1
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
2
|
Kirakci K, Shestopalov MA, Lang K. Recent developments on luminescent octahedral transition metal cluster complexes towards biological applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Treherne JM, Miller AF. Novel hydrogels: are they poised to transform 3D cell-based assay systems in early drug discovery? Expert Opin Drug Discov 2023; 18:335-346. [PMID: 36722285 DOI: 10.1080/17460441.2023.2175813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Success in drug discovery remains unpredictable. However, more predictive and relevant disease models are becoming pivotal to demonstrating the clinical benefits of new drugs earlier in the lengthy drug discovery process. Novel hydrogel scaffolds are being developed to transform the relevance of such 3D cell-based in vitro assay systems. AREAS COVERED Most traditional hydrogels are still of unknown composition and suffer significant batch-to-batch variations, which lead to technical constraints. This article looks at how a new generation of novel synthetic hydrogels that are based on self-assembling peptides are poised to transform 3D cell-based assay systems by improving their relevance, reproducibility and scalability. EXPERT OPINION The emerging advantages of using these novel hydrogels for human 3D screening assays should enable the discovery of more cost-effective drugs, leading to improved patient benefits. Such a disruptive change could also reduce the considerable time lag from obtaining in vitro assay data to initiating clinical trials. There is now a sufficient body of data available in the literature to enable this ambition to become a reality by significantly improving the predictive validity of 3D cell-based assays in early drug discovery. Novel hydrogels are key to unlocking the full potential of these assay systems.
Collapse
Affiliation(s)
- J Mark Treherne
- Talisman Therapeutics Ltd, Jonas Webb Building and Cell Guidance Sysyems Ltd, Babraham Research Campus, Cambridge, UK
| | - Aline F Miller
- Manchester Institute of Biotechnology, School of Engineering, The University of Manchester, Oxford Road, Manchester, UK
| |
Collapse
|
4
|
de la Torre C, Gavara R, García-Fernández A, Mikhaylov M, Sokolov MN, Miravet JF, Sancenón F, Martínez-Máñez R, Galindo F. Enhancement of photoactivity and cellular uptake of (Bu 4N) 2[Mo 6I 8(CH 3COO) 6] complex by loading on porous MCM-41 support. Photodynamic studies as an anticancer agent. BIOMATERIALS ADVANCES 2022; 140:213057. [PMID: 36007463 DOI: 10.1016/j.bioadv.2022.213057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022]
Abstract
The incorporation by ionic assembly of the hexanuclear molybdenum cluster (Bu4N)2[Mo6I8(CH3CO2)6] (1) in amino-decorated mesoporous silica nanoparticles MCM-41, has yielded the new molybdenum-based hybrid photosensitizer 1@MCM-41. The new photoactive material presents a high porosity, due to the intrinsic high specific surface area of MCM-41 nanoparticles (989 m2 g-1) which is responsible for the good dispersion of the hexamolybdenum clusters on the nanoparticles surface, as observed by STEM analysis. The hybrid photosensitizer can generate efficiently singlet oxygen, which was demonstrated by using the benchmark photooxygenation reaction of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA) in water. The photodynamic therapy activity has been tested using LED light as an irradiation source (λirr ~ 400-700 nm; 15.6 mW/cm2). The results show a good activity of the hybrid photosensitizer against human cervical cancer (HeLa) cells, reducing up to 70 % their viability after 20 min of irradiation, whereas low cytotoxicity is detected in the darkness. The main finding of this research is that the incorporation of molybdenum complexes at porous MCM-41 supports enhances their photoactivity and improves cellular uptake, compared to free clusters.
Collapse
Affiliation(s)
- Cristina de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain
| | - Raquel Gavara
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Maxim Mikhaylov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Juan F Miravet
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València - Universidad de Valencia, Departamento de Química Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, IIS La Fe, Valencia, Spain.
| | - Francisco Galindo
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain.
| |
Collapse
|
5
|
Mikhailov MA, Berezin AS, Sukhikh TS, Sheven’ DG, Gushchin AL, Sokolov MN. PROPIOLATE CLUSTER COMPLEXES (Bu4N)2[Mo6X8(OOC–C≡CH)6] (X = Br, I). J STRUCT CHEM+ 2021. [DOI: 10.1134/s002247662112009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Mironova A, Gushchin A, Abramov P, Eltsov I, Ryadun A, Sokolov M. [Mo6I8]4+ complexes with tetrazolate ligands: [3+2] cycloaddition of aromatic nitriles to [Mo6I8(N3)6]2−. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Khazieva A, Kholin K, Nizameev I, Brylev K, Kashnik I, Voloshina A, Lyubina A, Gubaidullin A, Daminova A, Petrov K, Mustafina A. Surface modification of silica nanoparticles by hexarhenium anionic cluster complexes for pH-sensing and staining of cell nuclei. J Colloid Interface Sci 2021; 594:759-769. [PMID: 33789187 DOI: 10.1016/j.jcis.2021.03.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The surface deposition of luminescent anionic cluster complex [{Re6S8}(OH)6]4- advantages to the design and synthesis of composite luminescent silica nanoparticles (SNs) for intracellular imaging and sensing, while the encapsulation of the cluster units into SNs lacks for efficient luminescence. The deposition of the Re6 clusters resulted from their assembly at the silica surface functionalized by amino-groups provides the synthetic route for the composite SNs with bright cluster-centered luminescence invariable in pH range from 4.0 to 12.0. The pH-dependent supramolecular assembly of the cluster units with polyethyleneimine (PEI) at the silica surface is an alternative route for the synthesis of the composite SNs with high cluster-centered luminescence sensitive to pH-changes within 4.0-6.0. The sensitivity derives from the pH-driven conformational changes of PEI chains resulting in the release of the clusters from the PEI-based confinement under the acidification within pH 6.0-4.0. The potential of the composite SNs in cellular contrasting has been also revealed by the cell viability and flow cytometry measurements. It has been found that the PEI-supported embedding of the cluster units facilitates cell internalization of the composite SNs as well as results in specific intracellular distribution manifested by efficient staining of the cell nuclei in the confocal images.
Collapse
Affiliation(s)
- Alsu Khazieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation.
| | - Kirill Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Irek Nizameev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Konstantin Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Ilya Kashnik
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, Russian Federation
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Anna Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Aidar Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Amina Daminova
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russian Federation
| | - Konstantin Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov str., 420088 Kazan, Russian Federation
| |
Collapse
|
8
|
Novikova ED, Vorotnikov YA, Nikolaev NA, Tsygankova AR, Shestopalov MA, Efremova OA. Synergetic Effect of Mo
6
Clusters and Gold Nanoparticles on the Photophysical Properties of Both Components. Chemistry 2021; 27:2818-2825. [DOI: 10.1002/chem.202004618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Evgeniya D. Novikova
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad. Lavrentiev ave. 630090 Novosibirsk Russian Federation
| | - Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad. Lavrentiev ave. 630090 Novosibirsk Russian Federation
| | - Nazar A. Nikolaev
- Institute of Automation and Electrometry SB RAS 1 Acad. Koptyuga ave. 630090 Novosibirsk Russian Federation
| | - Alphiya R. Tsygankova
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad. Lavrentiev ave. 630090 Novosibirsk Russian Federation
| | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 Acad. Lavrentiev ave. 630090 Novosibirsk Russian Federation
| | - Olga A. Efremova
- Scientific Institute of Clinical and Experimental Lymphology, branch of ICG SB RAS 2 Timakova str. 630060 Novosibirsk Russian Federation
- Federal Research Center of Fundamental and Translational Medicine 2 Timakova str. 630117 Novosibirsk Russian Federation
- School of Mathematics and Physical Sciences University of Hull Cottingham Road HU6 7RX Hull UK
| |
Collapse
|
9
|
Fedorenko S, Elistratova J, Stepanov A, Khazieva A, Mikhailov M, Sokolov M, Kholin K, Nizameev I, Mendes R, Rümmeli M, Gemming T, Weise B, Giebeler L, Mikhailova D, Dutz S, Zahn D, Voloshina A, Sapunova A, Daminova A, Fedosimova S, Mustafina A. ROS-generation and cellular uptake behavior of amino-silica nanoparticles arisen from their uploading by both iron-oxides and hexamolybdenum clusters. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111305. [DOI: 10.1016/j.msec.2020.111305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022]
|
10
|
López-López N, Muñoz Resta I, de Llanos R, Miravet JF, Mikhaylov M, Sokolov MN, Ballesta S, García-Luque I, Galindo F. Photodynamic Inactivation of Staphylococcus aureus Biofilms Using a Hexanuclear Molybdenum Complex Embedded in Transparent polyHEMA Hydrogels. ACS Biomater Sci Eng 2020; 6:6995-7003. [DOI: 10.1021/acsbiomaterials.0c00992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Noelia López-López
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Ignacio Muñoz Resta
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Rosa de Llanos
- Unidad Predepartamental de Medicina, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Juan F. Miravet
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| | - Maxim Mikhaylov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Sofía Ballesta
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Av. De Sanchéz Pizjuán s/n, 41009 Sevilla, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel García-Luque
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Av. De Sanchéz Pizjuán s/n, 41009 Sevilla, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI RD16/0016/0001), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Galindo
- Departamento de Química Inórganica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castellón, Spain
| |
Collapse
|
11
|
Fuhrmann A, Pachel F, Ströbele M, Enseling D, Jüstel T, Meyer H. Synthesis, Crystal Structure, and Luminescence of Metal Iodide Cluster Compounds (
n
Bu
4
N)
2
[
M
6
I
8
(NCO)
6
] with
M
= Mo, W. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Arin‐Daniel Fuhrmann
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Florian Pachel
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Markus Ströbele
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - David Enseling
- Department of Chemical Engineering Münster University of Applied Sciences Stegerwaldstraße 39 48565 Steinfurt Germany
| | - Thomas Jüstel
- Department of Chemical Engineering Münster University of Applied Sciences Stegerwaldstraße 39 48565 Steinfurt Germany
| | - Hans‐Jürgen Meyer
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
12
|
Fujii S, Tanioka E, Sasaki K, Horiguchi T, Akagi S, Kitamura N. Proton‐Switched Emission Behavior of Hexanuclear Molyb‐denum(II) Clusters Bearing Terminal Pyridine Carboxylate Ligands. Eur J Inorg Chem 2020; 2020:2983-2989. [DOI: 10.1002/ejic.202000440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 01/06/2025]
Abstract
We designed and synthesized a new and novel octahedral hexamolybdenum(II) cluster bearing terminal pyridine‐3‐carboxylate (3L) or pyridine‐4‐carboxylate ligands (4L), [{Mo6Br8}(3L)6]2– (3) or [{Mo6Br8}(4L)6]2– (4), to demonstrate proton‐switched emission behaviour of the cluster. X‐ray crystal analysis of 4 demonstrated that the O‐atom in the carboxylate group of 4L coordinates to each Mo atom in the {Mo6Br8}4+‐core, indicating that the N‐atom of 4L in 4 is open for protonation. Reflecting such structural characteristics of the cluster, both 3 and 4 showed proton‐switched emission behaviour owing to the changes in the electron‐donating abilities of the relevant terminal ligands upon protonation to the pyridine N atoms: blue shifts of the emission spectra and increases in the emission lifetimes of the clusters.
Collapse
Affiliation(s)
- Sho Fujii
- Department of Chemistry Faculty of Science Hokkaido University Kita‐10, Nishi‐8, Kita‐ku 060‐0810 Sapporo Japan
- Graduate School of Chemical Sciences and Engineering Hokkaido University Kita‐10, Nishi‐8, Kita‐ku 060‐0810 Sapporo Japan
| | - Erina Tanioka
- Department of Chemistry Faculty of Science Hokkaido University Kita‐10, Nishi‐8, Kita‐ku 060‐0810 Sapporo Japan
| | - Kohei Sasaki
- Department of Chemistry Faculty of Science Hokkaido University Kita‐10, Nishi‐8, Kita‐ku 060‐0810 Sapporo Japan
| | - Taishiro Horiguchi
- Department of Chemistry Faculty of Science Hokkaido University Kita‐10, Nishi‐8, Kita‐ku 060‐0810 Sapporo Japan
| | - Soichiro Akagi
- Department of Chemistry Faculty of Science Hokkaido University Kita‐10, Nishi‐8, Kita‐ku 060‐0810 Sapporo Japan
| | - Noboru Kitamura
- Department of Chemistry Faculty of Science Hokkaido University Kita‐10, Nishi‐8, Kita‐ku 060‐0810 Sapporo Japan
- Toyota Physical and Chemical Research Institute 480‐1192 Nagakute Aichi Japan
| |
Collapse
|
13
|
Kirakci K, Zelenka J, Křížová I, Ruml T, Lang K. Octahedral Molybdenum Cluster Complexes with Optimized Properties for Photodynamic Applications. Inorg Chem 2020; 59:9287-9293. [PMID: 32516524 DOI: 10.1021/acs.inorgchem.0c01173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two new octahedral molybdenum cluster complexes act as an efficient singlet oxygen supplier in the context of the photodynamic therapy of cancer cells under blue-light irradiation. These complexes integrate the {Mo6I8}4+ core with 4'-carboxybenzo-15-crown-5 or cholate apical ligands and were characterized by 1H NMR, HR ESI-MS, and CHN elemental analysis. Both complexes display high quantum yields of luminescence and singlet oxygen formation in aqueous media associated with a suitable stability against hydrolysis. They are internalized into lysosomes of HeLa cells with no dark toxicity at pharmacologically relevant concentrations and have a strong phototoxic effect under blue-light irradiation, even in the presence of fetal bovine serum. The last feature is essential for further translation to in vivo experiments. Overall, these complexes are attractive molecular photosensitizers toward photodynamic applications.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Řež 1001, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
14
|
Dollo G, Boucaud Y, Amela-Cortes M, Molard Y, Cordier S, Brandhonneur N. PLGA nanoparticles embedding molybdenum cluster salts: Influence of chemical composition on physico-chemical properties, encapsulation efficiencies, colloidal stabilities and in vitro release. Int J Pharm 2020; 576:119025. [DOI: 10.1016/j.ijpharm.2020.119025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
|
15
|
Gao D, Guo X, Zhang X, Chen S, Wang Y, Chen T, Huang G, Gao Y, Tian Z, Yang Z. Multifunctional phototheranostic nanomedicine for cancer imaging and treatment. Mater Today Bio 2020; 5:100035. [PMID: 32211603 PMCID: PMC7083767 DOI: 10.1016/j.mtbio.2019.100035] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer, as one of the most life-threatening diseases, shows a high fatality rate around the world. When improving the therapeutic efficacy of conventional cancer treatments, researchers also conduct extensive studies into alternative therapeutic approaches, which are safe, valid, and economical. Phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), are tumor-ablative and function-reserving oncologic interventions, showing strong potential in clinical cancer treatment. During phototherapies, the non-toxic phototherapeutic agents can be activated upon light irradiation to induce cell death without causing much damage to normal tissues. Besides, with the rapid development of nanotechnology in the past decades, phototheranostic nanomedicine also has attracted tremendous interests aiming to continuously refine their performance. Herein, we reviewed the recent progress of phototheranostic nanomedicine for improved cancer therapy. After a brief introduction of the therapeutic principles and related phototherapeutic agents for PDT and PTT, the existing works on developing of phototheranostic nanomedicine by mainly focusing on their categories and applications, particularly on phototherapy-synergized cancer immunotherapy, are comprehensively reviewed. More importantly, a brief conclusion and future challenges of phototheranostic nanomedicine from our point of view are delivered in the last part of this article.
Collapse
Affiliation(s)
- D. Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - X. Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - X. Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - S. Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Y. Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - T. Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - G. Huang
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Y. Gao
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Number 7 Weiwu Road, Zhengzhou, 450003, China
| | - Z. Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Z. Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Mironova AD, Mikhailov MA, Brylev KA, Gushchin AL, Sukhikh TS, Sokolov MN. Phosphorescent complexes of {Mo 6I 8} 4+ with triazolates: [2+3] cycloaddition of alkynes to [Mo 6I 8(N 3) 6] 2−. NEW J CHEM 2020. [DOI: 10.1039/d0nj04259e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
“Click” reaction of activated alkynes with [Mo6I8(N3)6]2− produces novel emissive triazolate complexes with the {Mo6I8}4+ cluster core.
Collapse
Affiliation(s)
- Alina D. Mironova
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
| | - Maksim A. Mikhailov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
| | - Konstantin A. Brylev
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
- Novosibirsk State University
| | - Artem L. Gushchin
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
- Novosibirsk State University
| | - Taisiya S. Sukhikh
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
- Novosibirsk State University
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 630090 Novosibirsk
- Russian Federation
- Novosibirsk State University
| |
Collapse
|
17
|
Kirakci K, Demel J, Hynek J, Zelenka J, Rumlová M, Ruml T, Lang K. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg Chem 2019; 58:16546-16552. [PMID: 31794199 DOI: 10.1021/acs.inorgchem.9b02569] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent studies have unraveled the potential of octahedral molybdenum cluster complexes (Mo6) as relevant red phosphors and photosensitizers of singlet oxygen, O2(1Δg), for photobiological applications. However, these complexes tend to hydrolyze in an aqueous environment, which deteriorates their properties and limits their applications. To address this issue, we show that phenylphosphinates are extraordinary apical ligands for the construction of Mo6 complexes. These new complexes display unmatched luminescence quantum yields and singlet oxygen production in aqueous solutions. More importantly, the complex with diphenylphosphinate ligands is the only stable complex of these types in aqueous media. These complexes internalize in lysosomes of HeLa cells, have no dark toxicity, and yet are phototoxic in the submicromolar concentration range. The superior hydrolytic stability of the diphenylphosphinate complex allows for conservation of its photophysical properties and biological activity over a long period, making it a promising compound for photobiological applications.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | - Jan Demel
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | - Jan Hynek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| | | | | | | | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences , Řež 1001 , 250 68 Husinec-Řež , Czech Republic
| |
Collapse
|
18
|
Mikhaylov MA, Sokolov MN. Molybdenum Iodides - from Obscurity to Bright Luminescence. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900630] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Maxim A. Mikhaylov
- Nikolaev Institute of Inorganic Chemistry SB RAS; Prospect Lavrentyeva 3 630090 Novosibirsk Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS; Prospect Lavrentyeva 3 630090 Novosibirsk Russia
- Novosibirsk State University; ul. Pirogova 2 630090 Novosibirsk Russia
- Kazan Federal University; ul. Kremlyovskaya 18 420008 Kazan Russia
| |
Collapse
|
19
|
Renaud A, Nguyen T, Grasset F, Raissi M, Guillon V, Delabrouille F, Dumait N, Jouan PY, Cario L, Jobic S, Pellegrin Y, Odobel F, Cordier S, Uchikoshi T. Preparation by electrophoretic deposition of molybdenum iodide cluster-based functional nanostructured photoelectrodes for solar cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Intra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclusters. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Khurana B, Gierlich P, Meindl A, Gomes-da-Silva LC, Senge MO. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 2019; 18:2613-2656. [PMID: 31460568 DOI: 10.1039/c9pp00221a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.
Collapse
Affiliation(s)
- Bhavya Khurana
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and CQC, Coimbra Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Alina Meindl
- Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Institute for Advanced Study (TUM-IAS), Technische Universität München, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
22
|
Kirakci K, Zelenka J, Rumlová M, Cvačka J, Ruml T, Lang K. Cationic octahedral molybdenum cluster complexes functionalized with mitochondria-targeting ligands: photodynamic anticancer and antibacterial activities. Biomater Sci 2019; 7:1386-1392. [PMID: 30656318 DOI: 10.1039/c8bm01564c] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Octahedral molybdenum cluster complexes have recently come forth as pertinent singlet oxygen photosensitizers towards biological applications. Still, their phototoxic efficiency in the absence of nanocarriers remains limited due to their poor cellular uptake. Here, two cationic octahedral molybdenum cluster complexes, bearing carboxylate ligands with triphenylphosphonium (1) or N-methyl pyridinium (2) mitochondria-targeting terminal functions, have been designed and synthesized. Their photophysical properties in water and in vitro biological activity were investigated in the context of blue-light photodynamic therapy of cancer and photoinactivation of bacteria. Upon blue light irradiation, complex 1 displays red luminescence with a quantum yield of 0.24 in water, whereas complex 2 is much less emissive (ΦL < 0.01). Nevertheless, both complexes efficiently produce singlet oxygen, O2(1Δg). Complex 1 is rapidly internalized into HeLa cells and accumulated in mitochondria, followed by relocation to lysosomes and clearance at longer times. In contrast, the more hydrophilic 2 is not internalized into HeLa cells, highlighting the effect of the apical ligands on the uptake properties. The treatment with 1 results in an intensive phototoxic effect under 460 nm irradiation (IC50 = 0.10 ± 0.02 μM), which exceeds by far those previously reported for octahedral cluster-based molecular photosensitizers. The ratio between phototoxicity and dark toxicity is approximately 50 and evidences a therapeutic window for the application of 1 in blue-light photodynamic therapy. Complex 1 also enters and efficiently photoinactivates Gram-positive bacteria Enterococcus faecalis and Staphylococcus aureus, documenting its suitability as a blue-light photosensitizer for antimicrobial applications.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-ŘeŽ, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Arnau del Valle C, Felip-León C, Angulo-Pachón CA, Mikhailov M, Sokolov MN, Miravet JF, Galindo F. Photoactive Hexanuclear Molybdenum Nanoclusters Embedded in Molecular Organogels. Inorg Chem 2019; 58:8900-8905. [DOI: 10.1021/acs.inorgchem.9b00916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Carla Arnau del Valle
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avenida Sos Baynat s/n, Castellón 12071, Spain
| | - Carles Felip-León
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avenida Sos Baynat s/n, Castellón 12071, Spain
| | - César A. Angulo-Pachón
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avenida Sos Baynat s/n, Castellón 12071, Spain
| | - Maxim Mikhailov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Prospekt Akademika Lavrent’yeva, Novosibirsk 630090, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Prospekt Akademika Lavrent’yeva, Novosibirsk 630090, Russia
| | - Juan F. Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avenida Sos Baynat s/n, Castellón 12071, Spain
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Avenida Sos Baynat s/n, Castellón 12071, Spain
| |
Collapse
|
24
|
Exploring the Breadth of Terminal Ligands Coordinated in [Mo6X8]4+- and [Re6Q8]2+-Based Cluster Complexes. STRUCTURE AND BONDING 2019. [DOI: 10.1007/430_2019_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Mikhailov MA, Abramov PA, Mironova AD, Gallyamov MR, Sheven’ DG, Pervukhin VV, Sokolov MN. Methyl Propiolate Cluster Complex (Ph4P)2[W6I8(C≡C–C(O)OCH3)6]. RUSS J COORD CHEM+ 2019. [DOI: 10.1134/s1070328419010081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Sun P, Zhang H, Xu D, Wang Z, Wang L, Gao G, Hossain G, Wu J, Wang R, Fu J. Super tough bilayer actuators based on multi-responsive hydrogels crosslinked by functional triblock copolymer micelle macro-crosslinkers. J Mater Chem B 2019; 7:2619-2625. [PMID: 32254994 DOI: 10.1039/c9tb00249a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intelligent hydrogels responsive to external stimuli have been widely studied due to their great potentials for applications in artificial muscles, soft robotics, sensors and actuators. However, the weak mechanical properties, narrow response range, and slow response speed of many responsive hydrogels have hindered practical applications. In this paper, tough multi-responsive hydrogels were synthesized by using vinyl-functionalized triblock copolymer micelles as macro-crosslinkers and N-isopropyl acrylamide (NIPAM) and acrylamide (AAm) or 2-(dimethylamino)ethyl methacrylate (DMAEMA) and 2-acrylamido-2-methyl-1-propane-sulfonic acid (AMPS) as monomers. The P(NIPAM-co-AAm) hydrogels presented tensile strength of up to 1.6 MPa and compressive strength of up to 127 MPa and were tunable by changing their formulations. Moreover, the lower critical solution temperature (LCST) of the thermosensitive hydrogels was manipulated in a wide range by changing the molar ratio of NIPAM to AAm. Responsive hydrogel bilayers were fabricated through a two-step synthesis. A second layer of P(DMAEMA-co-AMPS) was synthesized on the first P(NIPAM-co-AAm) layer to obtain a bilayer hydrogel, which was responsive to temperature, pH and ionic strength changes to undergo fast and reversible shape transformation in a few minutes. This kind of strong and tough multi-responsive hydrogel device has broad prospects in soft actuators.
Collapse
Affiliation(s)
- Peng Sun
- School of Materials Science and Engineering, Wuhan Institute of Technology, 206 Guanggu No. 1 Road, Wuhan 430205, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Thi Kim Nguyen N, Dubernet M, Matsui Y, Wilmet M, Shirahata N, Rydzek G, Dumait N, Amela-Cortes M, Renaud A, Cordier S, Molard Y, Grasset F, Uchikoshi T. Transparent functional nanocomposite films based on octahedral metal clusters: synthesis by electrophoretic deposition process and characterization. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181647. [PMID: 31032021 PMCID: PMC6458394 DOI: 10.1098/rsos.181647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/08/2019] [Indexed: 05/10/2023]
Abstract
Transparent optical thin films have recently attracted a growing interest for functional window applications. In this study, highly visible transparent nanocomposite films with ultraviolet (UV)-near-infrared (NIR)-blocking capabilities are reported. Such films, composed of Mo6 and Nb6 octahedral metal atom clusters (MC) and polymethylmethacrylate polymer (PMMA), were prepared by electrophoretic deposition on indium tin oxide-coated glass (ITO glass). PMMA was found to improve both the chemical and physical stability of Mo6 and Nb6 MCs, resulting in a relatively homogeneous distribution of the clusters within the PMMA matrix, as seen by microstructural observations. The optical absorption spectrum of these transparent MC@polymer nanocomposite films was marked by contributions from their Mo6 and Nb6-based clusters (absorption in the UV range) and from the ITO layer on silica glass (absorption in the NIR range). Mo6@PMMA nanocomposite films also exhibited excellent photoluminescence properties, which were preserved even after exposure to 50°C at a relative humidity of 70% for one month. These films cumulate high transparency in the visible range with remarkable UV-NIR blocking properties and represent interesting candidates for functional glass application.
Collapse
Affiliation(s)
- Ngan Thi Kim Nguyen
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- CNRS-Saint-Gobain-NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Marion Dubernet
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- CNRS-Saint-Gobain-NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshio Matsui
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Maxence Wilmet
- CNRS-Saint-Gobain-NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Univ Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France
| | - Naoto Shirahata
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Gaulthier Rydzek
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio-Engineering Research Centre (AMBER), School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Noée Dumait
- Univ Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France
| | | | - Adèle Renaud
- Univ Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France
| | | | - Yann Molard
- Univ Rennes, CNRS, ISCR – UMR 6226, 35000 Rennes, France
| | - Fabien Grasset
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- CNRS-Saint-Gobain-NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tetsuo Uchikoshi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- CNRS-Saint-Gobain-NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
28
|
Elistratova J, Mukhametshina A, Kholin K, Nizameev I, Mikhailov M, Sokolov M, Khairullin R, Miftakhova R, Shammas G, Kadirov M, Petrov K, Rizvanov A, Mustafina A. Interfacial uploading of luminescent hexamolybdenum cluster units onto amino-decorated silica nanoparticles as new design of nanomaterial for cellular imaging and photodynamic therapy. J Colloid Interface Sci 2019; 538:387-396. [DOI: 10.1016/j.jcis.2018.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/14/2022]
|
29
|
Akagi S, Horiguchi T, Fujii S, Kitamura N. Terminal Ligand (L) Effects on Zero-Magnetic-Field Splitting in the Excited Triplet States of [{Mo 6Br 8}L 6] 2- (L = Aromatic Carboxylates). Inorg Chem 2019; 58:703-714. [PMID: 30547591 DOI: 10.1021/acs.inorgchem.8b02881] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report the emission properties of the octahedral hexamolybdenum(II) bromide-core ({Mo6Br8}4+) clusters having a series of terminal aromatic carboxylate ligands (RCOO), [{Mo6Br8}(RCOO)6]2-, in solution and crystalline phases. The acid dissociation constant of RCOOH (p Ka(L)) was shown to govern the redox and emission properties of the clusters. Temperature ( T)-controlled emission experiments (3-300 K) demonstrated that the clusters showed large T-dependent emission energies (ν̃em) and lifetimes (τem) because of zero-magnetic-field splitting in the emissive excited triplet (T1) states. The spin sublevel (Φ n, n = 1-4) model in the T1 state of the cluster explained very well the T-dependent emission characteristics (ν̃em and τem), irrespective of the clusters studied. Furthermore, we revealed that the energy difference between the lowest-energy (Φ1) and energetically upper-lying third (Φ3) or fourth spin sublevels (Φ4), Δ E13 or Δ E14, respectively, correlated very well with p Ka( L). The results are discussed in terms of the variation of the effective nuclear charge of the Mo metal center(s) in [{Mo6Br8}(RCOO)6]2- with that of p Ka(L).
Collapse
|
30
|
Ivanov AA, Konovalov DI, Pozmogova TN, Solovieva AO, Melnikov AR, Brylev KA, Kuratieva NV, Yanshole VV, Kirakci K, Lang K, Cheltygmasheva SN, Kitamura N, Shestopalova LV, Mironov YV, Shestopalov MA. Water-soluble Re6-clusters with aromatic phosphine ligands – from synthesis to potential biomedical applications. Inorg Chem Front 2019. [DOI: 10.1039/c8qi01216d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New hexarhenium clusters exhibit radio- and photoluminescence, have low cytotoxicity, are capable of penetrating into cells and exhibit photodynamic toxicity.
Collapse
|
31
|
Yoshimura T, Nagata K, Matsuda A, Omote T, Kino Y, Takayama T, Sekine T, Shinohara A. Synthesis, structures, redox properties, and theoretical calculations of thiohalide capped octahedral hexanuclear technetium(iii) clusters. Dalton Trans 2019; 48:14085-14095. [DOI: 10.1039/c9dt02909e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Thiohalide capped octahedral hexanuclear technetium(iii) clusters were synthesized and characterized.
Collapse
Affiliation(s)
- Takashi Yoshimura
- Radioisotope Research Center
- Institute for Radiation Sciences
- Osaka University
- Suita
- Japan
| | - Kojiro Nagata
- Radioisotope Research Center
- Institute for Radiation Sciences
- Osaka University
- Suita
- Japan
| | - Ayumi Matsuda
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Toshiki Omote
- Department of Chemistry
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| | - Yasushi Kino
- Department of Chemistry
- Graduate School of Science
- Tohoku University
- Sendai
- Japan
| | | | - Tsutomu Sekine
- Institute for Excellence in Higher Education
- Tohoku University
- Sendai
- Japan
| | - Atsushi Shinohara
- Project Research Center for Fundamental Sciences
- Graduate School of Science
- Osaka University
- Toyonaka
- Japan
| |
Collapse
|
32
|
Nguyen NTK, Renaud A, Dierre B, Bouteille B, Wilmet M, Dubernet M, Ohashi N, Grasset F, Uchikoshi T. Extended Study on Electrophoretic Deposition Process of Inorganic Octahedral Metal Clusters: Advanced Multifunctional Transparent Nanocomposite Thin Films. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ngan T. K. Nguyen
- CNRS - Saint-Gobain - NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- National Institute for Materials Science (NIMS), Research Center for Functional Materials (RCFM), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Adèle Renaud
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Benjamin Dierre
- CNRS - Saint-Gobain - NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- National Institute for Materials Science (NIMS), Research Center for Functional Materials (RCFM), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Barbara Bouteille
- CNRS - Saint-Gobain - NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- National Institute for Materials Science (NIMS), Research Center for Functional Materials (RCFM), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Maxence Wilmet
- CNRS - Saint-Gobain - NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Marion Dubernet
- CNRS - Saint-Gobain - NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- National Institute for Materials Science (NIMS), Research Center for Functional Materials (RCFM), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Naoki Ohashi
- CNRS - Saint-Gobain - NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- National Institute for Materials Science (NIMS), Research Center for Functional Materials (RCFM), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Fabien Grasset
- CNRS - Saint-Gobain - NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- National Institute for Materials Science (NIMS), Research Center for Functional Materials (RCFM), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Tetsuo Uchikoshi
- CNRS - Saint-Gobain - NIMS, UMI3629, Laboratory for Innovative Key Materials and Structures (LINK), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- National Institute for Materials Science (NIMS), Research Center for Functional Materials (RCFM), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
33
|
Svezhentseva EV, Vorotnikov YA, Solovieva AO, Pozmogova TN, Eltsov IV, Ivanov AA, Evtushok DV, Miroshnichenko SM, Yanshole VV, Eling CJ, Adawi AM, Bouillard JG, Kuratieva NV, Fufaeva MS, Shestopalova LV, Mironov YV, Efremova OA, Shestopalov MA. From Photoinduced to Dark Cytotoxicity through an Octahedral Cluster Hydrolysis. Chemistry 2018; 24:17915-17920. [DOI: 10.1002/chem.201804663] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ekaterina V. Svezhentseva
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russia
| | - Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
| | - Anastasiya O. Solovieva
- Research Institute of Clinical and Experimental Lymphology—, Branch of the ICG SB RAS 2 Timakova st. 630060 Novosibirsk Russia
- The Federal Research Center of Fundamental and Translational Medicine 2 Timakova st. 630117 Novosibirsk Russia
| | - Tatiana N. Pozmogova
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russia
- Research Institute of Clinical and Experimental Lymphology—, Branch of the ICG SB RAS 2 Timakova st. 630060 Novosibirsk Russia
| | - Ilia V. Eltsov
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russia
| | - Anton A. Ivanov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
- The Federal Research Center of Fundamental and Translational Medicine 2 Timakova st. 630117 Novosibirsk Russia
| | - Darya V. Evtushok
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
| | - Svetlana M. Miroshnichenko
- Research Institute of Clinical and Experimental Lymphology—, Branch of the ICG SB RAS 2 Timakova st. 630060 Novosibirsk Russia
- The Federal Research Center of Fundamental and Translational Medicine 2 Timakova st. 630117 Novosibirsk Russia
| | - Vadim V. Yanshole
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russia
- International Tomography Centre SB RAS 3a Institutskaya st. 630090 Novosibirsk Russia
| | - Charlotte J. Eling
- School of Mathematics and Physical SciencesG.W. Gray Centre for Advanced Materials University of Hull Cottingham Road HU6 7RX Hull UK
| | - Ali M. Adawi
- School of Mathematics and Physical SciencesG.W. Gray Centre for Advanced Materials University of Hull Cottingham Road HU6 7RX Hull UK
| | - Jean‐Sebastien G. Bouillard
- School of Mathematics and Physical SciencesG.W. Gray Centre for Advanced Materials University of Hull Cottingham Road HU6 7RX Hull UK
| | - Natalia V. Kuratieva
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russia
| | - Maria S. Fufaeva
- The Federal Research Center of Fundamental and Translational Medicine 2 Timakova st. 630117 Novosibirsk Russia
| | | | - Yuri V. Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russia
| | - Olga A. Efremova
- The Federal Research Center of Fundamental and Translational Medicine 2 Timakova st. 630117 Novosibirsk Russia
- School of Mathematics and Physical SciencesG.W. Gray Centre for Advanced Materials University of Hull Cottingham Road HU6 7RX Hull UK
| | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS 3 acad. Lavrentiev ave. 630090 Novosibirsk Russia
- Novosibirsk State University 2 Pirogova st. 630090 Novosibirsk Russia
- Research Institute of Clinical and Experimental Lymphology—, Branch of the ICG SB RAS 2 Timakova st. 630060 Novosibirsk Russia
- The Federal Research Center of Fundamental and Translational Medicine 2 Timakova st. 630117 Novosibirsk Russia
| |
Collapse
|
34
|
Ben Mihoub A, Larue L, Moussaron A, Youssef Z, Colombeau L, Baros F, Frochot C, Vanderesse R, Acherar S. Use of Cyclodextrins in Anticancer Photodynamic Therapy Treatment. Molecules 2018; 23:E1936. [PMID: 30072672 PMCID: PMC6222782 DOI: 10.3390/molecules23081936] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/19/2018] [Accepted: 07/28/2018] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) is mainly used to destroy cancerous cells; it combines the action of three components: a photoactivatable molecule or photosensitizer (PS), the light of an appropriate wavelength, and naturally occurring molecular oxygen. After light excitation of the PS, the excited PS then reacts with molecular oxygen to produce reactive oxygen species (ROS), leading to cellular damage. One of the drawbacks of PSs is their lack of solubility in water and body tissue fluids, thereby causing low bioavailability, drug-delivery efficiency, therapeutic efficacy, and ROS production. To improve the water-solubility and/or drug delivery of PSs, using cyclodextrins (CDs) is an interesting strategy. This review describes the in vitro or/and in vivo use of natural and derived CDs to improve antitumoral PDT efficiency in aqueous media. To achieve these goals, three types of binding modes of PSs with CDs are developed: non-covalent CD⁻PS inclusion complexes, covalent CD⁻PS conjugates, and CD⁻PS nanoassemblies. This review is divided into three parts: (1) non-covalent CD-PS inclusion complexes, covalent CD⁻PS conjugates, and CD⁻PS nanoassemblies, (2) incorporating CD⁻PS systems into hybrid nanoparticles (NPs) using up-converting or other types of NPs, and (3) CDs with fullerenes as PSs.
Collapse
Affiliation(s)
- Amina Ben Mihoub
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Ludivine Larue
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Albert Moussaron
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Ludovic Colombeau
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | - Régis Vanderesse
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | - Samir Acherar
- Laboratoire de Chimie Phusique Macromoléculaire, Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
35
|
Ivanov AA, Falaise C, Abramov PA, Shestopalov MA, Kirakci K, Lang K, Moussawi MA, Sokolov MN, Naumov NG, Floquet S, Landy D, Haouas M, Brylev KA, Mironov YV, Molard Y, Cordier S, Cadot E. Host-Guest Binding Hierarchy within Redox- and Luminescence-Responsive Supramolecular Self-Assembly Based on Chalcogenide Clusters and γ-Cyclodextrin. Chemistry 2018; 24:13467-13478. [PMID: 29894019 DOI: 10.1002/chem.201802102] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/11/2018] [Indexed: 12/19/2022]
Abstract
Water-soluble salts of anionic [Re6 Q8 (CN)6 ]4- (Q=S, Se, Te) chalcogenide octahedral rhenium clusters react with γ-cyclodextrin (γ-CD) producing a new type of inclusion compounds. Crystal structures determined through single-crystal X-ray diffraction analysis revealed supramolecular host-guest assemblies resulting from close encapsulations of the octahedral cluster within two γ-CDs. Interestingly, nature of the inner Q ligands influences strongly the host-guest conformation. The cluster [Re6 S8 (CN)6 ]4- interacts preferentially with the primary faces of the γ-CD while the bulkier clusters [Re6 Se8 (CN)6 ]4- and [Re6 Te8 (CN)6 ]4- exhibit specific interactions with the secondary faces of the cyclic host. Furthermore, analysis of the crystal packing reveals additional supramolecular interactions that lead to 2D infinite arrangements with [Re6 S8 (CN)6 ]4- or to 1D "bamboo-like" columns with [Re6 Se8 (CN)6 ]4- and [Re6 Te8 (CN)6 ]4- species. Solution studies, using multinuclear NMR methods, ESI-MS and Isothermal titration calorimetry (ITC) corroborates nicely the solid-state investigations showing that supramolecular pre-organization is retained in aqueous solution even in diluted conditions. Furthermore, ITC analysis showed that host-guest stability increases significantly ongoing from S to Te. At last, we report herein that deep inclusion alters significantly the intrinsic physical-chemical properties of the octahedral clusters, allowing redox tuning and near IR luminescence enhancement.
Collapse
Affiliation(s)
- Anton A Ivanov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 acad. Lavrentiev ave., 630090, Novosibirsk, Russia.,The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova st., 630117, Novosibirsk, Russia.,Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Clément Falaise
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 acad. Lavrentiev ave., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova st., 630090, Novosibirsk, Russia
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 acad. Lavrentiev ave., 630090, Novosibirsk, Russia.,The Federal Research Center of Fundamental and Translational Medicine, 2 Timakova st., 630117, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova st., 630090, Novosibirsk, Russia
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Řež, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68, Řež, Czech Republic
| | - Mhamad A Moussawi
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Maxim N Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 acad. Lavrentiev ave., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova st., 630090, Novosibirsk, Russia
| | - Nikolay G Naumov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 acad. Lavrentiev ave., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova st., 630090, Novosibirsk, Russia
| | - Sébastien Floquet
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - David Landy
- Unité de Chimie Environnementale et, Interactions sur le Vivant (UCEIV, EA 4492), 145, Avenue Maurice Schumann, MREI 1, 59140, Dunkerque, France
| | - Mohamed Haouas
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 acad. Lavrentiev ave., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova st., 630090, Novosibirsk, Russia
| | - Yuri V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 acad. Lavrentiev ave., 630090, Novosibirsk, Russia.,Novosibirsk State University, 2 Pirogova st., 630090, Novosibirsk, Russia
| | - Yann Molard
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Avenue du Général Leclerc, 35042, Rennes, France
| | - Stéphane Cordier
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS, Université de Rennes 1, Avenue du Général Leclerc, 35042, Rennes, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles, CNRS, UVSQ, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035, Versailles, France
| |
Collapse
|
36
|
Kirakci K, Zelenka J, Rumlová M, Martinčík J, Nikl M, Ruml T, Lang K. Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. J Mater Chem B 2018; 6:4301-4307. [PMID: 32254506 DOI: 10.1039/c8tb00893k] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of radiosensitizers recently emerged as a promising approach to circumvent the depth penetration limitations of photodynamic therapy of cancer and to enhance radiotherapeutical effects. A widely explored current strategy is based on complex nanoarchitectures that facilitate the transfer of energy harvested from X-ray radiation by scintillating nanoparticles to the surrounding photosensitizer molecules to generate reactive oxygen species, mostly singlet oxygen O2(1Δg). We describe an alternative approach aiming at a considerable simplification of the architecture. The presented nanoparticles, made of the luminescent octahedral molybdenum cluster compound (n-Bu4N)2[Mo6I8(OCOCF3)6], efficiently absorb X-rays due to the high content of heavy elements, leading to the formation of the excited triplet states that interact with molecular oxygen to produce O2(1Δg). The activity of the nanoparticles on HeLa cells was first investigated under UVA/blue-light irradiation in order to prove the biological effects of photosensitized O2(1Δg); there is no dark toxicity at micromolar concentrations, but strong phototoxicity in the nanomolar range. The nanoparticles significantly enhance the antiproliferative effect of X-ray radiation in vitro at lower concentration than for previously reported O2(1Δg) radiosensitizing systems and this effect is more pronounced on cancer HeLa cells than non-cancer MRC cells. The results demonstrate that the cluster-based radiosensitizers of O2(1Δg) have strong potential with respect to the enhancement of the efficacy of radiotherapy with exciting opportunities for cancer treatment.
Collapse
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 ŘeŽ, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
37
|
Sciortino F, Cuny J, Grasset F, Lagrost C, Lemoine P, Moréac A, Molard Y, Takei T, Cordier S, Chevance S, Gauffre F. The Ouzo effect to selectively assemble molybdenum clusters into nanomarbles or nanocapsules with increased HER activity. Chem Commun (Camb) 2018; 54:13387-13390. [DOI: 10.1039/c8cc07402j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molybdenum clusters assemble spontaneously into nanocapsules or nanomarbles depending on their solubility in a water/THF mixture.
Collapse
Affiliation(s)
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques
- IRSAMC
- Université Paul Sabatier
- 31062 Toulouse Cedex 4
- France
| | - Fabien Grasset
- CNRS
- LINK (Laboratory for Innovative Key Materials and Structures)-UMI3629
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | | | | | | | - Yann Molard
- Univ Rennes
- CNRS
- ISCR-UMR6226
- SCANMat-UMS2001
- F-35000 Rennes
| | - Toshiaki Takei
- International Center for Materials Nanoarchitectonics
- MANA
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | | | | | | |
Collapse
|
38
|
Daigre G, Lemoine P, Pham TD, Demange V, Gautier R, Naumov NG, Ledneva A, Amela-Cortes M, Dumait N, Audebrand N, Cordier S. Low dimensional solids based on Mo6 cluster cyanides and Mn2+, Mn3+ or Cd2+ metal ions: crystal chemistry, magnetic and optical properties. CrystEngComm 2018. [DOI: 10.1039/c8ce00113h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Five new cluster compounds based on [Mo6Bri8(CN)a6]2− and [Mo6Bri6Qi2(CN)a6]n− (Q = S, Se, n = 3, 4) cluster units have been synthesized and characterized.
Collapse
|
39
|
Vorotnikova NA, Edeleva MV, Kurskaya OG, Brylev KA, Shestopalov AM, Mironov YV, Sutherland AJ, Efremova OA, Shestopalov MA. One-pot synthesis of {Mo6
I8
}4+
-doped polystyrene microspheres via a free radical dispersion copolymerisation reaction. POLYM INT 2017. [DOI: 10.1002/pi.5473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Mariya V Edeleva
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS; Novosibirsk Russian Federation
- Novosibirsk State University; Novosibirsk Russian Federation
| | - Olga G Kurskaya
- Research Institute of Experimental and Clinical Medicine; Novosibirsk Russian Federation
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS; Novosibirsk Russian Federation
- Novosibirsk State University; Novosibirsk Russian Federation
| | | | - Yuri V Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS; Novosibirsk Russian Federation
- Novosibirsk State University; Novosibirsk Russian Federation
| | | | - Olga A Efremova
- School of Mathematics and Physical Sciences; University of Hull; Hull UK
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS; Novosibirsk Russian Federation
- Novosibirsk State University; Novosibirsk Russian Federation
- Research Institute of Experimental and Clinical Medicine; Novosibirsk Russian Federation
| |
Collapse
|
40
|
Solovieva AO, Kirakci K, Ivanov AA, Kubát P, Pozmogova TN, Miroshnichenko SM, Vorontsova EV, Chechushkov AV, Trifonova KE, Fufaeva MS, Kretov EI, Mironov YV, Poveshchenko AF, Lang K, Shestopalov MA. Singlet Oxygen Production and Biological Activity of Hexanuclear Chalcocyanide Rhenium Cluster Complexes [{Re6Q8}(CN)6]4– (Q = S, Se, Te). Inorg Chem 2017; 56:13491-13499. [DOI: 10.1021/acs.inorgchem.7b02212] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anastasiya O. Solovieva
- Research Institute of Experimental and Clinical Medicine, 2 Timakova st., 630117 Novosibirsk, Russian Federation
- Research Institute of Clinical and Experimental Lymphology−Branch of the ICG SB RAS, 2 Timakova
st., 630060 Novosibirsk, Russian Federation
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Anton A. Ivanov
- Research Institute of Experimental and Clinical Medicine, 2 Timakova st., 630117 Novosibirsk, Russian Federation
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, v.v.i., Dolejškova 3, 182 23 Praha 8, Czech Republic
| | - Tatiana N. Pozmogova
- Research Institute of Clinical and Experimental Lymphology−Branch of the ICG SB RAS, 2 Timakova
st., 630060 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 Pirogova
Str., Novosibirsk 630090, Russian Federation
| | - Svetlana M. Miroshnichenko
- Research Institute of Clinical and Experimental Lymphology−Branch of the ICG SB RAS, 2 Timakova
st., 630060 Novosibirsk, Russian Federation
| | - Elena V. Vorontsova
- The Institute of Molecular Biology and Biophysics, 2/12 Timakova st., 630117 Novosibirsk, Russian Federation
| | - Anton V. Chechushkov
- Research Institute of Experimental and Clinical Medicine, 2 Timakova st., 630117 Novosibirsk, Russian Federation
| | - Kristina E. Trifonova
- The State Research Center of Virology and Biotechnology VECTOR, 630559 Koltsovo, Russian Federation
| | - Maria S. Fufaeva
- Research Institute of Experimental and Clinical Medicine, 2 Timakova st., 630117 Novosibirsk, Russian Federation
| | - Evgeniy I. Kretov
- Meshalkin Siberian Federal Biomedical Research Center, 15 Rechkunovskaya
st., 630055 Novosibirsk, Russian Federation
| | - Yuri V. Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova
Str., Novosibirsk 630090, Russian Federation
| | - Alexander F. Poveshchenko
- Research Institute of Clinical and Experimental Lymphology−Branch of the ICG SB RAS, 2 Timakova
st., 630060 Novosibirsk, Russian Federation
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i., Husinec-Řež 1001, 250 68 Řež, Czech Republic
| | - Michael A. Shestopalov
- Research Institute of Experimental and Clinical Medicine, 2 Timakova st., 630117 Novosibirsk, Russian Federation
- Research Institute of Clinical and Experimental Lymphology−Branch of the ICG SB RAS, 2 Timakova
st., 630060 Novosibirsk, Russian Federation
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova
Str., Novosibirsk 630090, Russian Federation
| |
Collapse
|
41
|
Sokolov MN, Brylev KA, Abramov PA, Gallyamov MR, Novozhilov IN, Kitamura N, Mikhaylov MA. Complexes of {W6I8}4+Clusters with Carboxylates: Preparation, Electrochemistry, and Luminescence. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700618] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry; Siberian Branch of the Russian Academy of Sciences; 3 Acad. Lavrentiev Prosp. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Ul. Pirogova 630090 Novosibirsk Russia
| | - Konstantin A. Brylev
- Nikolaev Institute of Inorganic Chemistry; Siberian Branch of the Russian Academy of Sciences; 3 Acad. Lavrentiev Prosp. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Ul. Pirogova 630090 Novosibirsk Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry; Siberian Branch of the Russian Academy of Sciences; 3 Acad. Lavrentiev Prosp. 630090 Novosibirsk Russia
- Novosibirsk State University; 2 Ul. Pirogova 630090 Novosibirsk Russia
| | - Marsel R. Gallyamov
- Nikolaev Institute of Inorganic Chemistry; Siberian Branch of the Russian Academy of Sciences; 3 Acad. Lavrentiev Prosp. 630090 Novosibirsk Russia
| | - Igor N. Novozhilov
- Nikolaev Institute of Inorganic Chemistry; Siberian Branch of the Russian Academy of Sciences; 3 Acad. Lavrentiev Prosp. 630090 Novosibirsk Russia
| | - N. Kitamura
- Department of Chemistry; Faculty of Science; Hokkaido University; 060-0810 Sapporo Japan
| | - Maxim A. Mikhaylov
- Nikolaev Institute of Inorganic Chemistry; Siberian Branch of the Russian Academy of Sciences; 3 Acad. Lavrentiev Prosp. 630090 Novosibirsk Russia
| |
Collapse
|
42
|
Kirakci K, Fejfarová K, Martinčík J, Nikl M, Lang K. Tetranuclear Copper(I) Iodide Complexes: A New Class of X-ray Phosphors. Inorg Chem 2017; 56:4610-4615. [DOI: 10.1021/acs.inorgchem.7b00240] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i., Husinec-Řež
1001, 250 68 Řež, Czech Republic
| | - Karla Fejfarová
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic
| | - Jiří Martinčík
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 115 19 Praha 1, Czech Republic
| | - Martin Nikl
- Institute of Physics of the Czech Academy of Sciences, v.v.i., Cukrovarnická 10/112, 162 00 Praha 6, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, v.v.i., Husinec-Řež
1001, 250 68 Řež, Czech Republic
| |
Collapse
|
43
|
Cheplakova AM, Solovieva AO, Pozmogova TN, Vorotnikov YA, Brylev KA, Vorotnikova NA, Vorontsova EV, Mironov YV, Poveshchenko AF, Kovalenko KA, Shestopalov MA. Nanosized mesoporous metal–organic framework MIL-101 as a nanocarrier for photoactive hexamolybdenum cluster compounds. J Inorg Biochem 2017; 166:100-107. [DOI: 10.1016/j.jinorgbio.2016.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|
44
|
Evtushok DV, Melnikov AR, Vorotnikova NA, Vorotnikov YA, Ryadun AA, Kuratieva NV, Kozyr KV, Obedinskaya NR, Kretov EI, Novozhilov IN, Mironov YV, Stass DV, Efremova OA, Shestopalov MA. A comparative study of optical properties and X-ray induced luminescence of octahedral molybdenum and tungsten cluster complexes. Dalton Trans 2017; 46:11738-11747. [DOI: 10.1039/c7dt01919j] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Octahedral W cluster complexes have more intensive X-ray excited optical luminescence than Mo ones.
Collapse
|
45
|
Mikhaylov MA, Abramov PA, Komarov VY, Sokolov MN. Cluster aqua/hydroxocomplexes supporting extended hydrogen bonding networks. Preparation and structure of a unique series of cluster hydrates [Mo6I8(OH)4(H2O)2]·nH2O (n= 2, 12, 14). Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Svezhentseva EV, Solovieva AO, Vorotnikov YA, Kurskaya OG, Brylev KA, Tsygankova AR, Edeleva MV, Gyrylova SN, Kitamura N, Efremova OA, Shestopalov MA, Mironov YV, Shestopalov AM. Water-soluble hybrid materials based on {Mo6X8}4+ (X = Cl, Br, I) cluster complexes and sodium polystyrene sulfonate. NEW J CHEM 2017. [DOI: 10.1039/c6nj03469a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A water-soluble form of {Mo6X8}4+ clusters was developed.
Collapse
Affiliation(s)
- Ekaterina V. Svezhentseva
- Nikolaev Institute of Inorganic Chemistry SB RAS
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
- Russian Federation
| | - Anastasiya O. Solovieva
- Scientific Institute of Clinical and Experimental Lymphology
- 630060 Novosibirsk
- Russian Federation
| | | | - Olga G. Kurskaya
- Research Institute of Experimental and Clinical Medicine
- 630060 Novosibirsk
- Russian Federation
| | - Konstantin A. Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
- Russian Federation
| | - Alphiya R. Tsygankova
- Nikolaev Institute of Inorganic Chemistry SB RAS
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
- Russian Federation
| | - Mariya V. Edeleva
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
| | - Svetlana N. Gyrylova
- Research Institute of Experimental and Clinical Medicine
- 630060 Novosibirsk
- Russian Federation
| | - Noboru Kitamura
- Department of Chemistry
- Faculty of Science
- Hokkaido University
- 060-0810 Sapporo
- Japan
| | | | - Michael A. Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
- Russian Federation
| | - Yuri V. Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
- Russian Federation
| | | |
Collapse
|
47
|
Synthesis, crystal structure, and luminescence properties of complexes (4-ViBnNMe3)2[{M6(µ3-I)8}I6] (M = Mo, W; (4-ViBnNMe3)+ is trimethyl(4-vinylbenzyl)ammonium). Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1194-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Bůžek D, Hynek J, Kučeráková M, Kirakci K, Demel J, Lang K. MoIICluster Complex-Based Coordination Polymer as an Efficient Heterogeneous Catalyst in the Suzuki-Miyaura Coupling Reaction. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Daniel Bůžek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences; v.v.i 25068 Řež Husinec-Řež 1001 Czech Republic
- Faculty of the Environment; Jan Evangelista Purkyně University; Králova Výšina 3132/7 40096 Ústí nad Labem Czech Republic
| | - Jan Hynek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences; v.v.i 25068 Řež Husinec-Řež 1001 Czech Republic
| | - Monika Kučeráková
- Institute of Physics of the Czech Academy of Sciences; v.v.i. Cukrovarnická 10/112 16200 Praha 6 Czech Republic
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences; v.v.i 25068 Řež Husinec-Řež 1001 Czech Republic
| | - Jan Demel
- Institute of Inorganic Chemistry of the Czech Academy of Sciences; v.v.i 25068 Řež Husinec-Řež 1001 Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences; v.v.i 25068 Řež Husinec-Řež 1001 Czech Republic
| |
Collapse
|
49
|
Mikhailov MA, Brylev KA, Abramov PA, Sakuda E, Akagi S, Ito A, Kitamura N, Sokolov MN. Synthetic Tuning of Redox, Spectroscopic, and Photophysical Properties of {Mo6I8}4+ Core Cluster Complexes by Terminal Carboxylate Ligands. Inorg Chem 2016; 55:8437-45. [DOI: 10.1021/acs.inorgchem.6b01042] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maxim A. Mikhailov
- Nikolaev
Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Konstantin A. Brylev
- Nikolaev
Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Ul. Pirogova, 630090 Novosibirsk, Russia
| | - Pavel A. Abramov
- Nikolaev
Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
| | - Eri Sakuda
- Department
of Chemistry, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan
- Division of Chemistry and Materials Science, Graduate
School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, 852-8521 Nagasaki, Japan
| | - Soichiro Akagi
- Department of Chemical
Sciences and Engineering, Graduate School of Chemical Sciences and
Engineering, Hokkaido University, 060-0810 Sapporo, Japan
| | - Akitaka Ito
- Department of Chemistry, Graduate School
of Science, Osaka City University, 558-8585 Osaka, Japan
| | - Noboru Kitamura
- Department
of Chemistry, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan
- Department of Chemical
Sciences and Engineering, Graduate School of Chemical Sciences and
Engineering, Hokkaido University, 060-0810 Sapporo, Japan
| | - Maxim N. Sokolov
- Nikolaev
Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Acad. Lavrentiev Prosp., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Ul. Pirogova, 630090 Novosibirsk, Russia
| |
Collapse
|
50
|
Renaud A, Grasset F, Dierre B, Uchikoshi T, Ohashi N, Takei T, Planchat A, Cario L, Jobic S, Odobel F, Cordier S. Inorganic Molybdenum Clusters as Light-Harvester in All Inorganic Solar Cells: A Proof of Concept. ChemistrySelect 2016. [DOI: 10.1002/slct.201600508] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Adèle Renaud
- CNRS-UR1,UMR 6226; Institut des Sciences Chimiques de Rennes (ISCR); Université de Rennes 1; Campus de Beaulieu 35042 Rennes Cedex France
| | - Fabien Grasset
- NIMS-CNRS-Saint Gobain, UMI 3629; Laboratory for Innovative Key Materials and Structures (LINK); National Institute of Material Science (NIMS); Namiki Tsukuba 305-0044 Japan
- Optical and Electronic Materials Unit; NIMS; Namiki, Tsukuba Ibaraki 305-0044 Japan
- NIMS-Saint-Gobain Center of Excellence for Advanced Materials; NIMS1-1 Namiki; Tsukuba Ibaraki 305-0044 Japan
| | - Benjamin Dierre
- NIMS-CNRS-Saint Gobain, UMI 3629; Laboratory for Innovative Key Materials and Structures (LINK); National Institute of Material Science (NIMS); Namiki Tsukuba 305-0044 Japan
- NIMS-Saint-Gobain Center of Excellence for Advanced Materials; NIMS1-1 Namiki; Tsukuba Ibaraki 305-0044 Japan
| | - Tetsuo Uchikoshi
- Fine Particles Engineering Group; NIMS; 1-2-1 Sengen Tsukuba Japan
| | - Naoki Ohashi
- Optical and Electronic Materials Unit; NIMS; Namiki, Tsukuba Ibaraki 305-0044 Japan
- NIMS-Saint-Gobain Center of Excellence for Advanced Materials; NIMS1-1 Namiki; Tsukuba Ibaraki 305-0044 Japan
- Materials Research Center for Element Strategy (MCES); Tokyo Tech.; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Toshiaki Takei
- International Center for Materials Nanoarchitectonics; NIMS; 1-1 Namiki Tsukuba 305-0044 Japan
| | - Aurélien Planchat
- CEISAM, Laboratoire de Chimie et Interdisciplinarité : Synthèse, Analyse, Modélisation,UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Laurent Cario
- Institut des Matériaux Jean Rouxel; Université de Nantes, CNRS; 2 rue de la Houssinière,BP 32229 44322 Nantes cedex 3 France
| | - Stéphane Jobic
- Institut des Matériaux Jean Rouxel; Université de Nantes, CNRS; 2 rue de la Houssinière,BP 32229 44322 Nantes cedex 3 France
| | - Fabrice Odobel
- CEISAM, Laboratoire de Chimie et Interdisciplinarité : Synthèse, Analyse, Modélisation,UMR CNRS 6230; Université de Nantes; 2 rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
| | - Stéphane Cordier
- CNRS-UR1,UMR 6226; Institut des Sciences Chimiques de Rennes (ISCR); Université de Rennes 1; Campus de Beaulieu 35042 Rennes Cedex France
| |
Collapse
|