yang Q, Wang GL, Zhang YQ, Tang J. Self-assembly of fish-bone and grid-like Co II-based single-molecule magnets using dihydrazone ligands with NNN and NNO pockets. Dalton Trans 2022; 51:13928-13937. [PMID: 36040449 DOI: 10.1039/d2dt02451a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Three CoII complexes, [Co2(H2L1)2](ClO4)4·4CH3OH (1), [Co2(H4L2)2](ClO4)4 (2) and [Co4(H4L2)4](ClO4)8 (3), were constructed by the self-assembly of the symmetrical dihydrazone ligands H2L1 and H4L2 with CoII ions under different synthetic conditions. The fish-bone-like complex 1 was obtained using the ligand H2L1 in methanol via the solvothermal method, while the self-assembly of H4L2 with CoII ions is solvent-dependent, producing the fish-bone-like complex 2 and [2 × 2] grid-like complex 3. Magnetic susceptibility measurements and theoretical calculations reveal that the large negative D values for the three complexes stem from their easy-axis magnetic anisotropy. Ac magnetic susceptibility measurements disclosed field-induced slow magnetic relaxation behaviors and the presence of Raman and/or direct processes of the three complexes at various applied dc fields.
Collapse
Affiliation(s)
- Qianqian Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guo-Lu Wang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Field-Induced Single Molecule Magnetic Behavior of Mononuclear Cobalt(II) Schiff Base Complex Derived from 5-Bromo Vanillin. INORGANICS 2022. [DOI: 10.3390/inorganics10080105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A mononuclear Co(II) complex of a Schiff base ligand derived from 5-Bromo-vanillin and 4-aminoantipyrine, that has a compressed tetragonal bipyramidal geometry and exhibiting field-induced slow magnetic relaxation, has been synthesized and characterized by single crystal X-ray diffraction, elemental analysis and molecular spectroscopy. In the crystal packing, a hydrogen-bonded dimer structural topology has been observed with two distinct metal centers having slightly different bond parameters. The complex has been further investigated for its magnetic nature on a SQUID magnetometer. The DC magnetic data confirm that the complex behaves as a typical S = 3/2 spin system with a sizable axial zero-field splitting parameter D/hc = 38 cm−1. The AC susceptibility data reveal that the relaxation time for the single-mode relaxation process is τ = 0.16(1) ms at T = 2.0 K and BDC = 0.12 T.
Collapse
|
8
|
Shao D, Xu F, Yin L, Li H, Sun Y, Ouyang Z, Wang Z, Zhang Y, Wang X. Fine‐Tuning
of Structural Distortion and Magnetic Anisotropy by Organosulfonates in Octahedral Cobalt(
II
) Complexes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dong Shao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering Huanggang Normal University Huanggang 438000 P. R. China
| | - Fang‐Xue Xu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Lei Yin
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Hong‐Qing Li
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yu‐Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Zhong‐Wen Ouyang
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Zhen‐Xing Wang
- Wuhan National High Magnetic Field Centre Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yi‐Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology Nanjing Normal University Nanjing 210097 P. R. China
| | - Xin‐Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
9
|
Li RX, Sun HY, Liang HC, Yi C, Yao NT, Meng YS, Xiong J, Liu T, Zhu YY. Slow magnetic relaxation in mononuclear octa-coordinate Fe(II) and Co(II) complexes from a Bpybox ligand. Dalton Trans 2022; 51:8865-8873. [PMID: 35635033 DOI: 10.1039/d2dt00865c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two 3d transition metal mononuclear complexes, [(FeL2)(ClO4)2]2·CH3CN (1) and (CoL2)(ClO4)2·2CH3CN (2), have been prepared from a rigid tetradentate bpybox (L = 6,6'-bis(2,5-dihydrooxazol-4-yl)-2,2'-bipyridine) ligand. Single crystal X-ray diffraction analyses together with the help of calculations show that both compounds are octa-coordinate. Direct current magnetic studies reveal their significant magnetic anisotropy. Impressively, field-induced relaxation of magnetism is observed in the two complexes and the apparent anisotropy barriers are 14.1 K for 1 and 21.6 K for 2, respectively. Theoretical calculations reveal that two Fe(II) centers in 1 have small negative D values of -4.897 and -4.825 cm-1 and relatively small E values of 0.646 and 0.830 cm-1, indicating a uniaxial magnetic anisotropy. In contrast, the D and E values in the Co(II) center of 2 are 46.42 cm-1 and 11.51 cm-1, featuring a rhombic anisotropy. This work demonstrates that field-induced slow magnetic relaxation in 3d transition metal complexes with high coordination numbers can be manipulated through rigid ligand design.
Collapse
Affiliation(s)
- Rui-Xia Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hui-Ying Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Hai-Chao Liang
- School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| | - Cheng Yi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Nian-Tao Yao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Tao Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Yuan-Yuan Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China. .,School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, China.
| |
Collapse
|
10
|
Liu M, Yang Y, Jing R, Zheng S, Yuan A, Wang Z, Luo SC, Liu X, Cui HH, Ouyang ZW, Chen L. Slow magnetic relaxation in dinuclear Co(III)-Co(II) complexes containing a five-coordinated Co(II) centre with easy-axis anisotropy. Dalton Trans 2022; 51:8382-8389. [PMID: 35587605 DOI: 10.1039/d2dt00857b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two air-stable Co(III)-Co(II) mixed-valence complexes of molecular formulas [CoIICoIII(L)(DMAP)3(CH3COO)]·H2O·CH3OH (1) and [CoIICoIII(L)(4-Pyrrol)3 (CH3COO)]·0.5CH2Cl2 (2) (H4L = 1,3-bis-(5-methyl pyrazole-3-carboxamide) propane; DMAP = 4-dimethylaminopyridine; and 4-Pyrrol = 4-pyrrolidinopyridine) were synthesized and characterized by single-crystal X-ray crystallography, high-field electron paramagnetic resonance (HFEPR) spectroscopy, and magnetic measurements. Both complexes possess one five-coordinated paramagnetic Co(II) ion and one six-coordinated Co(III) ion with octahedral geometry. Direct-current magnetic susceptibility and magnetization measurements show the easy-axis magnetic anisotropy that is also confirmed by low-temperature HFEPR measurements and theoretical calculations. Frequency- and temperature-dependent alternating-current magnetic susceptibility measurements reveal their field-assisted slow magnetic relaxation, which is a characteristic behavior of single-molecule magnets (SMMs), caused by the individual Co(II) ion. The effective energy barrier of complex 1 (49.2 cm-1) is significantly higher than those of the other dinuclear Co(III)-Co(II) SMMs. This work hence presents the first instance of the dinuclear Co(III)-Co(II) single-molecule magnets with a five-coordinated environment around the Co(II) ion.
Collapse
Affiliation(s)
- Mengyao Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Yimou Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Shu-Chang Luo
- School of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, P. R. China.
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China.
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
| |
Collapse
|
11
|
Sutter JP, Béreau V, Jubault V, Bretosh K, Pichon C, Duhayon C. Magnetic anisotropy of transition metal and lanthanide ions in pentagonal bipyramidal geometry. Chem Soc Rev 2022; 51:3280-3313. [PMID: 35353106 DOI: 10.1039/d2cs00028h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic anisotropy associated with a pentagonal bipyramidal (PBP) coordination sphere is examined on the basis of experimental and theoretical investigations. The origin and the characteristics of this anisotropy are discussed in relation to the electronic configuration of the metal ions. The effects of crystal field, structural distortion, and a second-coordination sphere on the observed anisotropies for transition meal and lanthanide ions are outlined. For the Ln derivatives, we focus on compounds showing SMM-like behavior (i.e. slow relaxation of their magnetization) in order to highlight the essential chemical and structural parameters for achieving strong axial anisotropy. The use of PBP complexes to impart controlled magnetic anisotropy in polynuclear species such as SMMs or SCMs is also addressed. This review of the magnetic anisotropies associated with a pentagonal bipyramidal coordination sphere for transition metal and lanthanide ions is intended to highlight some general trends that can guide chemists towards designing a compound with specific properties.
Collapse
Affiliation(s)
- Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Virginie Béreau
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France. .,Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, F-81104 Castres, France
| | - Valentin Jubault
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Kateryna Bretosh
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
12
|
Comba P, Rajaraman G, Sarkar A, Velmurugan G. What controls the magnetic anisotropy in heptacoordinate high-spin cobalt(II) complexes? A theoretical perspective. Dalton Trans 2022; 51:5175-5183. [PMID: 35274660 DOI: 10.1039/d1dt03903b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The magnetic anisotropy of sixteen seven-coordinate high-spin CoII complexes with O, N, Cl and I donors was investigated with state-of-the-art ab initio CASSCF/NEVPT2 calculations and compared with experimental data. Based on the nature of the equatorial and axial ligands, which were found to tune the zero-field splitting, the complexes were classified into four groups. The experimental zero-field splitting parameters D which, for the various structures are in a range of +30 to +60 cm-1, as well as the g and E values are well reproduced. The investigation of the electronic structure shows that in these pentagonal bipyramidal complexes the donors and symmetry in the equatorial plane play an important role in the values of the axial zero-field splitting parameter D, and breaking of the horizontal plane of symmetry was found to enhance the magnitude of the D value. Although negative values of D are a desired condition for SIMs, many CoII based SIMs with positive zero-field splitting are fundamentally important to understand the nature of magnetic anisotropy, and seven coordinate CoII complexes with a large overall crystal field splitting might provide a way forward in this class of molecules.
Collapse
Affiliation(s)
- Peter Comba
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Gunasekaran Velmurugan
- Heidelberg University, Institute of Inorganic Chemistry and Interdisciplinary Center for Scientific Computing, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany.
| |
Collapse
|
13
|
Xia Z, Li Y, Ji C, Jiang Y, Ma C, Gao J, Zhang J. Slow-Relaxation Behavior of a Mononuclear Co(II) Complex Featuring Long Axial Co-O Bond. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:707. [PMID: 35215035 PMCID: PMC8875892 DOI: 10.3390/nano12040707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Co(II) mononuclear complex with different coordination geometry would display various of field-induced single-ion magnet (SIM) behaviors. Here, we identify a field-induced single-ion magnet in a mononuclear complex Co(H2DPA)2·H2O (H2DPA = 2,6-pyridine-dicarboxylic acid) by the hydrothermal method. The long axial Co-O coordination bond (Co1‧‧‧O3) can be formed by Co1 and O3. Therefore, Co(II) ion is six-coordinated in a distorted elongated octahedron. AC magnetization susceptibilities show that the effective energy barrier is up to 43.28 K. This is much larger than most mononuclear Co(II). The distorted elongated octahedron caused by the axial Co-O coordination bond is responsible for the high effective energy barrier. The distribution of electron density in Co1 and O3 atoms in the long axial bond would influence the magnetic relaxation process in turn. Our work deepens the relationship between the effective energy barrier and the weak change of ligand field by long axial bonds, which would facilitate constructing SIM with high energy temperature.
Collapse
Affiliation(s)
- Zhengyao Xia
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| | - Yan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Cheng Ji
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| | - Ju Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
- School of Optoelect Engn, Zaozhuang University, Zaozhuang 277160, China
| | - Jinlei Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (Z.X.); (C.J.); (C.M.)
| |
Collapse
|
14
|
Diószegi R, Bonczidai-Kelemen D, Bényei AC, May NV, Fábián I, Lihi N. Copper(II) Complexes of Pyridine-2,6-dicarboxamide Ligands with High SOD Activity. Inorg Chem 2022; 61:2319-2332. [PMID: 35029102 DOI: 10.1021/acs.inorgchem.1c03728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper(II) complexes of pyridine-based ligands functionalized with alanine (PydiAla) and tyrosine (PydiTyr) moieties have been synthesized as novel superoxide dismutase mimics. The complexes were characterized by pH-potentiometric, spectroscopic (UV-vis, circular dichroism, mass spectrometry, electron paramagnetic resonance spectroscopy), computational (DFT), and X-ray diffraction methods. Both ligands form high stability copper(II) complexes via the (Npy,N-,N-) donor set supported by the binding of the carboxylate pendant arms. Although the coordination mode is the same for the two systems, the tyrosine containing counterpart exhibits increased copper(II) binding affinity, which is most likely due to the presence of the aromatic moiety of the side chains. Both copper(II) complexes are capable of binding N-methylimidazole, and the formation of the corresponding ternary species was observed at physiological pH. The binary and ternary copper(II) complexes exhibit high SOD activity. The PydiTyr complex exhibits about 1 order of magnitude higher activity than the PydiAla complex. This is probably due to the presence of the phenolic OH group in the former species, which promotes the binding of the superoxide anion radical to the metal center. The results serve as a basis for designing highly efficient copper(II) mimics for medical and practical applications.
Collapse
Affiliation(s)
- Róbert Diószegi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Dóra Bonczidai-Kelemen
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Cs Bényei
- Department of Physical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
| | - Nóra V May
- Centre for Structural Science, Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
- MTA-DE Redox and Homogeneous Reaction Mechanisms Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Hungary
- MTA-DE Redox and Homogeneous Reaction Mechanisms Research Group, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
15
|
Qin Y, Wu Y, Luo S, Xi J, Guo Y, Ding Y, Zhang J, Liu X. Modulation of the magnetic dynamics of pentagonal-bipyramidal Co( ii) complexes by fine-tuning the coordination microenvironment. Dalton Trans 2022; 51:17089-17096. [DOI: 10.1039/d2dt02345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic magnetic behaviours of a series of Co(ii) SIMs with pentagonal-bipyramidal geometry have been modulated by an alteration of the ligand field effect.
Collapse
Affiliation(s)
- Yuanyuan Qin
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuewei Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jing Xi
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi Ding
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiangyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
16
|
Zhang Y, Liu ZY, Tang HM, Ding B, Liu ZY, Wang XG, Zhao XJ, Yang EC. Weak interchain interaction-dominated magnetic responses in water-extended cobalt( ii)-chains: from magnetic ordering to single-chain magnet. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01214f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Weak intermolecular interaction-dominated interchain magnetic couplings in water-extended cobalt(ii)-chains are found to be highly responsible for the magnetic evolution from magnetic ordering to single-chain magnet behavior.
Collapse
Affiliation(s)
- Yu Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhong-Yi Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Hui-Min Tang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Bo Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zheng-Yu Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xiu-Guang Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xiao-Jun Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
- Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| | - En-Cui Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
17
|
Ksiądzyna M, Kinzhybalo V, Bieńko A, Medycki W, Jakubas R, Rajnák C, Boca R, Ozarowski A, Ozerov M, Piecha-Bisiorek A. Symmetry-Breaking Phase Transitions, Dielectric and Magnetic properties of Pyrrolidinium-Tetrahalidocobaltates. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00187j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report the physicochemical characteristics of novel Co-based pyrrolidinium analogs: (C4H10N)2CoCl4 (PCC) and (C4H10N)2CoBr4 (PCB). Both compounds consist of the zero-dimensional (OD) anionic network and disordered pyrolidinium cations. The structural...
Collapse
|
18
|
Zhou Y, Li Y, Xi J, Qin Y, Cen P, Zhang YQ, Guo Y, Ding Y, Liu X. Modulation of the architectures and magnetic dynamics in pseudotetrahedral cobalt(II) complexes. Dalton Trans 2022; 51:7673-7680. [DOI: 10.1039/d2dt01047j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two β-Diketiminate cobalt(II) compounds of formula [LCo(μ-Cl)]2∙2C6H14 (1) and [LCoClPy]∙0.5C7H8∙0.5C6H14 (2) (L = [PhC-(PhCN-Dip)2]−, Dip = 2,6-iPr2C6H3) have been synthesized and structurally characterized by single crystal X-ray diffraction. Compound 1...
Collapse
|
19
|
Pichon C, Duhayon C, Delahaye E, Sutter J. Discrete
versus
1D Compounds based on Pentagonal Bipyramid Coordination Geometries: A Matter of Solubility? Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS) Université de Toulouse, CNRS, UPS 31077 Toulouse France
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS) Université de Toulouse, CNRS, UPS 31077 Toulouse France
| | - Emilie Delahaye
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS) Université de Toulouse, CNRS, UPS 31077 Toulouse France
| | - Jean‐Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS) Université de Toulouse, CNRS, UPS 31077 Toulouse France
| |
Collapse
|
20
|
Syntheses, Structures and Magnetic Properties of M2 (M = Fe, Co) Complexes with N6 Coordination Environment: Field-Induced Slow Magnetic Relaxation in Co2. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7120153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two dinuclear complexes [M2(H2L)2](ClO4)4·2MeCN (M = Co for Co2 and Fe for Fe2) were synthesized using a symmetric hydrazone ligand with the metal ions in an N6 coordination environment. The crystal structures and magnetic properties were determined by single-crystal X-ray diffraction and magnetic susceptibility measurements. The crystal structure study revealed that the spin centers were all in the high-spin state with a distorted octahedron (Oh) geometry. Dynamic magnetic properties measurements revealed that complex Co2 exhibited field-induced single-molecule magnet properties with two-step relaxation in which the fast relaxation path was from QTM and the slow relaxation path from the thermal relaxation under an applied field.
Collapse
|
21
|
Bazhenova TA, Kopotkov VA, Korchagin DV, Manakin YV, Zorina LV, Simonov SV, Yakushev IA, Mironov VS, Vasiliev AN, Maximova OV, Yagubskii EB. A Series of Novel Pentagonal-Bipyramidal Erbium(III) Complexes with Acyclic Chelating N3O2 Schiff-Base Ligands: Synthesis, Structure, and Magnetism. Molecules 2021; 26:6908. [PMID: 34834001 PMCID: PMC8622354 DOI: 10.3390/molecules26226908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2]- (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2]- (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1-6 were studied. The AC magnetic measurements revealed that most of Compounds 1-6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16-28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1-6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.
Collapse
Affiliation(s)
- Tamara A. Bazhenova
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| | - Vyacheslav A. Kopotkov
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| | - Yuriy V. Manakin
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| | - Leokadiya V. Zorina
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
- Institute of Solid State Physics, ISSP RAS, Chernogolovka 142432, Russia
| | - Sergey V. Simonov
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
- Institute of Solid State Physics, ISSP RAS, Chernogolovka 142432, Russia
| | - Ilya A. Yakushev
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
- Kurnakov Institute of General and Inorganic Chemistry, IGIC RAS, Moscow 119333, Russia
| | - Vladimir S. Mironov
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” RAS, Moscow 119333, Russia
| | - Alexander N. Vasiliev
- Laboratory of Quantum Functional Materials, National University of Science and Technology “MISiS”, Moscow 119049, Russia;
- Lomonosov Moscow State University, Moscow 119991, Russia;
| | | | - Eduard B. Yagubskii
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| |
Collapse
|
22
|
Pichon C, Suaud N, Jubault V, Duhayon C, Guihéry N, Sutter JP. Trinuclear Cyanido-Bridged [Cr 2 Fe] Complexes: To Be or not to Be a Single-Molecule Magnet, a Matter of Straightness. Chemistry 2021; 27:15484-15495. [PMID: 34523758 DOI: 10.1002/chem.202102571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/08/2022]
Abstract
Trinuclear systems of formula [{Cr(LN3O2Ph )(CN)2 }2 M(H2 LN3O2R )] (M=MnII and FeII , LN3O2R stands for pentadentate ligands) were prepared in order to assess the influence of the bending of the apical M-N≡C linkages on the magnetic anisotropy of the FeII derivatives and in turn on their Single-Molecule Magnet (SMM) behaviors. The cyanido-bridged [Cr2 M] derivatives were obtained by assembling trans-dicyanido CrIII complex [Cr(LN3O2Ph )(CN)2 ]- and divalent pentagonal bipyramid complexes [MII (H2 LN3O2R )]2+ with various R substituents (R=NH2 , cyclohexyl, S,S-mandelic) imparting different steric demand to the central moiety of the complexes. A comparative examination of the structural and magnetic properties showed an obvious effect of the deviation from straightness of the M-N≡C alignment on the slow relaxation of the magnetization exhibited by the [Cr2 Fe] complexes. Theoretical calculations have highlighted important effects of the bending of the apical C-N-Fe linkages on both the magnetic anisotropy of the FeII center and the exchange interactions with the CrIII units.
Collapse
Affiliation(s)
- Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, 31077, Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique quantiques (LCPQ), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Valentin Jubault
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, 31077, Toulouse, France
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, 31077, Toulouse, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique quantiques (LCPQ), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, France
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC), Université de Toulouse, CNRS, 31077, Toulouse, France
| |
Collapse
|
23
|
Peng M, Wu XF, Wang LX, Chen SH, Xiang J, Jin XX, Yiu SM, Wang BW, Gao S, Lau TC. Slow magnetic relaxation in high-coordinate Co(II) and Fe(II) compounds bearing neutral tetradentate ligands. Dalton Trans 2021; 50:15327-15335. [PMID: 34636819 DOI: 10.1039/d1dt02575a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first-row transition metal compounds, [MII(L1)2](ClO4)2 (M = Ni (1); Co (2)), have been prepared by treatment of a neutral tetradentate ligand (L1 = N2,N9-dibutyl-1,10-phenanthroline-2,9-dicarboxamide) with metal perchlorate salts in MeOH. Both compounds have been structurally characterized by X-ray crystallography and it was found that the coordination numbers are 6 and 7, respectively. The reaction of 6,6'-bis(2-tbutyl-tetrazol-5-yl)-2,2'-bipyridine (L2) with hydrated FeII(ClO4)2 afforded a 8-coordinate Fe(II) compound, [FeII(L2)2](ClO4)2 (3); however its reaction with hydrated CoII(ClO4)2 resulted in 6-coordinate [CoII(L2)2](ClO4)2. It is interesting to observe field-induced slow magnetic relaxation in the 7-coordinate Co(II) compound 2 and 8-coordinate Fe(II) compound 3, which further supports the validity of designing high coordination number compounds as single-molecule magnets. Direct current magnetic studies demonstrate that 2 has a very large positive D value (56.2 cm-1) and a small E value (0.66 cm-1), indicating easy plane magnetic anisotropy. Consistent with the larger D value, an effective spin-reversal barrier of Ueff = 100 K (71.4 cm-1) is obtained, which is the highest value reported for 7-coordinate Co(II) complexes with a pentagonal bipyramidal geometry. In contrast, 8-coordinate Fe(II) compound 3 exhibits uniaxial magnetic anisotropy.
Collapse
Affiliation(s)
- Min Peng
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Xiao-Fan Wu
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Li-Xin Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Si-Huai Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, HuBei, P. R. China.
| | - Xin-Xin Jin
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| | - Bing-Wu Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China.
| | - Song Gao
- State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKU-HKU Joint Laboratory on Rare Earth Materials and Bioinorganic Chemistry, Peking University, Beijing 100871, P. R. China. .,South China University of Technology, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China.
| |
Collapse
|
24
|
Reczyński M, Akaki M, Fukuda T, Sawada Y, Nishii K, Hagiwara M, Nitek W, Sieklucka B, Nowicka B. Hepta-coordinated Ni(II) assemblies - structure and magnetic studies. Dalton Trans 2021; 50:5251-5261. [PMID: 33881078 DOI: 10.1039/d1dt00479d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear complexes [Ni(dapsc)(H2O)2]Cl(NO3)·H2O (1) and [Ni(dapsc)(NCS)2] (2), and a bimetallic CN-bridged trinuclear molecule [NiII(dapsc)(H2O)]2[WIV(CN)8]·11H2O (3) (dapsc = 2,6-diacetylpyridine-bis(semicarbazone)) were synthesised and characterised in terms of structure and magnetic properties. All three compounds contain Ni(ii) ions in a pentagonal bipyramid coordination geometry afforded by the equatorial pentadentate ligand (dapsc) and two O- or N-donating axial ligands. The compounds differ in the relative arrangement of the complexes, intermolecular interactions and distortion from the ideal coordination geometry. The high-field EPR and magnetometric studies show large anisotropy of the Ni(ii) centres with the D parameters in the range of -10.5 to -21.2 cm-1 and negligible antiferromagnetic interactions. The easy-axis magnetic anisotropies of 1-3 were reproduced by ab initio CASSCF/NEVPT2 calculations. The ground states consist mainly of the |MS = |±1 states, which is consistent with the fact that no out-of-phase signal can be detected in the AC magnetic susceptibility measurements.
Collapse
Affiliation(s)
- Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Mitsuru Akaki
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Sawada
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kengo Nishii
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
25
|
Plutenko MO, Haukka M, Husak AO, Iskenderov TS, Mulloev NU. Crystal structure and Hirshfeld surface analysis of poly[[bis-[μ 4- N, N'-(1,3,5-oxadiazinane-3,5-di-yl)bis(carbamoyl-methano-ato)]nickel(II)tetra-potassium] 4.8-hydrate]. Acta Crystallogr E Crystallogr Commun 2021; 77:298-304. [PMID: 33953955 PMCID: PMC8061116 DOI: 10.1107/s205698902100205x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
The title compound, {[K4Ni2(C7H6N4O7)2]·4.8H2O} n , was obtained as a result of a template reaction between oxalohydrazide-hydroxamic acid, formaldehyde and nickel(II) nitrate followed by partial hydrolysis of the formed inter-mediate. The two independent [Ni(C7H6N4O7)]2- complex anions exhibit pseudo-C S symmetry and consist of an almost planar metal-containing fragment and a 1,3,5-oxadiazinane ring with a chair conformation disposed nearly perpendicularly with respect to the former. The central NiII atom has a square-planar N2O2 coordination arrangement formed by two amide N and two carboxyl-ate O atoms. In the crystal, the nickel(II) complex anions form layers parallel to the ab plane. Neighboring complex anion layers are connected by layers of potassium cations for which two of the four independent cations are disordered over two sites [ratios of 0.54 (3):0.46 (3) and 0.9643 (15):0.0357 (15)]. The framework is stabilized by an extensive system of hydrogen bonds where the water mol-ecules act as donors and the carb-oxy-lic O atoms, the amide O atoms and the oxadiazinane N atoms act as acceptors.
Collapse
Affiliation(s)
- Maksym O. Plutenko
- Department of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine
| | - Matti Haukka
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland
| | - Alina O. Husak
- Department of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine
- PBMR Labs Ukraine, Murmanska 1, 02094 Kiev, Ukraine
| | - Turganbay S. Iskenderov
- Department of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine
| | - Nurullo U. Mulloev
- The Faculty of Physics, Tajik National University, Rudaki Avenue 17, 734025 Dushanbe, Tajikistan
| |
Collapse
|
26
|
Chen SY, Lv W, Cui HH, Chen L, Zhang YQ, Chen XT, Wang Z, Ouyang ZW, Yan H, Xue ZL. Magnetic anisotropies and slow magnetic relaxation of three tetrahedral tetrakis(pseudohalido)–cobalt( ii) complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01916c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic anisotropies and slow magnetic relaxation of three homoleptic cobalt(ii) complexes with different pseudohalide ligands were studied via magnetometry, HFEPR and theoretical calculations.
Collapse
Affiliation(s)
- Shu-Yang Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zi-Ling Xue
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
27
|
Wu CM, Tsai JE, Lee GH, Yang EC. Slow magnetization relaxation in a tetrahedrally coordinated mononuclear Co(II) complex exclusively ligated with phenanthroline ligands. Dalton Trans 2020; 49:16813-16820. [PMID: 33180075 DOI: 10.1039/d0dt03481a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a tetrahedral mononuclear Co(ii) complex [CoL2](ClO4)2 (1) in which L = 2,9-diphenyl-1,10-phenanthroline. The structure of 1, which was determined by single crystal X-ray diffraction, indicates that it exists in the triclinic space group P1[combining macron]. Magnetic property studies were conducted by reduced magnetization measurements, ab initio calculations and X-band EPR experiments, the results of which revealed a large zero-field splitting, with D ∼ -45.9 cm-1. The Arrhenius equation indicates that the kinetic energy barrier of 1 is Ueff = 46.9 cm-1. This study describes a very rare case of a Co(ii) single ion magnet (SIM) that is purely tetrahedrally coordinated by pyridine like ligands.
Collapse
Affiliation(s)
- Chen-Ming Wu
- Department of Chemistry, Fu-Jen Catholic University, Hsinchuang, New Taipei City, 24205, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
28
|
Wu H, Gao L, Zhang J, Zhai L, Gao T, Niu X, Hu T. Syntheses, characterization, and slow magnetic relaxation or luminescence properties of three new 2D coordination polymers. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Pajuelo-Corral O, Zabala-Lekuona A, San Sebastian E, Rodríguez-Diéguez A, García JA, Lezama L, Colacio E, Seco JM, Cepeda J. Modulating Magnetic and Photoluminescence Properties in 2-Aminonicotinate-Based Bifunctional Coordination Polymers by Merging 3d Metal Ions. Chemistry 2020; 26:13484-13498. [PMID: 32668065 DOI: 10.1002/chem.202002755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Indexed: 12/23/2022]
Abstract
Herein, the synthesis and study of bifunctional coordination polymers (CPs) with both magnetic and photoluminescence properties, derived from a heterometallic environment, are reported. As a starting point, three isostructural monometallic CPs with the formula [M(μ-2ani)2 ]n (MII =Mn (1Mn ), Co (3Co ) and Ni (4Ni ); 2ani=2-aminonicotinate), crystallise as chiral 2D-layered structures stacked by means of supramolecular interactions. These compounds show high thermal stability in the solid state (above 350 °C), despite which, in aqueous solution, compound 1Mn is shown to partially transform into a novel 1D chain CP with the formula [Mn(2ani)2 (μ-H2 O)2 ]n (2Mn ). A study of the direct current (dc) magnetic properties of 1Mn , 3Co and 4Ni reveals a spin-canted structure derived from antisymmetric antiferromagnetic weak exchanges along the chiral network (as confirmed by DFT calculations) and magnetic anisotropy of the ions, in such a way that long-range ordering is observed with variable magnitude for the spin carriers. Moreover, compounds 3Co and 4Ni show no frequency-dependent alternating current (ac) susceptibility curves under zero dc field; this is characteristic behaviour of a glassy state that may be partially supressed for 3Co by applying an external dc field. To overcome long-range magnetic ordering, CoII ions are diluted in a diamagnetic ZnII -based matrix, which enables single-molecule magnet behaviour. Interestingly, this strategy allows a bifunctional Cox Zn1-x 2ani material, which is imbued with a strong photoluminescent emitting capacity, as characterised by an intense blue light followed by a green afterglow, to be obtained.
Collapse
Affiliation(s)
- Oier Pajuelo-Corral
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jose Angel García
- Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | - Luis Lezama
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jose M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| |
Collapse
|
30
|
Slow Magnetic Relaxation in a One-Dimensional Coordination Polymer Constructed from Hepta-Coordinate Cobalt(II) Nodes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A one-dimensional coordination polymer was synthesized employing hepta-coordinate CoII as nodes and dicyanamide as linkers. Detailed direct current (DC) and alternating current (AC) magnetic susceptibility measurements reveal the presence of field-induced slow magnetic relaxation behavior of the magnetically isolated seven-coordinate CoII center with an easy-plane magnetic anisotropy. Detailed ab initio calculations were performed to understand the magnetic relaxation processes. To our knowledge, the reported complex represents the first example of slow magnetic relaxation in a one-dimensional coordination polymer constructed from hepta-coordinate CoII nodes and dicyanamide linkers.
Collapse
|
31
|
Stojičkov M, Sturm S, Čobeljić B, Pevec A, Jevtović M, Scheitler A, Radanović D, Senft L, Turel I, Andjelković K, Miehlich M, Meyer K, Ivanović‐Burmazović I. Cobalt(II), Zinc(II), Iron(III), and Copper(II) Complexes Bearing Positively Charged Quaternary Ammonium Functionalities: Synthesis, Characterization, Electrochemical Behavior, and SOD Activity. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marko Stojičkov
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Sabrina Sturm
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Božidar Čobeljić
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Andrej Pevec
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Mima Jevtović
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Andreas Scheitler
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Dušanka Radanović
- Institute of Chemistry Technology and Metallurgy University of Belgrade Njegoševa 12, P.O. Box 815 11000 Belgrade Serbia
| | - Laura Senft
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 1000 Ljubljana Slovenia
| | - Katarina Andjelković
- Faculty of Chemistry University of Belgrade Studentski trg 12‐16 11000 Belgrade Serbia
| | - Matthias Miehlich
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
| | - Ivana Ivanović‐Burmazović
- Department of Chemistry and Pharmacy Friedrich‐Alexander University Erlangen‐Nürnberg Egerlandstr. 1 91058 Erlangen Germany
- Department Chemie Ludwigs‐Maximilians‐Universität Butenandtstraße 5‐13 81377 München Germany
| |
Collapse
|
32
|
Hrubý J, Dvořák D, Squillantini L, Mannini M, van Slageren J, Herchel R, Nemec I, Neugebauer P. Co(II)-Based single-ion magnets with 1,1'-ferrocenediyl-bis(diphenylphosphine) metalloligands. Dalton Trans 2020; 49:11697-11707. [PMID: 32789384 DOI: 10.1039/d0dt01512a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we report on investigations of magnetic and spectroscopic properties of three heterobimetallic Fe(ii)-Co(ii) coordination compounds based on the tetracoordinate {CoP2X2} core encapsulated by dppf metalloligand, where X = Cl (1), Br (2), I (3), dppf = 1,1'-ferrocenediyl -bis(diphenylphosphine). The analysis of static magnetic data has revealed the presence of axial magnetic anisotropy in compounds (1) and (2) and this was further confirmed by high-frequency electron spin resonance (HF-ESR) spectroscopy. Dynamic magnetic data confirmed that (1) and (2) behave as field-induced Single-Ion Magnets (SIMs). Together with bulk studies, we have also tested the possibility of depositing (2) as thick films on Au(111), glass, and polymeric acetate by drop-casting as well as thermal sublimation, a key aspect for the development of future devices embedding these magnetic objects.
Collapse
Affiliation(s)
- J Hrubý
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| | - D Dvořák
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - L Squillantini
- Department of Chemistry "Ugo Schiff", University of Florence and INSTM Research Unit of Florence, via Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - M Mannini
- Department of Chemistry "Ugo Schiff", University of Florence and INSTM Research Unit of Florence, via Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - J van Slageren
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - R Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - I Nemec
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic. and Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77147 Olomouc, Czech Republic
| | - P Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.
| |
Collapse
|
33
|
Muddassir M, Alarifi A, Afzal M, Alowais A, Abduh NAY. Mononuclear High‐spin Octahedral Cobalt(II) Complex with Positive Axial Magnetic Anisotropy: Synthesis, Crystal Structure, and DFT Studies. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mohd Muddassir
- Catalytic Chemistry Research Chair Department of Chemistry King Saud University 11451 Riyadh Saudi Arabia
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair Department of Chemistry King Saud University 11451 Riyadh Saudi Arabia
| | - Mohd Afzal
- Catalytic Chemistry Research Chair Department of Chemistry King Saud University 11451 Riyadh Saudi Arabia
| | - Ahmad Alowais
- Catalytic Chemistry Research Chair Department of Chemistry King Saud University 11451 Riyadh Saudi Arabia
| | - Naaser A. Y. Abduh
- Catalytic Chemistry Research Chair Department of Chemistry King Saud University 11451 Riyadh Saudi Arabia
| |
Collapse
|
34
|
Yao B, Singh MK, Deng YF, Wang YN, Dunbar KR, Zhang YZ. Trigonal Prismatic Cobalt(II) Single-Ion Magnets: Manipulating the Magnetic Relaxation Through Symmetry Control. Inorg Chem 2020; 59:8505-8513. [DOI: 10.1021/acs.inorgchem.0c00950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Binling Yao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Mukesh Kumar Singh
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yi-Fei Deng
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi-Nuo Wang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Kim R. Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Yuan-Zhu Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
35
|
Huang XC, Li JX, Chen YZ, Wang WY, Xu R, Tao JX, Shao D, Zhang YQ. Tuning Magnetic Anisotropy in a Class of Co(II) Bis(hexafluoroacetylacetonate) Complexes. Chem Asian J 2020; 15:1469-1477. [PMID: 32202396 DOI: 10.1002/asia.201901625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/21/2020] [Indexed: 11/10/2022]
Abstract
Tuning the magnetic anisotropy of metal ions remains highly interesting in the design of improved single-molecule magnets (SMMs). We herein report synthetic, structural, magnetic, and computational studies of four mononuclear CoII complexes, namely [Co(hfac)2 (MeCN)2 ] (1), [Co(hfac)2 (Spy)2 ] (2), [Co(hfac)2 (MBIm)2 ] (3), and [Co(hfac)2 (DMF)2 ] (4) (MeCN=acetonitrile, hfac=hexafluoroacetylacetone, Spy=4-styrylpyridine, MbIm=5,6-dimethylbenzimidazole, DMF=N,N-dimethylformamide), with distorted octahedral geometry constructed from hexafluoroacetylacetone (hfac) and various axial ligands. By a building block approach, complexes 2-4 were synthesized by recrystallization of the starting material of 1 from various ligands containing solution. Magnetic and theoretical studies reveal that 1-4 possess large positive D values and relative small E parameters, indicating easy-plane magnetic anisotropy with significant rhombic anisotropy in 1-4. Dynamic alternative current (ac) magnetic susceptibility measurements indicate that these complexes exhibit slow magnetic relaxation under external fields, suggesting field-induced single-ion magnets (SIMs) of 1-4. These results provide a promising platform to achieve fine tuning of magnetic anisotropy through varying the axial ligands based on Co(II) bis(hexafluoroacetylacetonate) complexes.
Collapse
Affiliation(s)
- Xing-Cai Huang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Jia-Xin Li
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Yong-Zhi Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Wen-Yan Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Rui Xu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Jin-Xia Tao
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
36
|
Drahoš B, Císařová I, Laguta O, Santana VT, Neugebauer P, Herchel R. Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with a macrocyclic ligand containing two benzimidazolyl N-pendant arms. Dalton Trans 2020; 49:4425-4440. [PMID: 32176762 DOI: 10.1039/d0dt00166j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A structurally new heptadentate derivative of a 15-membered pyridine-based macrocycle containing two benzimidazol-2-yl-methyl N-pendant arms (L = 3,12-bis((1H-benzimidazol-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) was synthesized and its complexes with the general formula [M(L)](ClO4)2·1.5CH3NO2 (M = MnII (1), FeII (2), CoII (3) and NiII (4)) were thoroughly investigated. X-ray crystal structures confirmed that all complexes are seven-coordinate with axially compressed pentagonal bipyramidal geometry having the largest distortion for NiII complex 4. FeII, CoII and NiII complexes 2, 3 and 4 show rather large magnetic anisotropy manifested by moderate to high obtained values of the axial zero-field splitting parameter D (7.9, 40.3, and -17.2 cm-1, respectively). Magneto-structural correlation of the FeII, CoII and NiII complexes with L and with previously studied structurally similar ligands revealed a significant impact of the functional group in pendant arms on the magnetic anisotropy especially that of the CoII and NiII complexes and some recommendations concerning the ligand-field design important for anisotropy tuning in future. Furthermore, complex 3 showed field-induced single-molecule magnet behavior described with the Raman (C = 507 K-n s-1 for n = 2.58) relaxation process. The magnetic properties of the studied complexes were supported by theoretical calculations, which very well correspond with the experimental data of magnetic anisotropy. Electrochemical measurements revealed high positive redox potentials for M3+/2+ couples and high negative redox potentials for M2+/+ couples, which indicate the stabilization of the oxidation state +ii expected for the σ-donor/π-acceptor ability of benzimidazole functional groups.
Collapse
Affiliation(s)
- Bohuslav Drahoš
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague, Czech Republic
| | - Oleksii Laguta
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Vinicius T Santana
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Petr Neugebauer
- Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200, Brno, Czech Republic
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
37
|
Su QQ, Fan K, Huang XD, Xiang J, Cheng SC, Ko CC, Zheng LM, Kurmoo M, Lau TC. Field-induced slow magnetic relaxation in low-spin S = 1/2 mononuclear osmium(v) complexes. Dalton Trans 2020; 49:4084-4092. [PMID: 32134093 DOI: 10.1039/d0dt00295j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photochemical reactions of (PPh4)[OsVI(N)(L)(CN)3] (NO2-OsN) with piperidine and pyrrolidine afforded two osmium(v) hydrazido compounds, (PPh4)[OsV(L)(CN)3(NNC5H10)] ([PPh4]1) and (PPh4)[OsV(L)(CN)3(NNC4H8)] ([PPh4]2), respectively. Their structures consist of isolated, mononuclear distorted octahedral osmium anions that are well-separated from each other by PPh4+. Their low spin S = 1/2 and L = 1 ground state was confirmed by magnetometry and DFT calculations. Interestingly, both compounds exhibit slow magnetic relaxation under a bias dc-field. These osmium(v) complexes are potentially useful building-blocks for the construction of molecule-based architectures with interesting magnetic properties. In contrast, the structurally related (PPh4)[OsIII(L)(CN)3(NH3)] ([PPh4]3), which also has a low-spin S = 1/2 ground state but with a different electronic configuration (5d5), does not exhibit slow magnetic relaxation, due to the absence of any orbital moment (L = 0). Furthermore, the structurally different osmium(v) hydrazido compound reported by Meyer, [OsV(tpy)(Cl)2(NNC5H10)](PF6) (4[PF6]), also does not exhibit slow magnetic relaxation due possibly to a change in magnetic anisotropy from axial for [PPh4]1 and [PPh4]2 to planar.
Collapse
Affiliation(s)
- Qian-Qian Su
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China.
| | - Kun Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, P. R. China.
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Mohamedally Kurmoo
- Institut de Chimie, Université de Strasbourg, CNRS-UMR7177, 4 rue Blaise Pascal, Strasbourg Cedex 67007, France
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
38
|
Zhang YJ, Yin L, Li J, Hu ZB, Ouyang ZW, Song Y, Wang Z. Synthesis, crystal structures, HF-EPR, and magnetic properties of six-coordinate transition metal (Co, Ni, and Cu) compounds with a 4-amino-1,2,4-triazole Schiff-base ligand. RSC Adv 2020; 10:12833-12840. [PMID: 35492139 PMCID: PMC9051221 DOI: 10.1039/c9ra10851c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
We have synthesized a series of transition metal compounds [M(L)2(H2O)2] (M = Co (1), Ni (2), and Cu (3)) by using the 4-amino-1,2,4-triazole Schiff-base ligand via the hydrothermal methods. They are all mononuclear compounds with the octahedral geometry. Direct-current magnetic and HF-EPR measurements were combined to reveal the negative D values (-28.78 cm-1, -10.79 cm-1) of complexes 1 and 2, showing the easy-axis magnetic anisotropies of compounds 1 and 2. Applying a dc field of 800 Oe at 2.0 K, the slow magnetic relaxation effects were observed in compound 1, which is a remarkable feature of single-ion magnets.
Collapse
Affiliation(s)
- Ya-Jie Zhang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Lei Yin
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Jing Li
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| |
Collapse
|
39
|
Hu ZB, Feng X, Li J, Zhang YQ, Yin L, Wang Z, Ouyang Z, Kurmoo M, Song Y. Optimal diamagnetic dilution concentration for suppressing the dipole-dipole interaction in single-ion magnets. Dalton Trans 2020; 49:2159-2167. [PMID: 31994553 DOI: 10.1039/c9dt04403e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of screening the CoII moment of monomeric [CoIIL2(H2O)] (L = 8-hydroxyquinaldine), having a trigonal bipyramid coordination, by diamagnetic Zn in CoxZn1-x solid solutions on its magnetic relaxation was explored using ac-susceptibility, high-field electron-spin-resonance measurements and CASPT2 calculations. The retention of the crystal structure for all the solid solutions was demonstrated using single crystal diffraction. The dc-magnetization and theoretical fittings of the susceptibility for Co1 and Co0.1Zn0.9 gave a large zero-field-splitting (ZFS) D of 50 ± 6 cm-1, and very weak dipole interaction between the nearest neighbors, while EPR and calculations confirmed the positive sign of the axial component (D). Consistent parameters were obtained from experiments and theory. Importantly, only field-induced relaxation was observed for the samples with less than 50% Co and a gradual change in the barrier energy to moment reversal and relaxation times was observed between 11% and 20% Co, while both were enhanced for higher dilutions. The results establish a clear barrier for extending the longevity of the magnetism for this type of single-ion species by lowering the intramolecular interactions. The results suggest that the magnetic interaction persists up to the second sphere, that is, for a dilution of 1 in 9 (11% Co). Importantly, this method is applicable to all single-ion magnet systems, that is, the optimum dilution concentration to restrain the dipole field can be given only by the single crystal structure.
Collapse
Affiliation(s)
- Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brachňaková B, Matejová S, Moncol J, Herchel R, Pavlik J, Moreno-Pineda E, Ruben M, Šalitroš I. Stereochemistry of coordination polyhedra vs. single ion magnetism in penta- and hexacoordinated Co(ii) complexes with tridentate rigid ligands. Dalton Trans 2020; 49:1249-1264. [PMID: 31904039 DOI: 10.1039/c9dt04592a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tridentate ligand L (2,6-bis(1-(3,5-di-tert-butylbenzyl)-1H-benzimidazol-2-yl)pyridine) was synthesized and used for the preparation of three pentacoordinated Co(ii) complexes of formula [Co(L)X2] (where X = NCS- for 1, X = Cl- for 2 and X = Br- for 3) and one ionic compound 4 ([Co(L)2]Br2·2CH3OH·H2O) containing a hexacoordinated Co(ii) centre. Static magnetic data were analysed with respect to the spin (1-3) or the Griffith-Figgis (4) Hamiltonian. Ab initio calculations enable us to identify the positive axial magnetic anisotropy parameter D accompanied by a significant degree of rhombicity in the reported complexes. Also, magneto-structural correlation was outlined for this class of compounds. Moreover, all four compounds exhibit slow relaxation of magnetisation at an applied static magnetic field with either both low- and high-frequency relaxation channels (3) or a single high-frequency relaxation process (1, 2 and 4). The interplay between the stereochemistry of coordination polyhedra, magnetic anisotropy and the relaxation processes was investigated and discussed in detail.
Collapse
Affiliation(s)
- Barbora Brachňaková
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Simona Matejová
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ján Pavlik
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia.
| | - Eufemio Moreno-Pineda
- Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, Karlsruhe 76021, Germany
| | - Mario Ruben
- Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, Karlsruhe 76021, Germany and Institute de Physique et Chimie de Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, 23, rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia. and Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic and Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
41
|
Bretosh K, Béreau V, Duhayon C, Pichon C, Sutter JP. A ferromagnetic Ni( ii)–Cr( iii) single-chain magnet based on pentagonal bipyramidal building units. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01489f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of a ferromagnetic Ni(ii)–Cr(iii) single-chain magnet fashioned using pentagonal bipyramidal Ni(ii) complexes with Ising-type anisotropy.
Collapse
Affiliation(s)
- Kateryna Bretosh
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Virginie Béreau
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| | - Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS)
- Université de Toulouse
- CNRS
- Toulouse
- France
| |
Collapse
|
42
|
Świtlicka A, Machura B, Kruszynski R, Moliner N, Carbonell JM, Cano J, Lloret F, Julve M. Magneto-structural diversity of Co(ii) compounds with 1-benzylimidazole induced by linear pseudohalide coligands. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00752h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magneto-structural diversity of 1-benzylimidazole-containing cobalt(ii) compounds with linear pseudohalide ions (NCS−, NCO−, and N3−) is explored.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Rafał Kruszynski
- Department of X-ray Crystallography and Crystal Chemistry
- Institute of General and Ecological Chemistry
- Lodz University of Technology
- 90-924 Łodz
- Poland
| | - Nicolás Moliner
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - José Miguel Carbonell
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
43
|
Qiu YR, Li B, Zhou Y, Su J, Ge JY. Pillar–template strategy switching the redox activity and magnetic properties of trisphenylamine-based coordination polymers. CrystEngComm 2020. [DOI: 10.1039/d0ce00256a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A pillar–template strategy was used to modify the redox activity and magnetic properties of trisphenylamine-based coordination polymers via a single-crystal-to-single-crystal transformation method.
Collapse
Affiliation(s)
- Ya-Ru Qiu
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Nanjing University
- Nanjing 210093
| | - Bang Li
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Nanjing University
- Nanjing 210093
| | - Yan Zhou
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Nanjing University
- Nanjing 210093
| | - Jian Su
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing National Laboratory of Microstructures
- Nanjing University
- Nanjing 210093
| | - Jing-Yuan Ge
- College of Chemistry & Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| |
Collapse
|
44
|
Yi G, Cui H, Zhang C, Zhao W, Chen L, Zhang YQ, Chen XT, Song Y, Yuan A. A capped trigonal prismatic cobalt(ii) complex as a structural archetype for single-ion magnets. Dalton Trans 2020; 49:2063-2067. [DOI: 10.1039/c9dt04881b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mononuclear, seven-coordinate complex [CoII(BPA-TPA)](BF4)2 (BPA-TPA = pentapyidyldiamine) display field-induce slow magnetic relaxation, thereby presenting the first report of SIMs based on 3d metal ions with a capped trigonal prismatic geometry.
Collapse
Affiliation(s)
- Gangji Yi
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Huihui Cui
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Chunyang Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Wen Zhao
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - You Song
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| |
Collapse
|
45
|
Yi G, Zhang C, Zhao W, Cui H, Chen L, Wang Z, Chen XT, Yuan A, Liu YZ, Ouyang ZW. Structure, magnetic anisotropy and relaxation behavior of seven-coordinate Co(ii) single-ion magnets perturbed by counter-anions. Dalton Trans 2020; 49:7620-7627. [DOI: 10.1039/d0dt01232g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A series of mononuclear seven-coordinate complexes with the same coordination unit [Co(BPA-TPA)]2+ (BPA-TPA = pentapyidyldiamine) display the different slow magnetic relaxation processes perturbed by the variation of the counter anions.
Collapse
Affiliation(s)
- Gangji Yi
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Chunyang Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Wen Zhao
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Huihui Cui
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center& School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- P. R. China
| | - Yuan-Zhong Liu
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
- Jinan Guoke Medical Technology Development Co
| | - Zhong-Wen Ouyang
- Wuhan National High Magnetic Field Center& School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|
46
|
Huang XC, Xu R, Chen YZ, Zhang YQ, Shao D. Two Four-Coordinate and Seven-Coordinate Co II Complexes Based on the Bidentate Ligand 1, 8-Naphthyridine Showing Slow Magnetic Relaxation Behavior. Chem Asian J 2019; 15:279-286. [PMID: 31793204 DOI: 10.1002/asia.201901395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/30/2019] [Indexed: 12/11/2022]
Abstract
For a long time, the cobalt(II) complex ([Co(napy)4 ](ClO4 )2 ) (napy=1, 8-naphthyridine) has been considered as an eight-coordinate complex without any structural proof. After careful considerations, two complexes [Co(napy)2 Cl2 ] (1) and [Co(napy)4 ](ClO4 )2 (2) based on the bidentate ligand napy were synthesized and structurally characterized. X-ray single-crystal structural determination showed that the cobalt(II) center in [Co(napy)2 Cl2 ] (1) is four-coordinate with a tetrahedral geometry (Td ), while [Co(napy)4 ](ClO4 )2 (2) is seven-coordinate rather than eight-coordinate with a capped trigonal prism geometry (C2v ). Direct-current (dc) magnetic data revealed that complexes 1 and 2 possess positive zero-field splitting (ZFS) parameters of 11.08 and 25.30 cm-1 , respectively, with easy-plane magnetic anisotropy. Alternating current(ac) susceptibility measurements revealed that both complexes showed slow magnetic relaxation behaviour. Theoretical calculations demonstrated that the presence of easy-plane magnetic anisotropy (D>0) for complexes 1 and 2 is in agreement with the experimental data. Furthermore, these results pave the way to obtain four-coordinate and seven-coordinate cobalt(II) single-ion magnets (SIMs) by using a bidentate ligand.
Collapse
Affiliation(s)
- Xing-Cai Huang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Rui Xu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Yong-Zhi Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Dong Shao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
47
|
Vallejo J, Viciano-Chumillas M, Lloret F, Julve M, Castro I, Krzystek J, Ozerov M, Armentano D, De Munno G, Cano J. Coligand Effects on the Field-Induced Double Slow Magnetic Relaxation in Six-Coordinate Cobalt(II) Single-Ion Magnets (SIMs) with Positive Magnetic Anisotropy. Inorg Chem 2019; 58:15726-15740. [PMID: 31738531 DOI: 10.1021/acs.inorgchem.9b01719] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two mononuclear cobalt(II) compounds of formula [Co(dmphen)2(OOCPh)]ClO4·1/2H2O·1/2CH3OH (1) and [Co(dmbipy)2(OOCPh)]ClO4 (2) (dmphen = 2,9-dimethyl-1,10-phenanthroline, dmbipy = 6,6'-dimethyl-2,2'-bipyridine and HOOCPh = benzoic acid) are prepared and magnetostructurally investigated. Each cobalt(II) ion is six-coordinate with a distorted octahedral CoN4O2 environment. The complex cations are interlinked leading to supramolecular chains (1) and pairs (2) that grow along the crystallographic c-axis with racemic mixtures of (Δ,Λ)-Co units. FIRMS allowed us to directly measure the zero-field splitting between the two lowest Kramers doublets, which led to axial anisotropy values of 58.3 cm-1 ≤ D < 60.7 cm-1 (1) and 63.8 cm-1 ≤ D < 64.1 cm-1 (2). HFEPR spectra of polycrystalline samples of 1 and 2 at low temperatures confirm the positive sign of D and provide an estimate of the E/D quotient [0.147/0.187 (1) and 0.052 (2)]. Detailed ac and dc magnetic studies reveal that 1 and 2 are new examples of field-induced single-ion magnets (SIMs) with small transversal anisotropy. CASSCF/NEVPT2 calculations support these results. Two Orbach processes or one Orbach plus a direct relaxation mechanism provide similar agreements with the nonlinear experimental Arrhenius plots at Hdc = 500 and 2500 G for 1. Two independent relaxation processes occur in 2, but in contrast to 1, an observed linear dependence of ln(τ) vs 1/T substantiates Orbach processes against the most widely proposed Raman and direct mechanisms. The analysis of each relaxation process in 2 provided values for Ea and τ0 that are very close to those found for 1, validating the predominant role of the Orbach relaxations in both compounds and, probably, also in other cobalt(II) SIMs. A mechanism based on a spin-phonon coupling is proposed to account for the SIM behavior in 1 and 2 with any Raman or direct processes being discarded.
Collapse
Affiliation(s)
- Julia Vallejo
- Institut de Ciència Molecular (ICMol) and Departament de Química Inorgànica , Universitat de València , 46980 Paterna , València
| | - Marta Viciano-Chumillas
- Institut de Ciència Molecular (ICMol) and Departament de Química Inorgànica , Universitat de València , 46980 Paterna , València
| | - Francisco Lloret
- Institut de Ciència Molecular (ICMol) and Departament de Química Inorgànica , Universitat de València , 46980 Paterna , València
| | - Miguel Julve
- Institut de Ciència Molecular (ICMol) and Departament de Química Inorgànica , Universitat de València , 46980 Paterna , València
| | - Isabel Castro
- Institut de Ciència Molecular (ICMol) and Departament de Química Inorgànica , Universitat de València , 46980 Paterna , València
| | - J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Donatella Armentano
- Dipartamento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Rende , Cosenza Italy
| | - Giovanni De Munno
- Dipartamento di Chimica e Tecnologie Chimiche , Università della Calabria , 87036 Rende , Cosenza Italy
| | - Joan Cano
- Institut de Ciència Molecular (ICMol) and Departament de Química Inorgànica , Universitat de València , 46980 Paterna , València
| |
Collapse
|
48
|
Zorina LV, Simonov SV, Sasnovskaya VD, Talantsev AD, Morgunov RB, Mironov VS, Yagubskii EB. Slow Magnetic Relaxation, Antiferromagnetic Ordering, and Metamagnetism in Mn II (H 2 dapsc)-Fe III (CN) 6 Chain Complex with Highly Anisotropic Fe-CN-Mn Spin Coupling. Chemistry 2019; 25:14583-14597. [PMID: 31361924 DOI: 10.1002/chem.201902551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Indexed: 11/07/2022]
Abstract
Reactions of [Mn(H2 dapsc)Cl2 ]⋅H2 O (dapsc=2,6- diacetylpyridine bis(semicarbazone)) with K3 [Fe(CN)6 ] and (PPh4 )3 [Fe(CN)6 ] lead to the formation of the chain polymeric complex {[Mn(H2 dapsc)][Fe(CN)6 ][K(H2 O)3.5 ]}n ⋅1.5n H2 O (1) and the discrete pentanuclear complex {[Mn(H2 dapsc)]3 [Fe(CN)6 ]2 (H2 O)2 }⋅4 CH3 OH⋅3.4 H2 O (2), respectively. In the crystal structure of 1 the high-spin [MnII (H2 dapsc)]2+ cations and low-spin hexacyanoferrate(III) anions are assembled into alternating heterometallic cyano-bridged chains. The K+ ions are located between the chains and are coordinated by oxygen atoms of the H2 dapsc ligand and water molecules. The magnetic structure of 1 is built from ferrimagnetic chains, which are antiferromagnetically coupled. The complex exhibits metamagnetism and frequency-dependent ac magnetic susceptibility, indicating single-chain magnetic behavior with a Mydosh-parameter φ=0.12 and an effective energy barrier (Ueff /kB ) of 36.0 K with τ0 =2.34×10-11 s for the spin relaxation. Detailed theoretical analysis showed highly anisotropic intra-chain spin coupling between [FeIII (CN)6 ]3- and [MnII (H2 dapsc)]2+ units resulting from orbital degeneracy and unquenched orbital momentum of [FeIII (CN)6 ]3- complexes. The origin of the metamagnetic transition is discussed in terms of strong magnetic anisotropy and weak AF interchain spin coupling.
Collapse
Affiliation(s)
- Leokadiya V Zorina
- Institute of Solid State Physics, Russian Academy of Sciences, Academician Ossipyan Str. 2, Chernogolovka MD, Russia
| | - Sergey V Simonov
- Institute of Solid State Physics, Russian Academy of Sciences, Academician Ossipyan Str. 2, Chernogolovka MD, Russia
| | - Valentina D Sasnovskaya
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov's av. 1, Chernogolovka, MD, Russia
| | - Artem D Talantsev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov's av. 1, Chernogolovka, MD, Russia
| | - Roman B Morgunov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov's av. 1, Chernogolovka, MD, Russia
| | - Vladimir S Mironov
- Shubnikov Institute of Crystallography of Federal Scientific Research, Centre "Crystallography and Photonics", Russian Academy of Sciences, Leninskii av. 59, Moscow, Russia
| | - Eduard B Yagubskii
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Semenov's av. 1, Chernogolovka, MD, Russia
| |
Collapse
|
49
|
A Series of Field-Induced Single-Ion Magnets Based on the Seven-Coordinate Co(II) Complexes with the Pentadentate (N3O2) H2dapsc Ligand. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5040058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A series of five new mononuclear pentagonal bipyramidal Co(II) complexes with the equatorial 2,6-diacetylpyridine bis(semicarbazone) ligand (H2dapsc) and various axial pseudohalide ligands (SCN, SeCN, N(CN)2, C(CN)3, and N3) was prepared and structurally characterizated: [Co(H2dapsc)(SCN)2]∙0.5C2H5OH (1), [Co(H2dapsc)(SeCN)2]∙0.5C2H5OH (2), [Co(H2dapsc)(N(CN)2)2]∙2H2O (3), [Co(H2dapsc)(C(CN)3)(H2O)](NO3)∙1.16H2O (4), and {[Co(H2dapsc)(H2O)(N3)][Co(H2dapsc)(N3)2]}N3∙4H2O (5). The combined analyses of the experimental DС and AC magnetic data of the complexes (1–5) and two other earlier described those of this family [Co(H2dapsc)(H2O)2)](NO3)2∙2H2O (6) and [Co(H2dapsc)(Cl)(H2O)]Cl∙2H2O (7), their theoretical description and the ab initio CASSCF/NEVPT2 calculations reveal large easy-plane magnetic anisotropies for all complexes (D = + 35 − 40 cm‒1). All complexes under consideration demonstrate slow magnetic relaxation with dominant Raman and direct spin–phonon processes at static magnetic field and so they belong to the class of field-induced single-ion magnets (SIMs).
Collapse
|
50
|
Diego R, Pavlov A, Darawsheh M, Aleshin D, Nehrkorn J, Nelyubina Y, Roubeau O, Novikov V, Aromí G. Coordination [Co II2] and [Co IIZn II] Helicates Showing Slow Magnetic Relaxation. Inorg Chem 2019; 58:9562-9566. [PMID: 31283191 DOI: 10.1021/acs.inorgchem.9b01334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The slow magnetic relaxation of CoII ions in the elusive intermediate geometry between the trigonal prism and antiprism has been studied on the new [Co2L3]4+ and [CoZnL3]4+ coordination helicates [L is a bis(pyrazolylpyridine) ligand]. Solution paramagnetic 1H NMR and solid-state magnetization measurements unveil single-molecule-magnet behavior with small axial anisotropy, as predicted previously.
Collapse
Affiliation(s)
- Rosa Diego
- Departament de Química Inorgànica i Orgànica , Universitat de Barcelona , Diagonal 645 , 08028 Barcelona , Spain.,Institute of Nanoscience and Nanotechnology of the Unirvesity of Barcelona (IN2UB) , Barcelona , Spain
| | - Alexander Pavlov
- A. N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilova strasse 28 , Moscow , Russia.,Moscow Institute of Physics and Technology , Institutskiy per. 9, Dolgoprudny, Moscow , Russia
| | - Mohanad Darawsheh
- Departament de Química Inorgànica i Orgànica , Universitat de Barcelona , Diagonal 645 , 08028 Barcelona , Spain
| | - Dmitry Aleshin
- A. N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilova strasse 28 , Moscow , Russia.,Mendeleev University of Chemical Technology of Russia , Miusskaya sq. 9 , 125047 Moscow , Russia
| | - Joscha Nehrkorn
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany
| | - Yulia Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilova strasse 28 , Moscow , Russia.,Moscow Institute of Physics and Technology , Institutskiy per. 9, Dolgoprudny, Moscow , Russia
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA) , CSIC and Universidad de Zaragoza , 50009 Zaragoza , Spain
| | - Valentin Novikov
- A. N. Nesmeyanov Institute of Organoelement Compounds , Russian Academy of Sciences , Vavilova strasse 28 , Moscow , Russia.,Moscow Institute of Physics and Technology , Institutskiy per. 9, Dolgoprudny, Moscow , Russia
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica , Universitat de Barcelona , Diagonal 645 , 08028 Barcelona , Spain.,Institute of Nanoscience and Nanotechnology of the Unirvesity of Barcelona (IN2UB) , Barcelona , Spain
| |
Collapse
|