1
|
Einsle O. On the Shoulders of Giants-Reaching for Nitrogenase. Molecules 2023; 28:7959. [PMID: 38138449 PMCID: PMC10745432 DOI: 10.3390/molecules28247959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Only a single enzyme system-nitrogenase-carries out the conversion of atmospheric N2 into bioavailable ammonium, an essential prerequisite for all organismic life. The reduction of this inert substrate at ambient conditions poses unique catalytic challenges that strain our mechanistic understanding even after decades of intense research. Structural biology has added its part to this greater tapestry, and in this review, I provide a personal (and highly biased) summary of the parts of the story to which I had the privilege to contribute. It focuses on the crystallographic analysis of the three isoforms of nitrogenases at high resolution and the binding of ligands and inhibitors to the active-site cofactors of the enzyme. In conjunction with the wealth of available biochemical, biophysical, and spectroscopic data on the protein, this has led us to a mechanistic hypothesis based on an elementary mechanism of repetitive hydride formation and insertion.
Collapse
Affiliation(s)
- Oliver Einsle
- Institute of Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Badding ED, Srisantitham S, Lukoyanov DA, Hoffman BM, Suess DLM. Connecting the geometric and electronic structures of the nitrogenase iron-molybdenum cofactor through site-selective 57Fe labelling. Nat Chem 2023; 15:658-665. [PMID: 36914792 PMCID: PMC10710871 DOI: 10.1038/s41557-023-01154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/26/2023] [Indexed: 03/16/2023]
Abstract
Understanding the chemical bonding in the catalytic cofactor of the Mo nitrogenase (FeMo-co) is foundational for building a mechanistic picture of biological nitrogen fixation. A persistent obstacle towards this goal has been that the 57Fe-based spectroscopic data-although rich with information-combines responses from all seven Fe sites, and it has therefore not been possible to map individual spectroscopic responses to specific sites in the three-dimensional structure. Here we have addressed this challenge by incorporating 57Fe into a single site of FeMo-co. Spectroscopic analysis of the resting state informed on the local electronic structure of the terminal Fe1 site, including its oxidation state and spin orientation, and, in turn, on the spin-coupling scheme for the entire cluster. The oxidized resting state and the first intermediate in nitrogen fixation were also characterized, and comparisons with the resting state provided molecular-level insights into the redox chemistry of FeMo-co.
Collapse
Affiliation(s)
- Edward D Badding
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Daniel L M Suess
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Lukoyanov DA, Yang ZY, Pérez-González A, Raugei S, Dean DR, Seefeldt LC, Hoffman BM. 13C ENDOR Characterization of the Central Carbon within the Nitrogenase Catalytic Cofactor Indicates That the CFe 6 Core Is a Stabilizing "Heart of Steel". J Am Chem Soc 2022; 144:18315-18328. [PMID: 36166637 DOI: 10.1021/jacs.2c06149] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substrates and inhibitors of Mo-dependent nitrogenase bind and react at Fe ions of the active-site FeMo-cofactor [7Fe-9S-C-Mo-homocitrate] contained within the MoFe protein α-subunit. The cofactor contains a CFe6 core, a carbon centered within a trigonal prism of six Fe, whose role in catalysis is unknown. Targeted 13C labeling of the carbon enables electron-nuclear double resonance (ENDOR) spectroscopy to sensitively monitor the electronic properties of the Fe-C bonds and the spin-coupling scheme adopted by the FeMo-cofactor metal ions. This report compares 13CFe6 ENDOR measurements for (i) the wild-type protein resting state (E0; α-Val70) to those of (ii) α-Ile70, (iii) α-Ala70-substituted proteins; (iv) crystallographically characterized CO-inhibited "hi-CO" state; (v) E4(4H) Janus intermediate, activated for N2 binding/reduction by accumulation of 4[e-/H+]; (vi) E4(2H)* state containing a doubly reduced FeMo-cofactor without Fe-bound substrates; and (vii) propargyl alcohol reduction intermediate having allyl alcohol bound as a ferracycle to FeMo-cofactor Fe6. All states examined, both S = 1/2 and 3/2 exhibited near-zero 13C isotropic hyperfine coupling constants, Ca = [-1.3 ↔ +2.7] MHz. Density functional theory computations and natural bond orbital analysis of the Fe-C bonds show that this occurs because a (3 spin-up/3 spin-down) spin-exchange configuration of CFe6 Fe-ion spins produces cancellation of large spin-transfers to carbon in each Fe-C bond. Previous X-ray diffraction and DFT both indicate that trigonal-prismatic geometry around carbon is maintained with high precision in all these states. The persistent structure and Fe-C bonding of the CFe6 core indicate that it does not provide a functionally dynamic (hemilabile) "beating heart"─instead it acts as "a heart of steel", stabilizing the structure of the FeMo-cofactor-active site during nitrogenase catalysis.
Collapse
Affiliation(s)
- Dmitriy A Lukoyanov
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois60208, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah84322, United States
| | - Ana Pérez-González
- Biochemistry Department, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Simone Raugei
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| | - Dennis R Dean
- Biochemistry Department, Virginia Tech, Blacksburg, Virginia24061, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah84322, United States
| | - Brian M Hoffman
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois60208, United States
| |
Collapse
|
4
|
Benediktsson B, Bjornsson R. Analysis of the Geometric and Electronic Structure of Spin-Coupled Iron-Sulfur Dimers with Broken-Symmetry DFT: Implications for FeMoco. J Chem Theory Comput 2022; 18:1437-1457. [PMID: 35167749 PMCID: PMC8908755 DOI: 10.1021/acs.jctc.1c00753] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 02/02/2023]
Abstract
The open-shell electronic structure of iron-sulfur clusters presents considerable challenges to quantum chemistry, with the complex iron-molybdenum cofactor (FeMoco) of nitrogenase representing perhaps the ultimate challenge for either wavefunction or density functional theory. While broken-symmetry density functional theory has seen some success in describing the electronic structure of such cofactors, there is a large exchange-correlation functional dependence in calculations that is not fully understood. In this work, we present a geometric benchmarking test set, FeMoD11, of synthetic spin-coupled Fe-Fe and Mo-Fe dimers, with relevance to the molecular and electronic structure of the Mo-nitrogenase FeMo cofactor. The reference data consists of high-resolution crystal structures of metal dimer compounds in different oxidation states. Multiple density functionals are tested on their ability to reproduce the local geometry, specifically the Fe-Fe/Mo-Fe distance, for both antiferromagnetically coupled and ferromagnetically coupled dimers via the broken-symmetry approach. The metal-metal distance is revealed not only to be highly sensitive to the amount of exact exchange in the functional but also to the specific exchange and correlation functionals. For the antiferromagnetically coupled dimers, the calculated metal-metal distance correlates well with the covalency of the bridging metal-ligand bonds, as revealed via the corresponding orbital analysis, Hirshfeld S/Fe charges, and Fe-S Mayer bond order. Superexchange via bridging ligands is expected to be the dominant interaction in these dimers, and our results suggest that functionals that predict accurate Fe-Fe and Mo-Fe distances describe the overall metal-ligand covalency more accurately and in turn the superexchange of these systems. The best performing density functionals of the 16 tested for the FeMoD11 test set are revealed to be either the nonhybrid functionals r2SCAN and B97-D3 or hybrid functionals with 10-15% exact exchange: TPSSh and B3LYP*. These same four functionals are furthermore found to reproduce the high-resolution X-ray structure of FeMoco well according to quantum mechanics/molecular mechanics (QM/MM) calculations. Almost all nonhybrid functionals systematically underestimate Fe-Fe and Mo-Fe distances (with r2SCAN and B97-D3 being the sole exceptions), while hybrid functionals with >15% exact exchange (including range-separated hybrid functionals) overestimate them. The results overall suggest r2SCAN, B97-D3, TPSSh, and B3LYP* as accurate density functionals for describing the electronic structure of iron-sulfur clusters in general, including the complex FeMoco cluster of nitrogenase.
Collapse
Affiliation(s)
- Bardi Benediktsson
- Science
Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Ragnar Bjornsson
- Science
Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
- Max-Planck
Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Nicolet Y, Cherrier MV, Amara P. Radical SAM Enzymes and Metallocofactor Assembly: A Structural Point of View. ACS BIO & MED CHEM AU 2022; 2:36-52. [PMID: 37102176 PMCID: PMC10114646 DOI: 10.1021/acsbiomedchemau.1c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This Review focuses on the structure-function relationship of radical S-adenosyl-l-methionine (SAM) enzymes involved in the assembly of metallocofactors corresponding to the active sites of [FeFe]-hydrogenase and nitrogenase [MoFe]-protein. It does not claim to correspond to an extensive review on the assembly machineries of these enzyme active sites, for which many good reviews are already available, but instead deals with the contribution of structural data to the understanding of their chemical mechanism (Buren et al. Chem. Rev.2020, 142 ( (25), ) 11006-11012; Britt et al. Chem. Sci.2020, 11 ( (38), ), 10313-10323). Hence, we will present the history and current knowledge about the radical SAM maturases HydE, HydG, and NifB as well as what, in our opinion, should be done in the near future to overcome the existing barriers in our understanding of this fascinating chemistry that intertwine organic radicals and organometallic complexes.
Collapse
Affiliation(s)
- Yvain Nicolet
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Mickael V. Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| | - Patricia Amara
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, F-38000 Grenoble, France
| |
Collapse
|
6
|
Pérez-González A, Yang ZY, Lukoyanov DA, Dean DR, Seefeldt LC, Hoffman BM. Exploring the Role of the Central Carbide of the Nitrogenase Active-Site FeMo-cofactor through Targeted 13C Labeling and ENDOR Spectroscopy. J Am Chem Soc 2021; 143:9183-9190. [PMID: 34110795 DOI: 10.1021/jacs.1c04152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mo-dependent nitrogenase is a major contributor to global biological N2 reduction, which sustains life on Earth. Its multi-metallic active-site FeMo-cofactor (Fe7MoS9C-homocitrate) contains a carbide (C4-) centered within a trigonal prismatic CFe6 core resembling the structural motif of the iron carbide, cementite. The role of the carbide in FeMo-cofactor binding and activation of substrates and inhibitors is unknown. To explore this role, the carbide has been in effect selectively enriched with 13C, which enables its detailed examination by ENDOR/ESEEM spectroscopies. 13C-carbide ENDOR of the S = 3/2 resting state (E0) is remarkable, with an extremely small isotropic hyperfine coupling constant, Ca = +0.86 MHz. Turnover under high CO partial pressure generates the S = 1/2 hi-CO state, with two CO molecules bound to FeMo-cofactor. This conversion surprisingly leaves the small magnitude of the 13C carbide isotropic hyperfine-coupling constant essentially unchanged, Ca = -1.30 MHz. This indicates that both the E0 and hi-CO states exhibit an exchange-coupling scheme with nearly cancelling contributions to Ca from three spin-up and three spin-down carbide-bound Fe ions. In contrast, the anisotropic hyperfine coupling constant undergoes a symmetry change upon conversion of E0 to hi-CO that may be associated with bonding and coordination changes at Fe ions. In combination with the negligible difference between CFe6 core structures of E0 and hi-CO, these results suggest that in CO-inhibited hi-CO the dominant role of the FeMo-cofactor carbide is to maintain the core structure, rather than to facilitate inhibitor binding through changes in Fe-carbide covalency or stretching/breaking of carbide-Fe bonds.
Collapse
Affiliation(s)
- Ana Pérez-González
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Dmitriy A Lukoyanov
- Department of Chemistry Northwestern University, Evanston, Illinois 60208, United States
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Brian M Hoffman
- Department of Chemistry Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Martín-Fernández C, Harvey JN. On the Use of Normalized Metrics for Density Sensitivity Analysis in DFT. J Phys Chem A 2021; 125:4639-4652. [PMID: 34018759 DOI: 10.1021/acs.jpca.1c01290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the past years, there has been a discussion about how the errors in density functional theory might be related to errors in the self-consistent densities obtained from different density functional approximations. This, in turn, brings up the discussion about the different ways in which we can measure such errors and develop metrics that assess the sensitivity of calculated energies to changes in the density. It is important to realize that there cannot be a unique metric in order to look at this density sensitivity, simultaneously needing size-extensive and size-intensive metrics. In this study, we report two metrics that are widely applicable to any density functional approximation. We also show how they can be used to classify different chemical systems of interest with respect to their sensitivity to small variations in the density.
Collapse
Affiliation(s)
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan, 200F 3001 Leuven, Belgium
| |
Collapse
|
8
|
Postbiosynthetic modification of a precursor to the nitrogenase iron-molybdenum cofactor. Proc Natl Acad Sci U S A 2021; 118:2015361118. [PMID: 33836573 DOI: 10.1073/pnas.2015361118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogenases utilize Fe-S clusters to reduce N2 to NH3 The large number of Fe sites in their catalytic cofactors has hampered spectroscopic investigations into their electronic structures, mechanisms, and biosyntheses. To facilitate their spectroscopic analysis, we are developing methods for incorporating 57Fe into specific sites of nitrogenase cofactors, and we report herein site-selective 57Fe labeling of the L-cluster-a carbide-containing, [Fe8S9C] precursor to the Mo nitrogenase catalytic cofactor. Treatment of the isolated L-cluster with the chelator ethylenediaminetetraacetate followed by reconstitution with 57Fe2+ results in 57Fe labeling of the terminal Fe sites in high yield and with high selectivity. This protocol enables the generation of L-cluster samples in which either the two terminal or the six belt Fe sites are selectively labeled with 57Fe. Mössbauer spectroscopic analysis of these samples bound to the nitrogenase maturase Azotobacter vinelandii NifX reveals differences in the primary coordination sphere of the terminal Fe sites and that one of the terminal sites of the L-cluster binds to H35 of Av NifX. This work provides molecular-level insights into the electronic structure and biosynthesis of the L-cluster and introduces postbiosynthetic modification as a promising strategy for studies of nitrogenase cofactors.
Collapse
|
9
|
Arnett CH, Bogacz I, Chatterjee R, Yano J, Oyala PH, Agapie T. Mixed-Valent Diiron μ-Carbyne, μ-Hydride Complexes: Implications for Nitrogenase. J Am Chem Soc 2020; 142:18795-18813. [PMID: 32976708 DOI: 10.1021/jacs.0c05920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Binding of N2 by the FeMo-cofactor of nitrogenase is believed to occur after transfer of 4 e- and 4 H+ equivalents to the active site. Although pulse EPR studies indicate the presence of two Fe-(μ-H)-Fe moieties, the structural and electronic features of this mixed valent intermediate remain poorly understood. Toward an improved understanding of this bioorganometallic cluster, we report herein that diiron μ-carbyne complex (P6ArC)Fe2(μ-H) can be oxidized and reduced, allowing for the first time spectral characterization of two EPR-active Fe(μ-C)(μ-H)Fe model complexes linked by a 2 e- transfer which bear some resemblance to a pair of En and En+2 states of nitrogenase. Both species populate S = 1/2 states at low temperatures, and the influence of valence (de)localization on the spectroscopic signature of the μ-hydride ligand was evaluated by pulse EPR studies. Compared to analogous data for the {Fe2(μ-H)}2 state of FeMoco (E4(4H)), the data and analysis presented herein suggest that the hydride ligands in E4(4H) bridge isovalent (most probably FeIII) metal centers. Although electron transfer involves metal-localized orbitals, investigations of [(P6ArC)Fe2(μ-H)]+1 and [(P6ArC)Fe2(μ-H)]-1 by pulse EPR revealed that redox chemistry induces significant changes in Fe-C covalency (-50% upon 2 e- reduction), a conclusion further supported by X-ray absorption spectroscopy, 57Fe Mössbauer studies, and DFT calculations. Combined, our studies demonstrate that changes in covalency buffer against the accumulation of excess charge density on the metals by partially redistributing it to the bridging carbon, thereby facilitating multielectron transformations.
Collapse
Affiliation(s)
- Charles H Arnett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Isabel Bogacz
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Van Stappen C, Decamps L, Cutsail GE, Bjornsson R, Henthorn JT, Birrell JA, DeBeer S. The Spectroscopy of Nitrogenases. Chem Rev 2020; 120:5005-5081. [PMID: 32237739 PMCID: PMC7318057 DOI: 10.1021/acs.chemrev.9b00650] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 01/08/2023]
Abstract
Nitrogenases are responsible for biological nitrogen fixation, a crucial step in the biogeochemical nitrogen cycle. These enzymes utilize a two-component protein system and a series of iron-sulfur clusters to perform this reaction, culminating at the FeMco active site (M = Mo, V, Fe), which is capable of binding and reducing N2 to 2NH3. In this review, we summarize how different spectroscopic approaches have shed light on various aspects of these enzymes, including their structure, mechanism, alternative reactivity, and maturation. Synthetic model chemistry and theory have also played significant roles in developing our present understanding of these systems and are discussed in the context of their contributions to interpreting the nature of nitrogenases. Despite years of significant progress, there is still much to be learned from these enzymes through spectroscopic means, and we highlight where further spectroscopic investigations are needed.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Laure Decamps
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - George E. Cutsail
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Justin T. Henthorn
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for
Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
11
|
Affiliation(s)
- Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena California 91125, United States
| |
Collapse
|
12
|
Thorhallsson AT, Benediktsson B, Bjornsson R. A model for dinitrogen binding in the E 4 state of nitrogenase. Chem Sci 2019; 10:11110-11124. [PMID: 32206260 PMCID: PMC7069239 DOI: 10.1039/c9sc03610e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022] Open
Abstract
Molybdenum nitrogenase is one of the most intriguing metalloenzymes in nature, featuring an exotic iron-molybdenum-sulfur cofactor, FeMoco, whose mode of action remains elusive. In particular, the molecular and electronic structure of the N2-binding E4 state is not known. In this study we present theoretical QM/MM calculations of new structural models of the E4 state of molybdenum-dependent nitrogenase and compare to previously suggested models for this enigmatic redox state. We propose two models as possible candidates for the E4 state. Both models feature two hydrides on the FeMo cofactor, bridging atoms Fe2 and Fe6 with a terminal sulfhydryl group on either Fe2 or Fe6 (derived from the S2B bridge) and the change in coordination results in local lower-spin electronic structure at Fe2 and Fe6. These structures appear consistent with the bridging hydride proposal put forward from ENDOR studies and are calculated to be lower in energy than other proposed models for E4 at the TPSSh-QM/MM level of theory. We critically analyze the DFT method dependency in calculations of FeMoco that has resulted in strikingly different proposals for this state. Importantly, dinitrogen binds exothermically to either Fe2 or Fe6 in our models, contrary to others, an effect rationalized via the unique ligand field (from the hydrides) at the Fe with an empty coordination site. A low-spin Fe site is proposed as being important to N2 binding. Furthermore, the geometries of these states suggest a feasible reductive elimination step that could follow, as experiments indicate. Via this step, two electrons are released, reducing the cofactor to yield a distorted 4-coordinate Fe2 or Fe6 that partially activates N2. We speculate that stabilization of an N2-bound Fe(i) at Fe6 (not found for Fe2 model) via reductive elimination is a crucial part of N2 activation in nitrogenases, possibly aided by the apical heterometal ion (Mo or V). By using protons from the sulfhydryl group (to regenerate the sulfide bridge between Fe2 and Fe6) and the nearby homocitrate hydroxy group, we calculate a plausible route to yield a diazene intermediate. This is found to be more favorable with the Fe6-bound model than the Fe2-bound model; however, this protonation is uphill in energy, suggesting protonation of N2 might occur later in the catalytic cycle or via another mechanism.
Collapse
Affiliation(s)
- Albert Th Thorhallsson
- Science Institute , University of Iceland , Dunhagi 3 , 107 Reykjavik , Iceland
- Department of Inorganic Spectroscopy , Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| | - Bardi Benediktsson
- Science Institute , University of Iceland , Dunhagi 3 , 107 Reykjavik , Iceland
| | - Ragnar Bjornsson
- Science Institute , University of Iceland , Dunhagi 3 , 107 Reykjavik , Iceland
- Department of Inorganic Spectroscopy , Max-Planck-Institut für Chemische Energiekonversion , Stiftstrasse 34-36 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
13
|
Cao L, Börner MC, Bergmann J, Caldararu O, Ryde U. Geometry and Electronic Structure of the P-Cluster in Nitrogenase Studied by Combined Quantum Mechanical and Molecular Mechanical Calculations and Quantum Refinement. Inorg Chem 2019; 58:9672-9690. [DOI: 10.1021/acs.inorgchem.9b00400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Lili Cao
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Melanie C. Börner
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Justin Bergmann
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
14
|
Kowalska JK, Henthorn JT, Van Stappen C, Trncik C, Einsle O, Keavney D, DeBeer S. X-ray Magnetic Circular Dichroism Spectroscopy Applied to Nitrogenase and Related Models: Experimental Evidence for a Spin-Coupled Molybdenum(III) Center. Angew Chem Int Ed Engl 2019; 58:9373-9377. [PMID: 31119827 PMCID: PMC6772009 DOI: 10.1002/anie.201901899] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Indexed: 11/23/2022]
Abstract
Nitrogenase enzymes catalyze the reduction of atmospheric dinitrogen to ammonia utilizing a Mo‐7Fe‐9S‐C active site, the so‐called FeMoco cluster. FeMoco and an analogous small‐molecule (Et4N)[(Tp)MoFe3S4Cl3] cubane have both been proposed to contain unusual spin‐coupled MoIII sites with an S(Mo)=1/2 non‐Hund configuration at the Mo atom. Herein, we present Fe and Mo L3‐edge X‐ray magnetic circular dichroism (XMCD) spectroscopy of the (Et4N)[(Tp)MoFe3S4Cl3] cubane and Fe L2,3‐edge XMCD spectroscopy of the MoFe protein (containing both FeMoco and the 8Fe‐7S P‐cluster active sites). As the P‐clusters of MoFe protein have an S=0 total spin, these are effectively XMCD‐silent at low temperature and high magnetic field, allowing for FeMoco to be selectively probed by Fe L2,3‐edge XMCD within the intact MoFe protein. Further, Mo L3‐edge XMCD spectroscopy of the cubane model has provided experimental support for a local S(Mo)=1/2 configuration, demonstrating the power and selectivity of XMCD.
Collapse
Affiliation(s)
- Joanna K Kowalska
- Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Justin T Henthorn
- Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Christian Trncik
- Institute for Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry and BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, Albertstrasse 21, 79104, Freiburg, Germany
| | - David Keavney
- Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL, 60439, USA
| | - Serena DeBeer
- Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Kowalska JK, Henthorn JT, Van Stappen C, Trncik C, Einsle O, Keavney D, DeBeer S. X‐ray Magnetic Circular Dichroism Spectroscopy Applied to Nitrogenase and Related Models: Experimental Evidence for a Spin‐Coupled Molybdenum(III) Center. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joanna K. Kowalska
- Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Justin T. Henthorn
- Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Casey Van Stappen
- Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Christian Trncik
- Institute for Biochemistry and BIOSS Centre for Biological Signalling Studies Albert Ludwigs University of Freiburg Albertstrasse 21 79104 Freiburg Germany
| | - Oliver Einsle
- Institute for Biochemistry and BIOSS Centre for Biological Signalling Studies Albert Ludwigs University of Freiburg Albertstrasse 21 79104 Freiburg Germany
| | - David Keavney
- Argonne National Laboratory 9700 S. Cass Ave Argonne IL 60439 USA
| | - Serena DeBeer
- Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
16
|
Jin WT, Wang H, Wang SY, Dapper CH, Li X, Newton WE, Zhou ZH, Cramer SP. Preliminary Assignment of Protonated and Deprotonated Homocitrates in Extracted FeMo-Cofactors by Comparisons with Molybdenum(IV) Lactates and Oxidovanadium Glycolates. Inorg Chem 2019; 58:2523-2532. [PMID: 30726074 DOI: 10.1021/acs.inorgchem.8b03108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A similar pair of protonated and deprotonated mononuclear oxidovanadium glycolates [VO(Hglyc)(phen)(H2O)]Cl·2H2O (1) and [VO(glyc)(bpy)(H2O)] (2) and a mixed-(de)protonated oxidovanadium triglycolate (NH4)2[VO(Hglyc)2(glyc)]·H2O (3) were isolated and examined. The ≡C-O(H) (≡C-OH or ≡C-O) groups coordinated to vanadium were spectroscopically and structurally identified. The glycolate in 1 features a bidentate chelation through protonated α-hydroxy and α-carboxy groups, whereas the glycolate in 2 coordinates through deprotonated α-alkoxy and α-carboxy groups. The glycolates in 3 coordinate to vanadium through α-alkoxy or α-hydroxy and α-carboxy groups and thus have both protonated ≡C-OH and deprotonated ≡C-O bonds simultaneously. Structural investigations revealed that the longer protonated V-Oα-hydroxy bonds [2.234(2) Å and 2.244(2) Å] in 1 and 3 are close to those of FeV-cofactor (FeV-co) 2.17 Å1 (FeMo-co 2.17 Å2), while deprotonated V-Oα-alkoxy bonds [2, 1.930(2); 3, 1.927(2) Å] were obviously shorter. This shows a similar elongated trend as the Mo-O distances in the previously reported deprotonated vs protonated molybdenum lactates (Wang, S. Y. et al. Dalton Trans. 2018, 47, 7412-7421) and these vanadium and molybdenum complexes have the same local V/Mo-homocitrate structures as those of FeV/Mo-cos of nitrogenases. The IR spectra of these oxidovanadium and the previously synthesized molybdenum complexes including different substituted ≡C-O(H) model compounds show red-shifts for ≡C-OH vs ≡C-O alternation, which further assign the two IR bands of extracted FeMo-co at 1084 and 1031 cm-1 to ≡C-O and ≡C-OH vibrations, respectively. Although the structural data or IR spectra for some of the previously synthesized Mo/V complexes and extracted FeMo-co were measured earlier, this is the first time that the ≡C-O(H) coordinated peaks are assigned. The overall structural and IR results well suggest the coexistence of homocitrates coordinated with α-alkoxy (deprotonated) and α-hydroxy (protonated) groups in the extracted FeMo-co.
Collapse
Affiliation(s)
- Wan-Ting Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hongxin Wang
- Department of Chemistry , University of California , Davis , California 95616 , United States.,Physical Biosciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Si-Yuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Christie H Dapper
- Department of Biochemistry , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24061 , United States
| | - Xing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - William E Newton
- Department of Biochemistry , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24061 , United States
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Stephen P Cramer
- Department of Chemistry , University of California , Davis , California 95616 , United States.,Physical Biosciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
17
|
Survey of the Geometric and Electronic Structures of the Key Hydrogenated Forms of FeMo-co, the Active Site of the Enzyme Nitrogenase: Principles of the Mechanistically Significant Coordination Chemistry. INORGANICS 2019. [DOI: 10.3390/inorganics7010008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enzyme nitrogenase naturally hydrogenates N2 to NH3, achieved through the accumulation of H atoms on FeMo-co, the Fe7MoS9C(homocitrate) cluster that is the catalytically active site. Four intermediates, E1H1, E2H2, E3H3, and E4H4, carry these hydrogen atoms. I report density functional calculations of the numerous possibilities for the geometric and electronic structures of these poly-hydrogenated forms of FeMo-co. This survey involves more than 100 structures, including those with bound H2, and assesses their relative energies and most likely electronic states. Twelve locations for bound H atoms in the active domain of FeMo-co, including Fe–H–Fe and Fe–H–S bridges, are studied. A significant result is that transverse Fe–H–Fe bridges (transverse to the pseudo-threefold axis of FeMo-co and shared with triply-bridging S) are not possible geometrically unless the S is hydrogenated to become doubly-bridging. The favourable Fe–H–Fe bridges are shared with doubly-bridging S. ENDOR data for an E4H4 intermediate trapped at low temperature, and interpretations in terms of the geometrical and electronic structure of E4H4, are assessed in conjunction with the calculated possibilities. The results reported here yield a set of 24 principles for the mechanistically significant coordination chemistry of H and H2 on FeMo-co, in the stages prior to N2 binding.
Collapse
|
18
|
Cao L, Caldararu O, Ryde U. Protonation and Reduction of the FeMo Cluster in Nitrogenase Studied by Quantum Mechanics/Molecular Mechanics (QM/MM) Calculations. J Chem Theory Comput 2018; 14:6653-6678. [DOI: 10.1021/acs.jctc.8b00778] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lili Cao
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Octav Caldararu
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
19
|
Structural characterization of the nitrogenase molybdenum-iron protein with the substrate acetylene trapped near the active site. J Inorg Biochem 2018; 180:129-134. [DOI: 10.1016/j.jinorgbio.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 11/21/2022]
|
20
|
Siegbahn PEM. A Major Structural Change of the Homocitrate Ligand of Probable Importance for the Nitrogenase Mechanism. Inorg Chem 2018; 57:1090-1095. [PMID: 29303565 DOI: 10.1021/acs.inorgchem.7b02493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mo-containing nitrogenase is the main enzyme that is able to take N2 from the air and form ammonia. The active-site cofactor of the enzyme, termed FeMoco, is unique in nature. It has seven Fe and one Mo atoms connected by S bridges, with a C atom in the center of the cofactor. Another unusual feature is that it has a large homocitrate ligand known to be of importance for catalysis. In the present computational study, the role of the homocitrate ligand is investigated. It is found that a large structural change, which makes MoIII five-coordinated, is energetically favorable in the more reduced states. This is of probable importance for the nitrogenase mechanism.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
21
|
Benediktsson B, Bjornsson R. QM/MM Study of the Nitrogenase MoFe Protein Resting State: Broken-Symmetry States, Protonation States, and QM Region Convergence in the FeMoco Active Site. Inorg Chem 2017; 56:13417-13429. [DOI: 10.1021/acs.inorgchem.7b02158] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bardi Benediktsson
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Ragnar Bjornsson
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
22
|
Khadka N, Milton RD, Shaw S, Lukoyanov D, Dean DR, Minteer SD, Raugei S, Hoffman BM, Seefeldt LC. Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects. J Am Chem Soc 2017; 139:13518-13524. [PMID: 28851217 DOI: 10.1021/jacs.7b07311] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nitrogenase catalyzes the reduction of dinitrogen (N2) to two ammonia (NH3) at its active site FeMo-cofactor through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides to make H2. A competing reaction is the protonation of the hydride [Fe-H-Fe] to make H2. The overall nitrogenase rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to the MoFe protein allowing examination of the mechanism of H2 formation by the metal-hydride protonation reaction. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, was found to change linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate-limiting step of H2 formation. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein, either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the S-H+ bond breaks and H+ attacks the Fe-hydride, and explains the observed H/D isotope effect. This study not only reveals the nitrogenase mechanism of H2 formation by hydride protonation, but also illustrates a strategy for mechanistic study that can be applied to other oxidoreductase enzymes and to biomimetic complexes.
Collapse
Affiliation(s)
- Nimesh Khadka
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | - Ross D Milton
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Sudipta Shaw
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | - Dmitriy Lukoyanov
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Simone Raugei
- Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| |
Collapse
|
23
|
Cao L, Caldararu O, Ryde U. Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Computational Methods and Quantum Refinement. J Phys Chem B 2017; 121:8242-8262. [DOI: 10.1021/acs.jpcb.7b02714] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lili Cao
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Octav Caldararu
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
24
|
Bjornsson R, Neese F, DeBeer S. Revisiting the Mössbauer Isomer Shifts of the FeMoco Cluster of Nitrogenase and the Cofactor Charge. Inorg Chem 2017; 56:1470-1477. [DOI: 10.1021/acs.inorgchem.6b02540] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ragnar Bjornsson
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Kowalska JK, Hahn AW, Albers A, Schiewer CE, Bjornsson R, Lima FA, Meyer F, DeBeer S. X-ray Absorption and Emission Spectroscopic Studies of [L2Fe2S2](n) Model Complexes: Implications for the Experimental Evaluation of Redox States in Iron-Sulfur Clusters. Inorg Chem 2016; 55:4485-97. [PMID: 27097289 PMCID: PMC5108557 DOI: 10.1021/acs.inorgchem.6b00295] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a systematic study of [L2Fe2S2](n) model complexes (where L = bis(benzimidazolato) and n = 2-, 3-, 4-) has been carried out using iron and sulfur K-edge X-ray absorption (XAS) and iron Kβ and valence-to-core X-ray emission spectroscopies (XES). These data are used as a test set to evaluate the relative strengths and weaknesses of X-ray core level spectroscopies in assessing redox changes in iron-sulfur clusters. The results are correlated to density functional theory (DFT) calculations of the spectra in order to further support the quantitative information that can be extracted from the experimental data. It is demonstrated that due to canceling effects of covalency and spin state, the information that can be extracted from Fe Kβ XES mainlines is limited. However, a careful analysis of the Fe K-edge XAS data shows that localized valence vs delocalized valence species may be differentiated on the basis of the pre-edge and K-edge energies. These findings are then applied to existing literature Fe K-edge XAS data on the iron protein, P-cluster, and FeMoco sites of nitrogenase. The ability to assess the extent of delocalization in the iron protein vs the P-cluster is highlighted. In addition, possible charge states for FeMoco on the basis of Fe K-edge XAS data are discussed. This study provides an important reference for future X-ray spectroscopic studies of iron-sulfur clusters.
Collapse
Affiliation(s)
- Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Anselm W Hahn
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Antonia Albers
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Christine E Schiewer
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Ragnar Bjornsson
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frederico A Lima
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, Georg-August-University Göttingen , Tammannstraße 4, D-37077 Göttingen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Rao L, Xu X, Adamo C. Theoretical Investigation on the Role of the Central Carbon Atom and Close Protein Environment on the Nitrogen Reduction in Mo Nitrogenase. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02577] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Rao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xin Xu
- Shanghai
Key Laboratory of Molecular Catalysis and Innovative Materials, MOE
Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Carlo Adamo
- Chimie ParisTech,
PSL Research University, CNRS, Institut de Recherche de Chimie Paris
(IRCP), F-75005 Paris, France
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
27
|
McKee ML. A New Nitrogenase Mechanism Using a CFe8S9 Model: Does H2 Elimination Activate the Complex to N2 Addition to the Central Carbon Atom? J Phys Chem A 2016; 120:754-64. [PMID: 26821350 DOI: 10.1021/acs.jpca.5b10384] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A truncated model of the FeMo cofactor is used to explore a new mechanism for the conversion of N2 to NH3 by the nitrogenase enzyme. After four initial protonation/reduction steps, the H4CFe8S9 cluster has two hydrogen atoms attached to sulfur, one hydrogen bridging two iron centers and one hydrogen bonded to carbon. The loss of the CH and FeHFe hydrogens as molecular hydrogen activates the cluster to addition of N2 to the carbon center. This unique step takes place at a nearly planar four-coordinate carbon center and leads to an intermediate with a significantly weakened N-N bond. A hydrogen attached to a sulfur atom is then transferred to the distal nitrogen atom. Additional prontonation/reduction steps are modeled by adding a hydrogen atom to sulfur and locating the transition states for transfer to nitrogen. The first NH3 is lost in a thermal neutral step, while the second step is endothermic. The loss of H2 activates the complex by reducing the barrier for N2 addition by 3.5 kcal/mol. Since this is the most difficult step in the mechanism, reducing the barrier for this step justifies the "extra expense" of H2 production.
Collapse
Affiliation(s)
- Michael L McKee
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| |
Collapse
|
28
|
McLauchlan CC, Peters BJ, Willsky GR, Crans DC. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Cutsail GE, Telser J, Hoffman BM. Advanced paramagnetic resonance spectroscopies of iron-sulfur proteins: Electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1370-94. [PMID: 25686535 DOI: 10.1016/j.bbamcr.2015.01.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 12/20/2022]
Abstract
The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- George E Cutsail
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
30
|
Xie H, Liu C, Chen X, Lei Q, Fang W, Zhou T. Theoretically exploring the key role of the Lys412 residue in the conversion of N2O to N2by nitrous oxide reductase from Achromobacter cycloclastes. NEW J CHEM 2015. [DOI: 10.1039/c5nj01339a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The active CuZcluster of NOR provides strong back-donation to coordinated N2O and activates the O atom of the N2O group facilitating H-bonding and protonationviathe Lys412 residue.
Collapse
Affiliation(s)
- Hujun Xie
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310018
- People's Republic of China
| | - Chengcheng Liu
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310018
- People's Republic of China
| | - Xuelin Chen
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310018
- People's Republic of China
| | - Qunfang Lei
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Wenjun Fang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Tao Zhou
- Department of Applied Chemistry
- Zhejiang Gongshang University
- Hangzhou 310018
- People's Republic of China
| |
Collapse
|
31
|
Bjornsson R, Neese F, Schrock RR, Einsle O, DeBeer S. The discovery of Mo(III) in FeMoco: reuniting enzyme and model chemistry. J Biol Inorg Chem 2014; 20:447-60. [PMID: 25549604 PMCID: PMC4334110 DOI: 10.1007/s00775-014-1230-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/11/2014] [Indexed: 12/02/2022]
Abstract
Biological nitrogen fixation is enabled by molybdenum-dependent nitrogenase enzymes, which effect the reduction of dinitrogen to ammonia using an Fe7MoS9C active site, referred to as the iron molybdenum cofactor or FeMoco. In this mini-review, we summarize the current understanding of the molecular and electronic structure of FeMoco. The advances in our understanding of the active site structure are placed in context with the parallel evolution of synthetic model studies. The recent discovery of Mo(III) in the FeMoco active site is highlighted with an emphasis placed on the important role that model studies have played in this finding. In addition, the reactivities of synthetic models are discussed in terms of their relevance to the enzymatic system.
Collapse
Affiliation(s)
- Ragnar Bjornsson
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, 45470, Mülheim and Der Ruhr, Germany,
| | | | | | | | | |
Collapse
|
32
|
Gallo E, Glatzel P. Valence to core X-ray emission spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7730-46. [PMID: 24861500 DOI: 10.1002/adma.201304994] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 04/15/2014] [Indexed: 05/20/2023]
Abstract
This Progress Report discusses the chemical sensitivity of Kβ valence to core X-ray emission spectroscopy (vtc-XES) and its applications for investigating 3d-transition-metal based materials. Vtc-XES can be used for ligand identification and for the characterization of the valence electronic levels. The technique provides information that is similar to valence band photoemission spectroscopy but the sample environment can be chosen freely and thus allows measurements in presence of gases and liquids and it can be applied for measurements under in situ/operando or extreme conditions. The theoretical basis of the technique is presented using a one-electron approach and the vtc-XES spectral features are interpreted using ground state density functional theory calculations. Some recent results obtained by vtc-XES in various scientific fields are discussed to demonstrate the potential and future applications of this technique. Resonant X-ray emission spectroscopy is briefly introduced with some applications for the study of 3d and 5d-transition-metal based systems.
Collapse
Affiliation(s)
- Erik Gallo
- ESRF - The European Synchrotron, 71 Avenue des Martyres, Grenoble, 38000, France
| | | |
Collapse
|
33
|
|
34
|
Einsle O. Nitrogenase FeMo cofactor: an atomic structure in three simple steps. J Biol Inorg Chem 2014; 19:737-45. [DOI: 10.1007/s00775-014-1116-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
|
35
|
Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 2014; 114:4041-62. [PMID: 24467365 PMCID: PMC4012840 DOI: 10.1021/cr400641x] [Citation(s) in RCA: 991] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Brian M Hoffman
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | | | | | | | | |
Collapse
|
36
|
Bjornsson R, Lima FA, Spatzal T, Weyhermüller T, Glatzel P, Bill E, Einsle O, Neese F, DeBeer S. Identification of a spin-coupled Mo(iii) in the nitrogenase iron–molybdenum cofactor. Chem Sci 2014. [DOI: 10.1039/c4sc00337c] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The molybdenum atom in FeMoco is imperative to the high activity of the enzyme and has been proposed to be Mo(iv). We demonstrate that only Mo(iii) fits Mo HERFD XAS data, the first example of Mo(iii) in biology. Theoretical calculations further reveal an unusual spin-coupled Mo(iii).
Collapse
Affiliation(s)
- Ragnar Bjornsson
- Max-Planck-Institut für Chemische Energiekonversion
- 45470 Mülheim an der Ruhr, Germany
| | - Frederico A. Lima
- Max-Planck-Institut für Chemische Energiekonversion
- 45470 Mülheim an der Ruhr, Germany
| | - Thomas Spatzal
- Institute for Biochemistry
- Albert-Ludwigs-Universität Freiburg
- 79104 Freiburg, Germany
| | - Thomas Weyhermüller
- Max-Planck-Institut für Chemische Energiekonversion
- 45470 Mülheim an der Ruhr, Germany
| | - Pieter Glatzel
- European Synchrotron Radiation Facility
- 38043 Grenoble Cedex, France
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion
- 45470 Mülheim an der Ruhr, Germany
| | - Oliver Einsle
- Institute for Biochemistry
- Albert-Ludwigs-Universität Freiburg
- 79104 Freiburg, Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion
- 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max-Planck-Institut für Chemische Energiekonversion
- 45470 Mülheim an der Ruhr, Germany
- Department of Chemistry and Chemical Biology
- Cornell University
- Ithaca, USA
| |
Collapse
|
37
|
Yan L, Pelmenschikov V, Dapper CH, Scott AD, Newton WE, Cramer SP. IR-monitored photolysis of CO-inhibited nitrogenase: a major EPR-silent species with coupled terminal CO ligands. Chemistry 2012; 18:16349-57. [PMID: 23136072 PMCID: PMC4497518 DOI: 10.1002/chem.201202072] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/22/2012] [Indexed: 11/07/2022]
Abstract
Fourier transform infrared spectroscopy (FTIR) was used to observe the photolysis and recombination of a new EPR-silent CO-inhibited form of α-H195Q nitrogenase from Azotobacter vinelandii. Photolysis at 4 K reveals a strong negative IR difference band at nu = 1938 cm(-1), along with a weaker negative feature at 1911 cm(-1). These bands and the associated chemical species have both been assigned the label "Hi-3". A positive band at nu = 1921 cm(-1) was assigned to the "Lo-3" photoproduct. By using an isotopic mixture of (12)C (16)O and (13)C (18)O, we show that the Hi-3 bands arise from coupling of two similar CO oscillators with one uncoupled frequency at approximately nu = 1917 cm(-1). Although in previous studies Lo-3 was not observed to recombine, by extending the observation range to 200-240 K, we found that recombination to Hi-3 does indeed occur, with an activation energy of approximately 6.5 kJ mol(-1). The frequencies of the Hi-3 bands suggest terminal CO ligation. This hypothesis was tested with DFT calculations on models with terminal CO ligands on Fe2 and Fe6 of the FeMo-cofactor. An S = 0 model with both CO ligands in exo positions predicts symmetric and asymmetric stretches at nu = 1938 and 1909 cm(-1), respectively, with relative band intensities of about 3.5:1, which is in good agreement with experiment. From the observed IR intensities, Hi-3 was found to be present at a concentration about equal to that of the EPR-active Hi-1 species. The relevance of Hi-3 to the nitrogenase catalytic mechanism and its recently discovered Fischer-Tropsch chemistry is discussed.
Collapse
Affiliation(s)
- Lifen Yan
- Department of Chemistry, University of California, Davis, CA 95616
| | | | - Christie H. Dapper
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, VA 24061, USA
| | - Aubrey D. Scott
- Department of Chemistry, University of California, Davis, CA 95616
| | - William E. Newton
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, VA 24061, USA
| | - Stephen P. Cramer
- Department of Chemistry, University of California, Davis, CA 95616
- Physical Biosciences Division, Lawrence Berkeley National Lab, Berkeley, CA 94720
| |
Collapse
|
38
|
Chen XD, Zhang W, Duncan JS, Lee SC. Iron–Amide–Sulfide and Iron–Imide–Sulfide Clusters: Heteroligated Core Environments Relevant to the Nitrogenase FeMo Cofactor. Inorg Chem 2012; 51:12891-904. [DOI: 10.1021/ic301868m] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xu-Dong Chen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1
| | - Wei Zhang
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1
| | - Jeremiah S. Duncan
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1
| | - Sonny C. Lee
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1
| |
Collapse
|
39
|
Scheibel MG, Schneider S. New Insights into the Biological and Synthetic Fixation of Nitrogen. Angew Chem Int Ed Engl 2012; 51:4529-31. [DOI: 10.1002/anie.201200175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Indexed: 11/09/2022]
|
40
|
Scheibel MG, Schneider S. Neues von der biologischen und synthetischen Stickstofffixierung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Techniques for functional and structural modeling of nitrogenase. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2011; 766:249-63. [PMID: 21833873 DOI: 10.1007/978-1-61779-194-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Synthetic compounds play an important role in developing our understanding of nitrogenase enzymes, and over the years, a multitude of new metal-containing compounds have been created using nitrogenase as an inspiration. The techniques for handling coordination compounds in organic solvents are different than those commonly encountered in a biochemistry or molecular biology laboratory. This chapter describes the precautions that are essential for successful synthesis of air- and moisture-sensitive synthetic compounds and gives details of the synthesis of some coordinatively unsaturated iron-dinitrogen and iron-sulfide compounds of interest in nitrogenase research.
Collapse
|
42
|
Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 2011; 334:974-7. [PMID: 22096198 PMCID: PMC3800678 DOI: 10.1126/science.1206445] [Citation(s) in RCA: 627] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nitrogenase is a complex enzyme that catalyzes the reduction of dinitrogen to ammonia. Despite insight from structural and biochemical studies, its structure and mechanism await full characterization. An iron-molybdenum cofactor (FeMoco) is thought to be the site of dinitrogen reduction, but the identity of a central atom in this cofactor remains unknown. Fe Kβ x-ray emission spectroscopy (XES) of intact nitrogenase MoFe protein, isolated FeMoco, and the FeMoco-deficient nifB protein indicates that among the candidate atoms oxygen, nitrogen, and carbon, it is carbon that best fits the XES data. The experimental XES is supported by computational efforts, which show that oxidation and spin states do not affect the assignment of the central atom to C(4-). Identification of the central atom will drive further studies on its role in catalysis.
Collapse
Affiliation(s)
- Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael Roemelt
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, D-53115 Bonn, Germany
| | - Patrick Ettenhuber
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, D-53115 Bonn, Germany
| | - Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Markus W. Ribbe
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Frank Neese
- Institut für Physikalische und Theoretische Chemie, Universität Bonn, D-53115 Bonn, Germany
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Uwe Bergmann
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Serena DeBeer
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
Spatzal T, Aksoyoglu M, Zhang L, Andrade SL, Schleicher E, Weber S, Rees DC, Einsle O. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 2011; 334:940. [PMID: 22096190 PMCID: PMC3268367 DOI: 10.1126/science.1214025] [Citation(s) in RCA: 627] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The identity of the interstitial light atom in the center of the FeMo cofactor of nitrogenase has been enigmatic since its discovery. Atomic-resolution x-ray diffraction data and an electron spin echo envelope modulation (ESEEM) analysis now provide direct evidence that the ligand is a carbon species.
Collapse
Affiliation(s)
- Thomas Spatzal
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Müge Aksoyoglu
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Limei Zhang
- Howard Hughes Medical Institute, California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA
| | - Susana L.A. Andrade
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Douglas C. Rees
- Howard Hughes Medical Institute, California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA
| | - Oliver Einsle
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
44
|
Doan PE, Telser J, Barney BM, Igarashi RY, Dean DR, Seefeldt LC, Hoffman BM. 57Fe ENDOR spectroscopy and 'electron inventory' analysis of the nitrogenase E4 intermediate suggest the metal-ion core of FeMo-cofactor cycles through only one redox couple. J Am Chem Soc 2011; 133:17329-40. [PMID: 21980917 DOI: 10.1021/ja205304t] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N(2) binds to the active-site metal cluster in the nitrogenase MoFe protein, the FeMo-cofactor ([7Fe-9S-Mo-homocitrate-X]; FeMo-co) only after the MoFe protein has accumulated three or four electrons/protons (E(3) or E(4) states), with the E(4) state being optimally activated. Here we study the FeMo-co (57)Fe atoms of E(4) trapped with the α-70(Val→Ile) MoFe protein variant through use of advanced ENDOR methods: 'random-hop' Davies pulsed 35 GHz ENDOR; difference triple resonance; the recently developed Pulse-Endor-SaTuration and REcovery (PESTRE) protocol for determining hyperfine-coupling signs; and Raw-DATA (RD)-PESTRE, a PESTRE variant that gives a continuous sign readout over a selected radiofrequency range. These methods have allowed experimental determination of the signed isotropic (57)Fe hyperfine couplings for five of the seven iron sites of the reductively activated E(4) FeMo-co, and given the magnitude of the coupling for a sixth. When supplemented by the use of sum-rules developed to describe electron-spin coupling in FeS proteins, these (57)Fe measurements yield both the magnitude and signs of the isotropic couplings for the complete set of seven Fe sites of FeMo-co in E(4). In light of the previous findings that FeMo-co of E(4) binds two hydrides in the form of (Fe-(μ-H(-))-Fe) fragments, and that molybdenum has not become reduced, an 'electron inventory' analysis assigns the formal redox level of FeMo-co metal ions in E(4) to that of the resting state (M(N)), with the four accumulated electrons residing on the two Fe-bound hydrides. Comparisons with earlier (57)Fe ENDOR studies and electron inventory analyses of the bio-organometallic intermediate formed during the reduction of alkynes and the CO-inhibited forms of nitrogenase (hi-CO and lo-CO) inspire the conjecture that throughout the eight-electron reduction of N(2) plus 2H(+) to two NH(3) plus H(2), the inorganic core of FeMo-co cycles through only a single redox couple connecting two formal redox levels: those associated with the resting state, M(N), and with the one-electron reduced state, M(R). We further note that this conjecture might apply to other complex FeS enzymes.
Collapse
Affiliation(s)
- Peter E Doan
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Gerlach DL, Lehnert N. Fischer-Tropsch chemistry at room temperature? Angew Chem Int Ed Engl 2011; 50:7984-6. [PMID: 21761528 DOI: 10.1002/anie.201102979] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Indexed: 11/06/2022]
Abstract
The unique catalytic activity of vanadium nitrogenase suggests a new direction for the direct production of biofuels from CO with either synthetic catalysts or nitrogenase-containing bacteria. The reduction of CO by V nitrogenase to light hydrocarbons shows striking similarities to the established Fischer-Tropsch process; however, the enzyme does not use H(2) directly for this reaction. ADP=adenosine diphosphate, ATP= adenosine triphosphate.
Collapse
Affiliation(s)
- Deidra L Gerlach
- Department of Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
47
|
Harris TV, Szilagyi RK. Comparative assessment of the composition and charge state of nitrogenase FeMo-cofactor. Inorg Chem 2011; 50:4811-24. [PMID: 21545160 DOI: 10.1021/ic102446n] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A significant limitation in our understanding of the molecular mechanism of biological nitrogen fixation is the uncertain composition of the FeMo-cofactor (FeMo-co) of nitrogenase. In this study we present a systematic, density functional theory-based evaluation of spin-coupling schemes, iron oxidation states, ligand protonation states, and interstitial ligand composition using a wide range of experimental criteria. The employed functionals and basis sets were validated with molecular orbital information from X-ray absorption spectroscopic data of relevant iron-sulfur clusters. Independently from the employed level of theory, the electronic structure with the greatest number of antiferromagnetic interactions corresponds to the lowest energy state for a given charge and oxidation state distribution of the iron ions. The relative spin state energies of resting and oxidized FeMo-co already allowed exclusion of certain iron oxidation state distributions and interstitial ligand compositions. Geometry-optimized FeMo-co structures of several models further eliminated additional states and compositions, while reduction potentials indicated a strong preference for the most likely charge state of FeMo-co. Mössbauer and ENDOR parameter calculations were found to be remarkably dependent on the employed training set, density functional, and basis set. Overall, we found that a more oxidized [Mo(IV)-2Fe(II)-5Fe(III)-9S(2-)-C(4-)] composition with a hydroxyl-protonated homocitrate ligand satisfies all of the available experimental criteria and is thus favored over the currently preferred composition of [Mo(IV)-4Fe(II)-3Fe(III)-9S(2-)-N(3-)] from the literature.
Collapse
Affiliation(s)
- Travis V Harris
- NAI Astrobiology Biogeocatalysis Research Center, Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | | |
Collapse
|
48
|
Biosynthesis of complex iron–sulfur enzymes. Curr Opin Chem Biol 2011; 15:319-27. [DOI: 10.1016/j.cbpa.2011.02.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/31/2011] [Accepted: 02/10/2011] [Indexed: 11/21/2022]
|
49
|
Martínez-Noël G, Curatti L, Hernandez JA, Rubio LM. NifB and NifEN protein levels are regulated by ClpX2 under nitrogen fixation conditions in Azotobacter vinelandii. Mol Microbiol 2011; 79:1182-93. [PMID: 21231969 PMCID: PMC3104958 DOI: 10.1111/j.1365-2958.2011.07540.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major part of biological nitrogen fixation is catalysed by the molybdenum nitrogenase that carries at its active site the iron and molybdenum cofactor (FeMo-co). The nitrogen fixation (nif) genes required for the biosynthesis of FeMo-co are derepressed in the absence of a source of fixed nitrogen. The nifB gene product is remarkable because it assembles NifB-co, a complex cluster proposed to comprise a [6Fe-9S-X] cluster, from simpler [Fe-S] clusters common to other metabolic pathways. NifB-co is a common intermediate of the biosyntheses of the cofactors present in the molybdenum, vanadium and iron nitrogenases. In this work, the expression of the Azotobacter vinelandii nifB gene was uncoupled from its natural nif regulation to show that NifB protein levels are lower in cells growing diazotrophically than in cells growing at the expense of ammonium. A. vinelandii carries a duplicated copy of the ATPase component of the ubiquitous ClpXP protease (ClpX2), which is induced under nitrogen fixing conditions. Inactivation of clpX2 resulted in the accumulation of NifB and NifEN and a defect in diazotrophic growth, especially when iron was in short supply. Mutations in nifE, nifN and nifX or in nifA also affected NifB accumulation, suggesting that NifB susceptibility to degradation might vary during its catalytic cycle.
Collapse
Affiliation(s)
- Giselle Martínez-Noël
- Fundación IMDEA Energía, Centro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón 28223 Madrid, Spain
| | - Leonardo Curatti
- Centro de Investigaciones Biológicas, FIBA, Mar del Plata, Argentina and Centro de Estudios de Biodiversidad y Biotecnología de Mar del Plata, CONICET, Argentina
| | - Jose A. Hernandez
- Department of Biochemistry, AZCOM, Midwestern University, Glendale, AZ 85308, USA
| | - Luis M. Rubio
- Fundación IMDEA Energía, Centro de Biotecnología y Genómica de Plantas, Campus Montegancedo, Pozuelo de Alarcón 28223 Madrid, Spain
| |
Collapse
|
50
|
Scepaniak JJ, Vogel CS, Khusniyarov MM, Heinemann FW, Meyer K, Smith JM. Synthesis, Structure, and Reactivity of an Iron(V) Nitride. Science 2011; 331:1049-52. [PMID: 21350172 DOI: 10.1126/science.1198315] [Citation(s) in RCA: 259] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jeremiah J. Scepaniak
- Department of Chemistry and Biochemistry, MSC 3C, New Mexico State University, Las Cruces, NM 88003, USA
| | - Carola S. Vogel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Marat M. Khusniyarov
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Frank W. Heinemann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Jeremy M. Smith
- Department of Chemistry and Biochemistry, MSC 3C, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|