1
|
Second and third-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumour activity. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
2
|
A theoretical characterization of mechanisms of action of osmium(III)-based drug Os-KP418: hydrolysis and its binding with guanine. Struct Chem 2022. [DOI: 10.1007/s11224-022-02064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Metal Peptide Conjugates in Cell and Tissue Imaging and Biosensing. Top Curr Chem (Cham) 2022; 380:30. [PMID: 35701677 PMCID: PMC9197911 DOI: 10.1007/s41061-022-00384-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Metal complex luminophores have seen dramatic expansion in application as imaging probes over the past decade. This has been enabled by growing understanding of methods to promote their cell permeation and intracellular targeting. Amongst the successful approaches that have been applied in this regard is peptide-facilitated delivery. Cell-permeating or signal peptides can be readily conjugated to metal complex luminophores and have shown excellent response in carrying such cargo through the cell membrane. In this article, we describe the rationale behind applying metal complexes as probes and sensors in cell imaging and outline the advantages to be gained by applying peptides as the carrier for complex luminophores. We describe some of the progress that has been made in applying peptides in metal complex peptide-driven conjugates as a strategy for cell permeation and targeting of transition metal luminophores. Finally, we provide key examples of their application and outline areas for future progress.
Collapse
|
4
|
Hildebrandt J, Häfner N, Kritsch D, Görls H, Dürst M, Runnebaum IB, Weigand W. Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms. Int J Mol Sci 2022; 23:ijms23094976. [PMID: 35563367 PMCID: PMC9102668 DOI: 10.3390/ijms23094976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Daniel Kritsch
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| |
Collapse
|
5
|
Wang MF, Deng YA, Li QF, Tang SJ, Yang R, Zhao RY, Liu FD, Ren X, Zhang D, Gao F. Dinuclear osmium complexes as mitochondrion-targeting antitumor photothermal agents in vivo. Chem Commun (Camb) 2022; 58:12676-12679. [DOI: 10.1039/d2cc05230j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrion-targeting dinuclear osmium complexes with extremely high photothermal conversion capability under irradiation of an 808 nm low-power laser without nucleus affinity and photodynamic activity act as antitumor photothermal therapy agents in vivo.
Collapse
Affiliation(s)
- Meng-Fan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Yu-Ang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Qing-Fang Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Shi-Jie Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Rong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Fu-Dan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Dan Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming 650032, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
6
|
Pradhan AK, Shyam A, Mondal P. A detailed quantum chemical investigation on the hydrolysis mechanism of osmium( iii) anticancer drug, (ImH)[ trans-OsCl 4(DMSO)(Im)] (Os-NAMI-A; Im = imidazole). NEW J CHEM 2021. [DOI: 10.1039/d1nj00783a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Detailed hydrolysis mechanism of osmium(iii) anticancer drug, (ImH)[trans-OsCl4(DMSO)(Im)] (Os-NAMI-A; Im = imidazole, DMSO = dimethyl sulfoxide) has been investigated using density functional theory (DFT) in combination with CPCM solvation model.
Collapse
Affiliation(s)
| | - Abhijit Shyam
- Department of Chemistry
- Assam University
- Silchar-788011
- India
| | | |
Collapse
|
7
|
Biedulska M, Królicka A, Lipińska AD, Krychowiak-Maśnicka M, Pierański M, Grabowska K, Nidzworski D. Physicochemical profile of Os (III) complexes with pyrazine derivatives: From solution behavior to DNA binding studies and biological assay. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Needham RJ, Bridgewater HE, Romero-Canelón I, Habtemariam A, Clarkson GJ, Sadler PJ. Structure-activity relationships for osmium(II) arene phenylazopyridine anticancer complexes functionalised with alkoxy and glycolic substituents. J Inorg Biochem 2020; 210:111154. [PMID: 32771772 DOI: 10.1016/j.jinorgbio.2020.111154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/15/2022]
Abstract
Twenty-four novel organometallic osmium(II) phenylazopyridine (AZPY) complexes have been synthesised and characterised; [Os(η6-arene)(5-RO-AZPY)X]Y, where arene = p-cym or bip, AZPY is functionalized with an alkoxyl (O-R, R = Me, Et, nPr, iPr, nBu) or glycolic (O-{CH2CH2O}nR*, n = 1-4, R* = H, Me, or Et) substituent on the pyridyl ring para to the azo-bond, X is a monodentate halido ligand (Cl, Br or I), and Y is a counter-anion (PF6-, CF3SO3- or IO3-). X-ray crystal structures of two complexes confirmed their 'half-sandwich' structures. Aqueous solubility depended on X, the AZPY substituents, arene, and Y. Iodido complexes are highly stable in water (X = I ⋙ Br > Cl), and exhibit the highest antiproliferative activity against A2780 (ovarian), MCF-7 (breast), SUNE1 (nasopharyngeal), and OE19 (oesophageal) cancer cells, some attaining nanomolar potency and good cancer-cell selectivity. Their activity and distinctive mechanism of action is discussed in relation to hydrophobicity (RP-HPLC capacity factor and Log Po/w), cellular accumulation, electrochemical reduction (activation of azo bond), cell cycle analysis, apoptosis and induction of reactive oxygen species (ROS). Two complexes show ca. 4× higher activity than cisplatin in the National Cancer Institute (NCI) 60-cell line five-dose screen. The COMPARE algorithm of their datasets reveals a strong correlation with one another, as well as anticancer agents olivomycin, phyllanthoside, bouvardin and gamitrinib, but only a weak correlation with cisplatin, indicative of a different mechanism of action.
Collapse
Affiliation(s)
- Russell J Needham
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Hannah E Bridgewater
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Isolda Romero-Canelón
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Abraha Habtemariam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Guy J Clarkson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
9
|
Rudnitskaya OV, Dobrokhotova EV, Kultyshkina EK, Tereshina TA, Trigub AL, Zubavichus YV, Khrustalev VN. Osmium(IV) Halide Complexes with Dimethyl Sulfoxide[H(dmso)
2
][OsX
5
(dmso‐κ
O
)], X=Cl, Br: Synthesis, Structure, and Properties. ChemistrySelect 2020. [DOI: 10.1002/slct.201904109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Olga V. Rudnitskaya
- Department of Inorganic ChemistryPeoples' Friendship University of Russia (RUDN University) Miklukho-Maklay St., 6 Moscow 117198 Russia
| | - Ekaterina V. Dobrokhotova
- Department of Inorganic ChemistryPeoples' Friendship University of Russia (RUDN University) Miklukho-Maklay St., 6 Moscow 117198 Russia
| | - Ekaterina K. Kultyshkina
- Department of Inorganic ChemistryPeoples' Friendship University of Russia (RUDN University) Miklukho-Maklay St., 6 Moscow 117198 Russia
| | - Tatiana A. Tereshina
- Department of Inorganic ChemistryPeoples' Friendship University of Russia (RUDN University) Miklukho-Maklay St., 6 Moscow 117198 Russia
| | - Alexander L. Trigub
- National Research Center“Kurchatov Institute” Acad. Kurchatov Sq., 1 Moscow 123182 Russia
| | - Yan V. Zubavichus
- Boreskov Institute of Catalysis SB RAS Lavrentiev Ave. 5 Novosibirsk 630090 Russia
| | - Victor N. Khrustalev
- Department of Inorganic ChemistryPeoples' Friendship University of Russia (RUDN University) Miklukho-Maklay St., 6 Moscow 117198 Russia
- Zelinsky Institute of Organic Chemistry RAS Leninsky Prosp. 47 119991 Moscow Russia
| |
Collapse
|
10
|
Sanz del Olmo N, Carloni R, Ortega P, García-Gallego S, de la Mata FJ. Metallodendrimers as a promising tool in the biomedical field: An overview. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Hou X, Guo Z, Yang L, Ma H. Four three-dimensional metal–organic frameworks assembled from 1H-tetrazole: Synthesis, crystal structures and thermal properties. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Adv 2019; 9:3239-3278. [PMID: 35518979 PMCID: PMC9060267 DOI: 10.1039/c8ra07926a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/26/2018] [Indexed: 02/02/2023] Open
Abstract
The advent of the clinically approved drug cisplatin started a new era in the design of metallodrugs for cancer chemotherapy. However, to date, there has not been much success in this field due to the persistence of some side effects and multi-drug resistance of cancer cells. In recent years, there has been increasing interest in the design of metal chemotherapeutics using organometallic complexes due to their good stability and unique properties in comparison to normal coordination complexes. Their intermediate properties between that of traditional inorganic and organic materials provide researchers with a new platform for the development of more promising cancer therapeutics. Classical metal-based drugs exert their therapeutic potential by targeting only DNA, but in the case of organometallic complexes, their molecular target is quite distinct to avoid drug resistance by cancer cells. Some organometallic drugs act by targeting a protein or inhibition of enzymes such as thioredoxin reductase (TrRx), while some target mitochondria and endoplasmic reticulum. In this review, we mainly discuss organometallic complexes of Ru, Ti, Au, Fe and Os and their mechanisms of action and how new approaches improve their therapeutic potential towards various cancer phenotypes. Herein, we discuss the role of structure-reactivity relationships in enhancing the anticancer potential of drugs for the benefit of humans both in vitro and in vivo. Besides, we also include in vivo tumor models that mimic human physiology to accelerate the development of more efficient clinical organometallic chemotherapeutics.
Collapse
Affiliation(s)
- Mehvash Zaki
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| | - Suboot Hairat
- Department of Biotechnology, Wachemo University Hossana Ethiopia
| | - Elham S Aazam
- Department of Chemistry, King Abdulaziz University Jeddah Saudia Arabia +91 8979086156, +966 561835672
| |
Collapse
|
13
|
Rudnitskaya OV, Kultyshkina EK, Dobrokhotova EV, Ananyev IV. Osmium Dimethyl Sulfoxide Complexes. Crystal Structure of the Complex [H(DMSO)2][OsIIIBr4(DMSO)2]. J STRUCT CHEM+ 2018. [DOI: 10.1134/s0022476618030253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Meier-Menches SM, Gerner C, Berger W, Hartinger CG, Keppler BK. Structure-activity relationships for ruthenium and osmium anticancer agents - towards clinical development. Chem Soc Rev 2018; 47:909-928. [PMID: 29170783 DOI: 10.1039/c7cs00332c] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Anticancer metallodrugs based on ruthenium and osmium are among the most investigated and advanced non-platinum metallodrugs. Inorganic drug discovery with these agents has undergone considerable advances over the past two decades and has currently two representatives in active clinical trials. As many ruthenium and osmium metallodrugs are prodrugs, a key question to be addressed is how the molecular reactivity of such metal-based therapeutics dictates the selectivity and the type of interaction with molecular targets. Within this frame, this review introduces the field by the examples of the most advanced ruthenium lead structures. Then, global structure-activity relationships are discussed for ruthenium and osmium metallodrugs with respect to in vitro antiproliferative/cytotoxic activity and in vivo tumor-inhibiting properties, as well as pharmacokinetics. Determining and validating global mechanisms of action and molecular targets are still major current challenges. Moreover, significant efforts must be invested in screening in vivo tumor models that mimic human pathophysiology to increase the predictability for successful preclinical and clinical development of ruthenium and osmium metallodrugs.
Collapse
Affiliation(s)
- Samuel M Meier-Menches
- University of Vienna, Department of Analytical Chemistry, Waehringer Str. 38, A-1090 Vienna, Austria.
| | | | | | | | | |
Collapse
|
15
|
Ghosh K, Banerjee A, Bauzá A, Frontera A, Chattopadhyay S. One pot synthesis of two cobalt(iii) Schiff base complexes with chelating pyridyltetrazolate and exploration of their bio-relevant catalytic activities. RSC Adv 2018; 8:28216-28237. [PMID: 35542722 PMCID: PMC9084250 DOI: 10.1039/c8ra03035a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
Two new cobalt(iii) tetrazolato complexes [Co(L1)(PTZ)(N3)] (1) and [Co(L2)(PTZ)(N3)] (2) {where H2L1 = 2((3-(methylamino)propylimino)methyl)-6-methoxyphenol, H2L2 = 2((3-(dimethylamino)propylimino)methyl)-6-ethoxyphenol and HPTZ = 5-(2-pyridyl)tetrazole}, have been synthesized via in situ 1,3-dipolar cycloaddition reaction of 2-cyanopyridine and sodium azide in the presence of cobalt(ii) nitrate hexahydrate and respective Schiff bases in the open atmosphere. The structures of both complexes have been confirmed by single crystal X-ray diffraction studies. Features of noncovalent interactions in the solid state of both complexes have been studied by means of DFT and MEP calculations and characterized using Bader's theory of “atoms in molecules” (AIM). These complexes act as biomimetic catalysts promoting the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to the corresponding o-benzoquinone at room temperature. The reaction follows Michaelis–Menten enzymatic reaction kinetics with turnover numbers of ∼0.030 s−1 in an acetonitrile–methanol (2 : 1) mixture. Both complexes are also reactive towards aerobic oxidation of o-aminophenol in acetonitrile–methanol (2 : 1) with turnover numbers ∼0.095 s−1. Two cobalt(iii) tetrazolato complexes have been synthesized and characterized. Noncovalent interactions have been analysed by DFT and MEP calculations and characterized using Bader's theory of AIM. Both complexes catalyze the aerial oxidation of 3,5-DTBC and OAPH.![]()
Collapse
Affiliation(s)
- Kousik Ghosh
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata
- India
| | - Abhisek Banerjee
- Department of Chemistry
- Inorganic Section
- Jadavpur University
- Kolkata
- India
| | - Antonio Bauzá
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma (Baleares)
- Spain
| | - Antonio Frontera
- Departament de Química
- Universitat de les IllesBalears
- 07122 Palma (Baleares)
- Spain
| | | |
Collapse
|
16
|
Zhang P, Huang H. Future potential of osmium complexes as anticancer drug candidates, photosensitizers and organelle-targeted probes. Dalton Trans 2018; 47:14841-14854. [DOI: 10.1039/c8dt03432j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here we summarize recent progress in the design and application of innovative osmium compounds as anticancer agents with diverse modes of action, as organelle-targeted imaging probes and photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Pingyu Zhang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huaiyi Huang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
17
|
Needham R, Habtemariam A, Barry NPE, Clarkson G, Sadler PJ. Halide Control of N,N-Coordination versus N,C-Cyclometalation and Stereospecific Phenyl Ring Deuteration of Osmium(II) p-Cymene Phenylazobenzothiazole Complexes. Organometallics 2017; 36:4367-4375. [PMID: 29249848 PMCID: PMC5726741 DOI: 10.1021/acs.organomet.7b00501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Indexed: 11/29/2022]
Abstract
We report the synthesis of halido Os(II) p-cymene complexes bearing bidentate chelating phenylazobenzothiazole (AZBTZ) ligands. Unlike the analogous phenylazopyridine (AZPY) complexes, AZBTZ-NMe2 is capable of both N,N-coordination to Os(II) and cyclometalation to form N,C-coordinated species. N,C-Coordination occurs via an azo nitrogen and an ortho carbon on the aniline ring, as identified by 1H NMR and X-ray crystallography of [Os(p-cym)(N,N-AZBTZ-NMe2)Cl]PF6 (1a), [Os(p-cym)(N,N-AZBTZ-NMe2)Br]PF6 (2a), [Os(p-cym)(N,C-AZBTZ-NMe2)Br] (2b), and [Os(p-cym)(N,C-AZBTZ-NMe2)I] (3b). The N,C-coordinated species is more stable and is not readily converted to the N,N-coordinated complex. Analysis of the crystal structures suggests that their formation is influenced by steric interactions between the p-cym and AZBTZ-NMe2 ligands: in particular, larger monodentate halide ligands favor N,C-coordination. The complexes [Os(p-cym)(N,N-Me2-AZBTZ-NH2)Cl]PF6 (4) and [Os(p-cym)(N,N-Me2-AZBTZ-NH2)I]PF6 (5) were synthesized with methyl groups blocking the ortho positions on the aniline ring, forcing an N,N-coordination geometry. 1H NMR NOE experiments confirmed hindered rotation of the arene ligand and steric crowding around the metal center. Complex 2b exhibited unexpected behavior under acidic conditions, involving regiospecific deuteration of the aniline ring at the meta position, as observed by 1H NMR and high-resolution ESI-MS. Deuterium exchange occurs only under acidic conditions, suggesting an associative mechanism. The calculated partial charges on 2b show that the meta carbon is significantly more negatively charged, which may account for the regiospecificity of deuterium exchange.
Collapse
Affiliation(s)
- Russell
J. Needham
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Abraha Habtemariam
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Nicolas P. E. Barry
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Guy Clarkson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
18
|
Liu LJ, Wang W, Kang TS, Liang JX, Liu C, Kwong DWJ, Wong VKW, Ma DL, Leung CH. Antagonizing STAT5B dimerization with an osmium complex. Sci Rep 2016; 6:36044. [PMID: 27853239 PMCID: PMC5113070 DOI: 10.1038/srep36044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
Targeting STAT5 is an appealing therapeutic strategy for the treatment of hematologic malignancies and inflammation. Here, we present the novel osmium(II) complex 1 as the first metal-based inhibitor of STAT5B dimerization. Complex 1 exhibited superior inhibitory activity against STAT5B DNA binding compared to STAT5A DNA binding. Moreover, 1 repressed STAT5B transcription and blocked STAT5B dimerization via binding to the STAT5B protein, thereby inhibiting STAT5B translocation to the nucleus. Furthermore, 1 was able to selectively inhibit STAT5B phosphorylation without affecting the expression level of STAT5B.
Collapse
Affiliation(s)
- Li-Juan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jia-Xin Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenfu Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Daniel W. J. Kwong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
19
|
Kuhn P, Meier SM, Jovanović KK, Sandler I, Freitag L, Novitchi G, González L, Radulović S, Arion VB. Ruthenium Carbonyl Complexes with Azole Heterocycles – Synthesis, X‐ray Diffraction Structures, DFT Calculations, Solution Behavior, and Antiproliferative Activity. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paul‐Steffen Kuhn
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Samuel M. Meier
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Katarina K. Jovanović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Isolde Sandler
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria http://www.theochem.univie.ac.at
| | - Leon Freitag
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria http://www.theochem.univie.ac.at
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnetiques Intenses‐CNRS, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Leticia González
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria http://www.theochem.univie.ac.at
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Vladimir B. Arion
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| |
Collapse
|
20
|
Das A, Mondal P, Dasgupta M, Kishore N, Lahiri GK. Substituent directed selectivity in anion recognition by a new class of simple osmium-pyrazole derived receptors. Dalton Trans 2016; 45:2605-17. [PMID: 26733437 DOI: 10.1039/c5dt04538j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present article deals with the structurally, spectroscopically and electrochemically characterised osmium-bipyridyl derived complexes [(bpy)2Os(II)(HL1)Cl]ClO4 [1]ClO4 and [(bpy)2Os(II)(HL2)Cl]ClO4 [2]ClO4 incorporating neutral and monodentate pyrazole derivatives (HL) with one free NH function (bpy = 2,2'-bipyridine, HL1 = pyrazole, HL2 = 3,5-dimethylpyrazole). The crystal structures of [1]ClO4 and [2]ClO4 reveal intramolecular hydrogen bonding interactions between the free NH proton of HL and the equatorially placed Cl(-) ligand (N-HCl) with donor-acceptor distances of 3.114(7) Å and 3.153(6) Å as well as intermolecular hydrogen bonding interactions between the NH proton and one of the oxygen atoms of ClO4(-) (N-HO) with donor-acceptor distances of 2.870(10) Å and 3.024(8) Å, respectively. The effect of hydrogen bonding interactions has translated into the less acidic nature of the NH proton of the coordinated HL with estimated pKa > 12. 1(+) and 2(+) exhibit reversible Os(II)/(III) and irreversible Os(III)/(IV) processes in CH3CN within ± 2.0 V versus SCE. The effect of 3,5-dimethyl substituted HL2 on 2(+) has been reflected in the appreciable lowering (40 mV) of the Os(II/III) potential, along with the further decrease in the acidity of the NH proton (pKa > 13.0) with regard to HL1 coordinated 1(+) (pKa: ∼ 12.3). The electronic spectral features of Os(ii) (1(+)/2(+)) and electrochemically generated Os(III) (1(2+)/2(2+)) derived complexes have been analysed by TD-DFT calculations. The efficacy of the 1(+) and 2(+) encompassing free NH proton towards the anion recognition process has been evaluated by different experimental investigations using a wide variety of anions. It however establishes that receptor 1(+) can recognise both F(-) and OAc(-) in acetonitrile solution, while 2(+) is exclusively selective for the F(-) ion.
Collapse
Affiliation(s)
- Ankita Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | | | | | | | | |
Collapse
|
21
|
Pradeep I, Balajothi B, Arunachalam S, Dhivya R, Vinothkanna A, Akbarsha MA, Sekar S. Fluorescent active ruthenium(ii) complex units containing bpy or phen or dmp ligands anchored on branched poly(ethylenimine): DNA binding and in vitro biological assessment. RSC Adv 2016. [DOI: 10.1039/c6ra00692b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UV light irradiation visible responses of polymer ruthenium complexes.
Collapse
Affiliation(s)
| | | | | | - Rajakumar Dhivya
- Mahatma Gandhi-Doerenkamp Center
- Bharathidasan University
- Tiruchirappalli–620024
- India
| | - Annadurai Vinothkanna
- Department of Industrial Biotechnology
- Bharathidasan University
- Tiruchirappalli–620024
- India
| | | | - Soundarapandian Sekar
- Department of Industrial Biotechnology
- Bharathidasan University
- Tiruchirappalli–620024
- India
| |
Collapse
|
22
|
Kuhn PS, Cremer L, Gavriluta A, Jovanović KK, Filipović L, Hummer AA, Büchel GE, Dojčinović BP, Meier SM, Rompel A, Radulović S, Tommasino JB, Luneau D, Arion VB. Heteropentanuclear Oxalato-Bridged nd-4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity. Chemistry 2015; 21:13703-13. [PMID: 26260662 PMCID: PMC4583781 DOI: 10.1002/chem.201502026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Indexed: 11/29/2022]
Abstract
A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d-4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by (13)C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)](2-) are coordinated to Y(III) and Dy(III), respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4](5-) (Ln=Y, Dy). While Y(III) is eight-coordinate in 2, Dy(III) is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N(+) ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2-5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d-4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2-5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d-4f metal complexes 6-9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.
Collapse
Affiliation(s)
- Paul-Steffen Kuhn
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna (Austria)
| | - Laura Cremer
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna (Austria)
| | - Anatolie Gavriluta
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de la Doua, 69622 Villeurbanne cedex (France)
| | - Katarina K Jovanović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia)
| | - Lana Filipović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia)
| | - Alfred A Hummer
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien (Austria)
| | - Gabriel E Büchel
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna (Austria)
- Present address: Division for Physical Sciences and Engineering and KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
| | - Biljana P Dojčinović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Center of Chemistry, Studentski trg 12-16, Belgrade (Serbia)
| | - Samuel M Meier
- Faculty of Chemistry, Institute of Analytical Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna (Austria)
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090 Wien (Austria)
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia)
| | - Jean Bernard Tommasino
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de la Doua, 69622 Villeurbanne cedex (France)
| | - Dominique Luneau
- Université Claude Bernard Lyon 1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de la Doua, 69622 Villeurbanne cedex (France).
| | - Vladimir B Arion
- University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, 1090 Vienna (Austria).
| |
Collapse
|
23
|
Păunescu E, Nowak-Sliwinska P, Clavel CM, Scopelliti R, Griffioen AW, Dyson PJ. Anticancer Organometallic Osmium(II)-p-cymene Complexes. ChemMedChem 2015; 10:1539-1547. [PMID: 26190176 DOI: 10.1002/cmdc.201500221] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Indexed: 01/04/2025]
Abstract
Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications.
Collapse
Affiliation(s)
- Emilia Păunescu
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Patrycja Nowak-Sliwinska
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam (The Netherlands)
| | - Catherine M Clavel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam (The Netherlands)
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland).
| |
Collapse
|
24
|
Rudnitskaya OV, Kultyshkina EK, Dobrokhotova EV, Anan’ev IV. Synthesis and structure of [H(DMSO)2]2[OsX6] (X = Cl, Br). RUSS J COORD CHEM+ 2014. [DOI: 10.1134/s1070328414120124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Kuhn PS, Büchel GE, Jovanović KK, Filipović L, Radulović S, Rapta P, Arion VB. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity. Inorg Chem 2014; 53:11130-9. [PMID: 25290960 DOI: 10.1021/ic501710k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A one-electron reduction of osmium(IV) complexes trans-[Os(IV)Cl4(Hazole)2], where Hazole = 1H-pyrazole ([1](0)), 2H-indazole ([2](0)), 1H-imidazole ([3](0)), and 1H-benzimidazole ([4](0)), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-Os(III)Cl4(Hazole)2], where cation = H2pz(+) (H2pz[1]), H2ind(+) (H2ind[2]), H2im(+) (H2im[3]), Ph4P(+) (Ph4P[3]), nBu4N(+) (nBu4N[3]), H2bzim(+) (H2bzim[4]), Ph4P(+) (Ph4P[4]), and nBu4N(+) (nBu4N[4]). All complexes were characterized by elemental analysis, (1)H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1](-) and [4](-) are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5'-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3].
Collapse
Affiliation(s)
- Paul-Steffen Kuhn
- Faculty of Chemistry, Institute of Inorganic Chemistry, University of Vienna , Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
26
|
Rudnitskaya OV, Kultyshkina EK, Dobrokhotova EV, Shishilov ON. Bromo dimethyl sulfoxide osmium(II) complexes. Molecular structure of cis,fac-[OsBr2(dmso-S)3(dmso-O)]. RUSS J INORG CHEM+ 2014. [DOI: 10.1134/s0036023614090149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Rudnitskaya OV, Kultyshkina EK, Dobrokhotova EV, Efimov NN, Ugolkova EA, Ovcharov MV, Minin VV. Osmium dimethyl sulfoxide complexes: Synthesis and properties of [H(dmso)2][OsIII(dmso)2Br4]. RUSS J INORG CHEM+ 2014. [DOI: 10.1134/s0036023614070195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Hanif M, Babak MV, Hartinger CG. Development of anticancer agents: wizardry with osmium. Drug Discov Today 2014; 19:1640-8. [PMID: 24955838 DOI: 10.1016/j.drudis.2014.06.016] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/22/2014] [Accepted: 06/16/2014] [Indexed: 12/20/2022]
Abstract
Platinum compounds are one of the pillars of modern cancer chemotherapy. The apparent disadvantages of existing chemotherapeutics have led to the development of novel anticancer agents with alternative modes of action. Many complexes of the heavy metal osmium (Os) are potent growth inhibitors of human cancer cells and are active in vivo, often superior or comparable to cisplatin, as the benchmark metal-based anticancer agent, or clinically tested ruthenium (Ru) drug candidates. Depending on the choice of ligand system, osmium compounds exhibit diverse modes of action, including redox activation, DNA targeting or inhibition of protein kinases. In this review, we highlight recent advances in the development of osmium anticancer drug candidates and discuss their cellular mechanisms of action.
Collapse
Affiliation(s)
- Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Maria V Babak
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
29
|
Rathgeb A, Böhm A, Novak MS, Gavriluta A, Dömötör O, Tommasino JB, Enyedy ÉA, Shova S, Meier S, Jakupec MA, Luneau D, Arion VB. Ruthenium-nitrosyl complexes with glycine, L-alanine, L-valine, L-proline, D-proline, L-serine, L-threonine, and L-tyrosine: synthesis, X-ray diffraction structures, spectroscopic and electrochemical properties, and antiproliferative activity. Inorg Chem 2014; 53:2718-29. [PMID: 24555845 PMCID: PMC3942006 DOI: 10.1021/ic4031359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 01/11/2023]
Abstract
The reactions of [Ru(NO)Cl5](2-) with glycine (Gly), L-alanine (L-Ala), L-valine (L-Val), L-proline (L-Pro), D-proline (D-Pro), L-serine (L-Ser), L-threonine (L-Thr), and L-tyrosine (L-Tyr) in n-butanol or n-propanol afforded eight new complexes (1-8) of the general formula [RuCl3(AA-H)(NO)](-), where AA = Gly, L-Ala, L-Val, L-Pro, D-Pro, L-Ser, L-Thr, and L-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), (1)H NMR, UV-visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA-H)(NO)], as was also recently reported for osmium analogues with Gly, L-Pro, and D-Pro (see Z. Anorg. Allg. Chem. 2013, 639, 1590-1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds.
Collapse
Affiliation(s)
- Anna Rathgeb
- University of Vienna, Institute
of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Andreas Böhm
- University of Vienna, Institute
of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Maria S. Novak
- University of Vienna, Institute
of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Anatolie Gavriluta
- Université
Claude Bernard Lyon 1, Laboratoire des Multimatériaux
et Interfaces (UMR 5615), Campus de La Doua, 69622 Villeurbanne Cedex, France
| | - Orsolya Dömötör
- Department
of Inorganic and Analytical Chemistry, University
of Szeged, Dóm
tér 7, H-6720 Szeged, Hungary
| | - Jean Bernard Tommasino
- Université
Claude Bernard Lyon 1, Laboratoire des Multimatériaux
et Interfaces (UMR 5615), Campus de La Doua, 69622 Villeurbanne Cedex, France
| | - Éva A. Enyedy
- Department
of Inorganic and Analytical Chemistry, University
of Szeged, Dóm
tér 7, H-6720 Szeged, Hungary
| | - Sergiu Shova
- “Petru Poni”
Institute of Macromolecular Chemistry of the Roumanian Academy, Aleea
Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
| | - Samuel Meier
- University of Vienna, Institute
of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Michael A. Jakupec
- University of Vienna, Institute
of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Dominique Luneau
- Université
Claude Bernard Lyon 1, Laboratoire des Multimatériaux
et Interfaces (UMR 5615), Campus de La Doua, 69622 Villeurbanne Cedex, France
| | - Vladimir B. Arion
- University of Vienna, Institute
of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
30
|
Govender P, Edafe F, Makhubela BC, Dyson PJ, Therrien B, Smith GS. Neutral and cationic osmium(II)-arene metallodendrimers: Synthesis, characterisation and anticancer activity. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2013.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Rajalakshmi S, Kiran MS, Vaidyanathan VG, Azhagiya Singam ER, Subramaniam V, Nair BU. Investigation of nuclease, proteolytic and antiproliferative effects of copper(II) complexes of thiophenylmethanamine derivatives. Eur J Med Chem 2013; 70:280-93. [DOI: 10.1016/j.ejmech.2013.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
|
32
|
Büchel G, Gavriluta A, Novak M, Meier S, Jakupec MA, Cuzan O, Turta C, Tommasino JB, Jeanneau E, Novitchi G, Luneau D, Arion VB. Striking difference in antiproliferative activity of ruthenium- and osmium-nitrosyl complexes with azole heterocycles. Inorg Chem 2013; 52:6273-85. [PMID: 23659478 PMCID: PMC3733131 DOI: 10.1021/ic400555k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Indexed: 01/01/2023]
Abstract
Ruthenium nitrosyl complexes of the general formulas (cation)(+)[cis-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (Hind) (1c), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (Hpz) (2c), (cation)(+) = (H2bzim)(+), Hazole = 1H-benzimidazole (Hbzim) (3c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (Him) (4c) and (cation)(+)[trans-RuCl4(NO)(Hazole)](-), where (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (1t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (2t), as well as osmium analogues of the general formulas (cation)(+)[cis-OsCl4(NO)(Hazole)](-), where (cation)(+) = (n-Bu4N)(+), Hazole =1H-indazole (5c), 1H-pyrazole (6c), 1H-benzimidazole (7c), 1H-imidazole (8c), (cation)(+) = Na(+); Hazole =1H-indazole (9c), 1H-benzimidazole (10c), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11c), (cation)(+) = H2pz(+), Hazole = 1H-pyrazole (12c), (cation)(+) = (H2im)(+), Hazole = 1H-imidazole (13c), and (cation)(+)[trans-OsCl4(NO)(Hazole)](-), where (cation)(+) = n-Bu4N(+), Hazole = 1H-indazole (5t), 1H-pyrazole (6t), (cation)(+) = Na(+), Hazole = 1H-indazole (9t), (cation)(+) = (H2ind)(+), Hazole = 1H-indazole (11t), (cation)(+) = (H2pz)(+), Hazole = 1H-pyrazole (12t), have been synthesized. The compounds have been comprehensively characterized by elemental analysis, ESI mass spectrometry, spectroscopic techniques (IR, UV-vis, 1D and 2D NMR) and X-ray crystallography (1c·CHCl3, 1t·CHCl3, 2t, 3c, 6c, 6t, 8c). The antiproliferative activity of water-soluble compounds (1c, 1t, 3c, 4c and 9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c) in the human cancer cell lines A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma) has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism, and azole heterocycle identity on cytotoxic potency and cell line selectivity have been elucidated. Ruthenium complexes (1c, 1t, 3c, and 4c) yielded IC50 values in the low micromolar concentration range. In contrast to most pairs of analogous ruthenium and osmium complexes known, they turned out to be considerably more cytotoxic than chemically related osmium complexes (9c, 9t, 10c, 11c, 11t, 12c, 12t, 13c). The IC50 values of Os/Ru homologs differ by factors (Os/Ru) of up to ~110 and ~410 in CH1 and SW480 cells, respectively. ESI-MS studies revealed that ascorbic acid may activate the ruthenium complexes leading to hydrolysis of one M-Cl bond, whereas the osmium analogues tend to be inert. The interaction with myoglobin suggests nonselective adduct formation; i.e., proteins may act as carriers for these compounds.
Collapse
Affiliation(s)
- Gabriel
E. Büchel
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Anatolie Gavriluta
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Maria Novak
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Samuel
M. Meier
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Michael A. Jakupec
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Olesea Cuzan
- Institute of Chemistry, Academy of Sciences of Moldova, Academiei Str. 3, MD-2028
Chisinau, Moldova
| | - Constantin Turta
- Institute of Chemistry, Academy of Sciences of Moldova, Academiei Str. 3, MD-2028
Chisinau, Moldova
| | - Jean-Bernard Tommasino
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Erwann Jeanneau
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Ghenadie Novitchi
- Laboratoire
National des Champs Magnétiques Intenses-CNRS, Université Joseph Fourier, 25 Avenue des Martyrs,
38042 Grenoble Cedex 9, France
| | - Dominique Luneau
- Laboratoire des Multimatériaux
et Interfaces (UMR5615), Université Claude Bernard
Lyon 1, Campus de La Doua, 69622 Villeurbanne, Cedex,
France
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
33
|
Graf N, Lippard SJ. Redox activation of metal-based prodrugs as a strategy for drug delivery. Adv Drug Deliv Rev 2012; 64:993-1004. [PMID: 22289471 DOI: 10.1016/j.addr.2012.01.007] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 01/12/2012] [Accepted: 01/16/2012] [Indexed: 12/23/2022]
Abstract
This review provides an overview of metal-based anticancer drugs and drug candidates. In particular, we focus on metal complexes that can be activated in the reducing environment of cancer cells, thus serving as prodrugs. There are many reports of Pt and Ru complexes as redox-activatable drug candidates, but other d-block elements with variable oxidation states have a similar potential to serve as prodrugs in this manner. In this context are compounds based on Fe, Co, or Cu chemistry, which are also covered. A trend in the field of medicinal inorganic chemistry has been toward molecularly targeted, metal-based drugs obtained by functionalizing complexes with biologically active ligands. Another recent activity is the use of nanomaterials for drug delivery, exploiting passive targeting of tumors with nano-sized constructs made from Au, Fe, carbon, or organic polymers. Although complexes of all of the above mentioned metals will be described, this review focuses primarily on Pt compounds, including constructs containing nanomaterials.
Collapse
|
34
|
Barry NP, Zava O, Dyson PJ, Therrien B. Encapsulation of inorganic and organic guest molecules into an organometallic hexacationic arene osmium metalla-prism: Synthesis, characterisation and anticancer activity. J Organomet Chem 2012. [DOI: 10.1016/j.jorganchem.2011.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Büchel GE, Stepanenko IN, Hejl M, Jakupec MA, Keppler BK, Heffeter P, Berger W, Arion VB. Osmium(IV) complexes with 1H- and 2H-indazoles: tautomer identity versus spectroscopic properties and antiproliferative activity. J Inorg Biochem 2012; 113:47-54. [PMID: 22687494 PMCID: PMC3400055 DOI: 10.1016/j.jinorgbio.2012.04.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 11/29/2022]
Abstract
A one-pot synthesis of osmium(IV) complexes with two different tautomers of indazole, 1H-indazole and 2H-indazole, namely (H2ind)[OsIVCl5(2H-ind)] (1) and (H2ind)[OsIVCl5(1H-ind)] (2) is reported. Both compounds have been comprehensively characterized by NMR spectroscopy, ESI (electrospray ionization) mass spectrometry, electronic absorption spectroscopy, IR spectroscopy, cyclic voltammetry and tested for antiproliferative activity in vitro in three human cancer cell lines, CH1 (ovarian carcinoma), A549 (non-small cell lung cancer) and SW480 (colon carcinoma), as well as in vivo in a Hep3B SCID mouse xeno-transplantation model. 2H-Indazole tautomer stabilization in 1 has been confirmed by X-ray diffraction.
Collapse
Affiliation(s)
- Gabriel E Büchel
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fu Y, Romero MJ, Habtemariam A, Snowden ME, Song L, Clarkson GJ, Qamar B, Pizarro AM, Unwin PR, Sadler PJ. The contrasting chemical reactivity of potent isoelectronic iminopyridine and azopyridine osmium(ii) arene anticancer complexes. Chem Sci 2012. [DOI: 10.1039/c2sc20220d] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
37
|
Ni WX, Man WL, Yiu SM, Ho M, Cheung MTW, Ko CC, Che CM, Lam YW, Lau TC. Osmium(vi) nitrido complexes bearing azole heterocycles: a new class of antitumor agents. Chem Sci 2012. [DOI: 10.1039/c2sc01031c] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
38
|
Fu Y, Habtemariam A, Basri AMBH, Braddick D, Clarkson GJ, Sadler PJ. Structure-activity relationships for organometallic osmium arene phenylazopyridine complexes with potent anticancer activity. Dalton Trans 2011; 40:10553-62. [PMID: 21860862 DOI: 10.1039/c1dt10937e] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the synthesis and characterisation of 32 half sandwich phenylazopyridine Os(II) arene complexes [Os(η(6)-arene)(phenylazopyridine)X](+) in which X is chloride or iodide, the arene is p-cymene or biphenyl and the pyridine and phenyl rings contain a variety of substituents (F, Cl, Br, I, CF(3), OH or NO(2)). Ten X-ray crystal structures have been determined. Cytotoxicity towards A2780 human ovarian cancer cells ranges from high potency at nanomolar concentrations to inactivity. In general the introduction of an electron-withdrawing group (e.g. F, Cl, Br or I) at specific positions on the pyridine ring significantly increases cytotoxic activity and aqueous solubility. Changing the arene from p-cymene to biphenyl and the monodentate ligand X from chloride to iodide also increases the activity significantly. Activation by hydrolysis and DNA binding appears not to be the major mechanism of action since both the highly active complex [Os(η(6)-bip)(2-F-azpy)I]PF(6) (9) and the moderately active complex [Os(η(6)-bip)(3-Cl-azpy)I]PF(6) (23) are very stable and inert towards aquation. Studies of octanol-water partition coefficients (log P) and subcellular distributions of osmium in A2780 human ovarian cancer cells suggested that cell uptake and targeting to cellular organelles play important roles in determining activity. Although complex 9 induced the production of reactive oxygen species (ROS) in A2780 cells, the ROS level did not appear to play a role in the mechanism of anticancer activity. This class of organometallic osmium complexes has new and unusual features worthy of further exploration for the design of novel anticancer drugs.
Collapse
Affiliation(s)
- Ying Fu
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK CV4 7AL
| | | | | | | | | | | |
Collapse
|
39
|
Büchel GE, Stepanenko IN, Hejl M, Jakupec MA, Keppler BK, Arion VB. En route to osmium analogues of KP1019: synthesis, structure, spectroscopic properties and antiproliferative activity of trans-[Os(IV)Cl4(Hazole)2]. Inorg Chem 2011; 50:7690-7. [PMID: 21739939 PMCID: PMC3152248 DOI: 10.1021/ic200728b] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By controlled Anderson type rearrangement reactions complexes of the general formula trans-[Os(IV)Cl(4)(Hazole)(2)], where Hazole = 1H-pyrazole, 2H-indazole, 1H-imidazole, and 1H-benzimidazole, have been synthesized. Note that 2H-indazole tautomer stabilization in trans-[Os(IV)Cl(4)(2H-indazole)(2)] is unprecedented in coordination chemistry of indazole. The metal ion in these compounds possesses the same coordination environment as ruthenium(III) in (H(2)ind)[Ru(III)Cl(4)(Hind)(2)], where Hind = 1H-indazole, (KP1019), an investigational anticancer drug in phase I clinical trials. These osmium(IV) complexes are appropriate precursors for the synthesis of osmium(III) analogues of KP1019. In addition the formation of an adduct of trans-[Os(IV)Cl(4)(Hpz)(2)] with cucurbit[7]uril is described. The compounds have been comprehensively characterized by elemental analysis, EI and ESI mass spectrometry, spectroscopy (IR, UV-vis, 1D and 2D NMR), cyclic voltammetry, and X-ray crystallography. Their antiproliferative acitivity in the human cancer cell lines CH1 (ovarian carcinoma), A549 (nonsmall cell lung carcinoma), and SW480 (colon carcinoma) is reported.
Collapse
Affiliation(s)
- Gabriel E Büchel
- University of Vienna, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Rijt SHV, Kostrhunova H, Brabec V, Sadler PJ. Functionalization of Osmium Arene Anticancer Complexes with (Poly)arginine: Effect on Cellular Uptake, Internalization, and Cytotoxicity. Bioconjug Chem 2011; 22:218-26. [DOI: 10.1021/bc100369p] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sabine H. van Rijt
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Hana Kostrhunova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Peter J. Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
41
|
Büchel GE, Stepanenko IN, Hejl M, Jakupec MA, Arion VB, Keppler BK. [Os(IV)Cl(5)(Hazole)](-) complexes: synthesis, structure, spectroscopic properties, and antiproliferative activity. Inorg Chem 2010; 48:10737-47. [PMID: 19842663 DOI: 10.1021/ic901671j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By exploring the Anderson type rearrangement reactions, osmium(IV) complexes of the general formula [cation](+)[Os(IV)Cl(5)(Hazole)](-), where [cation](+) = n-Bu(4)N(+), Hazole = 1H-pyrazole (Hpz) (1), 1H-indazole (Hind) (2), 1H-imidazole (Him) (3), 1H-benzimidazole (Hbzim) (4), 1H,2,4-triazole (Htrz) (5), have been synthesized. To improve water solubility of tetrabutylammonium compounds, complexes with [cation](+) = Na(+) [Hazole = Hpz 6), Hind (7), Htrz (8)] or H(2)azole(+) [Hazole = Hpz (9), Hind (10), Htrz (11)] have been also prepared with the aim of testing them for cytotoxicity in cancer cells. In addition, the preparation of the complex {(n-Bu(4)N)(2)[Os(IV)Cl(6)]}(2)[Os(IV)Cl(4)(Him)(2)] (12) is also reported. The compounds have been comprehensively characterized by elemental analysis, electrospray ionization (ESI) mass spectrometry, spectroscopy (IR, UV-vis, 1D and 2D NMR), cyclic voltammetry, X-ray crystallography (1-6 and 12) and magnetic susceptibility (5). Complexes 6, 7, 9 are kinetically inert in aqueous solution and resistant to hydrolysis. Compounds 6-11 were found to possess modest antiproliferative acitivity in vitro against CH1 (ovarian carcinoma), A549 (non-small cell lung carcinoma), and SW480 (colon adenocarcinoma) cells with IC(50) values in the 10(-4) M concentration range. Replacement of azolium cations by sodium had significant effects; cytotoxicity increased in the case of the pyrazole system from 3 (A549) to the 5.5-fold (CH1).
Collapse
|
42
|
Mendoza-Ferri MG, Hartinger CG, Nazarov AA, Eichinger RE, Jakupec MA, Severin K, Keppler BK. Influence of the Arene Ligand, the Number and Type of Metal Centers, and the Leaving Group on the in Vitro Antitumor Activity of Polynuclear Organometallic Compounds. Organometallics 2009. [DOI: 10.1021/om900715j] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria G. Mendoza-Ferri
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Christian G. Hartinger
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alexey A. Nazarov
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rene E. Eichinger
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
43
|
Yao JC, Mei XL, Jiang K, Li YG, Ma LF. A new 3D supramolecular compound containing 1D chains and 1D water chains. INORG CHEM COMMUN 2009. [DOI: 10.1016/j.inoche.2009.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Abstract
Interest in Ru anticancer drugs has been growing rapidly since NAMI-A ((ImH(+))[Ru(III)Cl(4)(Im)(S-dmso)], where Im = imidazole and S-dmso = S-bound dimethylsulfoxide) or KP1019 ((IndH(+))[Ru(III)Cl(4)(Ind)(2)], where Ind = indazole) have successfully completed phase I clinical trials and an array of other Ru complexes have shown promise for future development. Herein, the recent literature is reviewed critically to ascertain likely mechanisms of action of Ru-based anticancer drugs, with the emphasis on their reactions with biological media. The most likely interactions of Ru complexes are with: (i) albumin and transferrin in blood plasma, the former serving as a Ru depot, and the latter possibly providing active transport of Ru into cells; (ii) collagens of the extracellular matrix and actins on the cell surface, which are likely to be involved in the specific anti-metastatic action of Ru complexes; (iii) regulatory enzymes within the cell membrane and/or in the cytoplasm; and (iv) DNA in the cell nucleus. Some types of Ru complexes can also promote the intracellular formation of free radical species, either through irradiation (photodynamic therapy), or through reactions with cellular reductants. The metabolic pathways involve competition among reduction, aquation, and hydrolysis in the extracellular medium; binding to transport proteins, the extracellular matrix, and cell-surface biomolecules; and diffusion into cells; with the extent to which individual drugs participate in various steps along these pathways being crucial factors in determining whether they are mainly anti-metastatic or cytotoxic. This diversity of modes of action of Ru anticancer drugs is also likely to enhance their anticancer activities and to reduce the potential for them to develop tumour resistance. New approaches to metabolic studies, such as X-ray absorption spectroscopy and X-ray fluorescence microscopy, are required to provide further mechanistic insights, which could lead to the rational design of improved Ru anticancer drugs.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia
| | | | | |
Collapse
|
45
|
|
46
|
Egger A, Cebrián-Losantos B, Stepanenko IN, Krokhin AA, Eichinger R, Jakupec MA, Arion VB, Keppler BK. Hydrolysis and cytotoxic properties of osmium(II)/(III)-DMSO-azole complexes. Short communication. Chem Biodivers 2008; 5:1588-1593. [PMID: 18729098 DOI: 10.1002/cbdv.200890146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The antiproliferative properties of the osmium(II) complexes cis,fac-[Os(II)Cl(2)(DMSO)(3)(L)] and trans,cis,cis-[Os(II)Cl(2)(DMSO)(2)(L)(2)] (L = 1H-pyrazole, 1H-imidazole) were studied in three human cancer cell lines, namely 41M (ovary), SK-BR-3 (breast), and SW480 (colon). Their activities were compared with those of osmium(III) and ruthenium(III) NAMI-A type complexes on HT-29 (colon) and SK-BR-3 cancer cell lines. While IC(50) values of all the Os(II) complexes were found to be >1000 microM in all cell lines, Os and Ru-NAMI-A type complexes showed remarkable antiproliferative activity. The marginal in vitro cytotoxicity of the Os(II) compounds is presumably attributed to their resistance to hydrolysis. However, the Os-NAMI-A complexes, which are also kinetically stable in aqueous solution, showed reasonable antiproliferative activity in vitro when compared with the analogous Ru compounds and with the Os(II)-DMSO-azole species, indicating that hydrolysis might be not a prerequisite for the antitumor activity of Os-NAMI-A type complexes.
Collapse
Affiliation(s)
- Alexander Egger
- University of Vienna, Institute of Inorganic Chemistry, Währingerstrasse 42, A-1090 Vienna
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Three 1-(4-Hydroxyphenyl)-1H-1,2,4-triazole-based Cd(II) Coordination Polymers Directed by Aromatic Polycarboxylate Coligands. B KOREAN CHEM SOC 2008. [DOI: 10.5012/bkcs.2008.29.11.2195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Kong KV, Leong WK, Ng SP, Nguyen TH, Lim LHK. Osmium carbonyl clusters: a new class of apoptosis inducing agents. ChemMedChem 2008; 3:1269-75. [PMID: 18433076 DOI: 10.1002/cmdc.200800069] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Osmium carbonyl clusters, especially the cluster [Os(3)(CO)(10)(NCCH(3))(2)], were found to be active against four cancer cell lines, namely, ER+ breast carcinoma (MCF-7), ER- breast carcinoma (MDA-MB-231), metastatic colorectal adenocarcinoma (SW620), and hepatocarcinoma (Hep G2). The mode of action was studied in MCF-7 and MDA-MB-231 cell lines by a number of morphological and apoptosis assays, all of which pointed to the induction of apoptosis.
Collapse
Affiliation(s)
- Kien Voon Kong
- Department of Chemistry, National University of Singapore, Kent Ridge, Singapore 117543, Singapore
| | | | | | | | | |
Collapse
|
49
|
Stepanenko IN, Krokhin AA, John RO, Roller A, Arion VB, Jakupec MA, Keppler BK. Synthesis, structure, spectroscopic properties, and antiproliferative activity in vitro of novel osmium(III) complexes with azole heterocycles. Inorg Chem 2008; 47:7338-47. [PMID: 18597450 DOI: 10.1021/ic8006958] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of (H 2azole) 2[OsCl 6], where Hazole = pyrazole, Hpz, ( 1), indazole, Hind, ( 2), imidazole, Him, ( 3) and benzimidazole, Hbzim, ( 4) with the corresponding azole heterocycle in 1:4 molar ratio in boiling isoamyl alcohol or hexanol-1 afforded novel water-soluble osmium(III) complexes of the type trans-[OsCl 2(Hazole) 4]Cl, where Hazole = Hpz ( 5a), Hind ( 6a), Him ( 7a), and Hbzim ( 9a) in 50-70% ( 5a, 7a, 9a) and 5% ( 6a) yields. The synthesis of 7a was accompanied by a concurrent reaction which led to minor formation (<4%) of cis-[OsCl 2(Him) 4]Cl ( 8). The complexes were characterized by elemental analysis, IR spectroscopy, UV-vis spectroscopy, ESI mass spectrometry, cyclic voltammetry, and X-ray crystallography. 5a, 7a, and 9a were found to possess remarkable antiproliferative activity in vitro against A549 (non-small cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma) cells, which was compared with that of related ruthenium compounds trans-[RuCl 2(Hazole) 4]Cl, where Hazole = Hpz (5b), Hind (6b), Him (7b), and Hbzim (9b).
Collapse
Affiliation(s)
- Iryna N Stepanenko
- University of Vienna, Institute of Inorganic Chemistry, Währingerstr. 42, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
50
|
Maksimoska J, Williams DS, Atilla-Gokcumen GE, Smalley KSM, Carroll PJ, Webster RD, Filippakopoulos P, Knapp S, Herlyn M, Meggers E. Similar biological activities of two isostructural ruthenium and osmium complexes. Chemistry 2008; 14:4816-22. [PMID: 18425743 PMCID: PMC2753370 DOI: 10.1002/chem.200800294] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, we probe and verify the concept of designing unreactive bioactive metal complexes, in which the metal possesses a purely structural function, by investigating the consequences of replacing ruthenium in a bioactive half-sandwich kinase inhibitor scaffold by its heavier congener osmium. The two isostructural complexes are compared with respect to their anticancer properties in 1205 Lu melanoma cells, activation of the Wnt signaling pathway, IC(50) values against the protein kinases GSK-3beta and Pim-1, and binding modes to the protein kinase Pim-1 by protein crystallography. It was found that the two congeners display almost indistinguishable biological activities, which can be explained by their nearly identical three-dimensional structures and their identical mode of action as protein kinase inhibitors. This is a unique example in which the replacement of a metal in an anticancer scaffold by its heavier homologue does not alter its biological activity.
Collapse
Affiliation(s)
- Jasna Maksimoska
- Department of Chemistry, University of Pennsylvania, 231, South 34th Street, Philadelphia, PA 19104 (USA)
| | - Douglas S. Williams
- Department of Chemistry, University of Pennsylvania, 231, South 34th Street, Philadelphia, PA 19104 (USA)
| | - G. Ekin Atilla-Gokcumen
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg (Germany), , Fax: (+49) 6421-2822189, Phone: (+49) 6421-2821534
| | | | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, 231, South 34th Street, Philadelphia, PA 19104 (USA)
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, Singapore 637616 (Singapore)
| | - Panagis Filippakopoulos
- Centre for Structural Genomics, Botnar Research Centre, Oxford University, Oxford OX3 7LD (UK)
| | - Stefan Knapp
- Centre for Structural Genomics, Botnar Research Centre, Oxford University, Oxford OX3 7LD (UK)
| | - Meenhard Herlyn
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104 (USA)
| | - Eric Meggers
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg (Germany), , Fax: (+49) 6421-2822189, Phone: (+49) 6421-2821534
| |
Collapse
|