1
|
Abstract
Cobalt-NHC complexes have emerged as an attractive class of 3d transition metal catalysts for a broad range of chemical processes, including cross-coupling, hydrogenation, hydrofunctionalization and cycloaddition reactions. Herein, we present a comprehensive review of catalytic methods utilizing cobalt-NHC complexes with a focus on catalyst structure, the role of the NHC ligand, properties of the catalytic system, mechanism and synthetic utility. The survey clearly suggests that the recent emergence of well-defined cobalt-NHC catalysts may have a tremendous utility in the design and application of catalytic reactions using more abundant 3d transition metals.
Collapse
Affiliation(s)
- Sourav Sekhar Bera
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Clapson ML, Kirkland JK, Piers WE, Ess DH, Gelfand B, Lin JB. Carbene Character in a Series of Neutral PCcarbeneP Cobalt(I) Complexes: Radical Carbenes versus Nucleophilic Carbenes. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marissa L. Clapson
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 Canada
| | - Justin K. Kirkland
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Warren E. Piers
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 Canada
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Benjamin Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 Canada
| | - Jian-Bin Lin
- Department of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, T2N 1N4 Canada
| |
Collapse
|
3
|
Semeniuchenko V, Ovens JS, Braje WM, Organ MG. NaBHT Generated In Situ from BHT and NaO tBu: Crystallographic Characterization and Applications in Buchwald–Hartwig Amination. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Jeffrey S. Ovens
- X-Ray Core Facility, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Wilfried M. Braje
- Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Michael G. Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
4
|
Chernyshev VM, Denisova EA, Eremin DB, Ananikov VP. The key role of R-NHC coupling (R = C, H, heteroatom) and M-NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chem Sci 2020; 11:6957-6977. [PMID: 33133486 PMCID: PMC7553045 DOI: 10.1039/d0sc02629h] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/19/2020] [Indexed: 02/01/2023] Open
Abstract
Complexes of metals with N-heterocyclic carbene ligands (M/NHC) are typically considered the systems of choice in homogeneous catalysis due to their stable metal-ligand framework. However, it becomes obvious that even metal species with a strong M-NHC bond can undergo evolution in catalytic systems, and processes of M-NHC bond cleavage are common for different metals and NHC ligands. This review is focused on the main types of the M-NHC bond cleavage reactions and their impact on activity and stability of M/NHC catalytic systems. For the first time, we consider these processes in terms of NHC-connected and NHC-disconnected active species derived from M/NHC precatalysts and classify them as fundamentally different types of catalysts. Problems of rational catalyst design and sustainability issues are discussed in the context of the two different types of M/NHC catalysis mechanisms.
Collapse
Affiliation(s)
- Victor M Chernyshev
- Platov South-Russian State Polytechnic University (NPI) , Prosveschenya 132 , Novocherkassk , 346428 , Russia
| | - Ekaterina A Denisova
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| | - Dmitry B Eremin
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
- The Bridge@USC , University of Southern California , 1002 Childs Way , Los Angeles , California 90089-3502 , USA
| | - Valentine P Ananikov
- Platov South-Russian State Polytechnic University (NPI) , Prosveschenya 132 , Novocherkassk , 346428 , Russia
- N. D. Zelinsky Institute of Organic Chemistry , Russian Academy of Sciences , Leninsky Prospect 47 , 119991 Moscow , Russian Federation
| |
Collapse
|
5
|
Reckziegel A, Pietzonka C, Kraus F, Werncke CG. C-H Bond Activation by an Imido Cobalt(III) and the Resulting Amido Cobalt(II) Complex. Angew Chem Int Ed Engl 2020; 59:8527-8531. [PMID: 32119164 PMCID: PMC7318117 DOI: 10.1002/anie.201914718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/31/2022]
Abstract
The 3d-metal mediated nitrene transfer is under intense scrutiny due to its potential as an atom economic and ecologically benign way for the directed amination of (un)functionalised C-H bonds. Here we present the isolation and characterisation of a rare, trigonal imido cobalt(III) complex, which bears a rather long cobalt-imido bond. It can cleanly cleave strong C-H bonds with a bond dissociation energy of up to 92 kcal mol-1 in an intermolecular fashion, unprecedented for imido cobalt complexes. This resulted in the amido cobalt(II) complex [Co(hmds)2 (NHt Bu)]- . Kinetic studies on this reaction revealed an H atom transfer mechanism. Remarkably, the cobalt(II) amide itself is capable of mediating H atom abstraction or stepwise proton/electron transfer depending on the substrate. A cobalt-mediated catalytic application for substrate dehydrogenation using an organo azide is presented.
Collapse
Affiliation(s)
- Alexander Reckziegel
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Clemens Pietzonka
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Florian Kraus
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - C. Gunnar Werncke
- Fachbereich 15/ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
6
|
Reckziegel A, Pietzonka C, Kraus F, Werncke CG. C‐H‐Bindungsaktivierung durch einen Imidocobalt(III)‐ und den resultierenden Amidocobalt(II)‐Komplex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alexander Reckziegel
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - Clemens Pietzonka
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - Florian Kraus
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| | - C. Gunnar Werncke
- Fachbereich 15/Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Deutschland
| |
Collapse
|
7
|
Kneusels NJH, Münzer JE, Flosdorf K, Jiang D, Neumüller B, Zhao L, Eichhöfer A, Frenking G, Kuzu I. Double donation in trigonal planar iron-carbodiphosphorane complexes - a concise study on their spectroscopic and electronic properties. Dalton Trans 2020; 49:2537-2546. [PMID: 32022052 DOI: 10.1039/c9dt04725e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the syntheses of trigonal planar coordinated Fe(ii) carbodiphosphorane (CDPR) complexes, starting from iron(ii)-bis(trimethylsilylamide) [Fe{N(SiMe3)2}2] and hexaphenyl-(CDPPh) and sym-dimethyltetraphenyl-carbodiphosphoranes (CDPMe), respectively. Both complexes [CDPPh-Fe{N(SiMe3)2}2] (1) and [CDPMe-Fe{N(SiMe3)2}2] (2) were examined in solution and in the solid state. 1 shows a dissociation equilibrium in solution which we monitored by variable temperature 1H-NMR spectroscopy. Magnetic measurements of 1 and 2 yielded a high spin configuration (S = 2) for both complexes. Quantum chemical calculations were performed to analyze the bonding situation in compound 1.
Collapse
Affiliation(s)
- Nis-Julian H Kneusels
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Jörn E Münzer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Kimon Flosdorf
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Dandan Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Andreas Eichhöfer
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany. and Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Istemi Kuzu
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| |
Collapse
|
8
|
Danopoulos AA, Simler T, Braunstein P. N-Heterocyclic Carbene Complexes of Copper, Nickel, and Cobalt. Chem Rev 2019; 119:3730-3961. [PMID: 30843688 DOI: 10.1021/acs.chemrev.8b00505] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The emergence of N-heterocyclic carbenes as ligands across the Periodic Table had an impact on various aspects of the coordination, organometallic, and catalytic chemistry of the 3d metals, including Cu, Ni, and Co, both from the fundamental viewpoint but also in applications, including catalysis, photophysics, bioorganometallic chemistry, materials, etc. In this review, the emergence, development, and state of the art in these three areas are described in detail.
Collapse
Affiliation(s)
- Andreas A Danopoulos
- Laboratory of Inorganic Chemistry , National and Kapodistrian University of Athens , Panepistimiopolis Zografou , Athens GR 15771 , Greece.,Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Thomas Simler
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| | - Pierre Braunstein
- Université de Strasbourg, CNRS, Institut de Chimie UMR 7177 , Laboratoire de Chimie de Coordination , Strasbourg 67081 Cedex , France
| |
Collapse
|
9
|
Lin CY, Fettinger JC, Power PP. Reversible Complexation of Lewis Bases to Low-Coordinate Fe(II), Co(II), and Ni(II) Amides: Influence of the Metal, Donor Ligand, and Amide Substituent on Binding Constants. Inorg Chem 2017; 56:9892-9902. [DOI: 10.1021/acs.inorgchem.7b01387] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chun-Yi Lin
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - James C. Fettinger
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| | - Philip P. Power
- Department of Chemistry, University of California at Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
10
|
Boubakri L, Yasar S, Dorcet V, Roisnel T, Bruneau C, Hamdi N, Ozdemir I. Synthesis and catalytic applications of palladium N-heterocyclic carbene complexes as efficient pre-catalysts for Suzuki–Miyaura and Sonogashira coupling reactions. NEW J CHEM 2017. [DOI: 10.1039/c7nj00488e] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new palladium complex series with N-heterocyclic carbene (NHC), pyridine and phosphine ligands, PdCl2(L)NHC (2a–c)(L = NHC), PdCl2(L1)NHC(3a–c)(L1 = pyridine), PdCl2(L2)NHC(4a–c)(L2 = triphenylphosphine) was synthesised and fully characterized.
Collapse
Affiliation(s)
- L. Boubakri
- İnönü University
- Catalysis
- Research and Applied Center
- 44280 Malatya
- Turkey
| | - S. Yasar
- İnönü University
- Catalysis
- Research and Applied Center
- 44280 Malatya
- Turkey
| | - V. Dorcet
- Université de Rennes
- UMR 6226: CNRS – Université de Rennes1
- Institut des Sciences Chimiques de Rennes
- 35042 Rennes
- France
| | - T. Roisnel
- Université de Rennes
- UMR 6226: CNRS – Université de Rennes1
- Institut des Sciences Chimiques de Rennes
- 35042 Rennes
- France
| | - C. Bruneau
- Université de Rennes
- UMR 6226: CNRS – Université de Rennes1
- Institut des Sciences Chimiques de Rennes
- 35042 Rennes
- France
| | - N. Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09)
- Higher Institute of Environmental Sciences and Technology
- University of Carthage
- Hammam-Lif
- Tunisia
| | - I. Ozdemir
- İnönü University
- Catalysis
- Research and Applied Center
- 44280 Malatya
- Turkey
| |
Collapse
|
11
|
Grant LN, Carroll ME, Carroll PJ, Mindiola DJ. An Unusual Cobalt Azide Adduct That Produces a Nitrene Species for Carbon–Hydrogen Insertion Chemistry. Inorg Chem 2016; 55:7997-8002. [DOI: 10.1021/acs.inorgchem.6b01114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lauren N. Grant
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Maria E. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J. Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Hansen CB, Filatov AS, Hillhouse GL. Crystal structure of the inverse crown ether tetra-kis-[μ2-bis-(tri-methyl-sil-yl)amido]-μ4-oxido-dicobalt(II)disodium, [Co2Na2{μ2-N(SiMe3)2}4](μ4-O). Acta Crystallogr E Crystallogr Commun 2016; 72:780-4. [PMID: 27308041 PMCID: PMC4908559 DOI: 10.1107/s2056989016006861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 11/10/2022]
Abstract
The title compound, [Co2Na2{μ2-N(SiMe3)2}4](μ4-O), (I), represents a new entry in the class of inverse crown ethers. In the mol-ecule, each Co atom is formally in the oxidation state +II. The structure contains one half of a unique mol-ecule per asymmetric unit with the central μ4-oxido ligand residing on an inversion center, leading to a planar coordination to the Na and Co atoms. In the crystal, bulky tri-methyl-silyl substituents prevent additional inter-actions with cobalt. However, weak inter-molecular Na⋯H3C-Si inter-actions form an infinite chain along [010]. The structure is isotypic with its Mg, Mn and Zn analogues.
Collapse
Affiliation(s)
- Christopher B. Hansen
- The University of Chicago, Department of Chemistry, 5735 S Ellis Ave., Chicago, IL 60637, USA
| | - Alexander S. Filatov
- The University of Chicago, Department of Chemistry, 5735 S Ellis Ave., Chicago, IL 60637, USA
| | - Gregory L. Hillhouse
- The University of Chicago, Department of Chemistry, 5735 S Ellis Ave., Chicago, IL 60637, USA
| |
Collapse
|
13
|
Abstract
The development of extremely sterically demanding, monodentate amide ligands facilitates the isolation of main group species with new and highly reactive coordination modes. An outstanding feature of these ligands is the ability to tune their steric demands. Reactivity investigations highlight the potential for small molecule activation chemistry and catalysis for these compounds.
Collapse
|