1
|
Dzyhovskyi V, Remelli M, Stokowa-Sołtys K. Exploring divalent metal ion coordination. Unraveling binding modes in Staphylococcus aureus MntH fragments. J Inorg Biochem 2025; 263:112769. [PMID: 39549335 DOI: 10.1016/j.jinorgbio.2024.112769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024]
Abstract
Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage. Staphylococcus aureus, a member of the commensal flora, colonizes the anterior nares and skin harmlessly but can cause severe illness. MntH transporter is responsible for acquiring divalent metal ions necessary for metabolic functions and virulence. It is a 450-amino-acid protein analogous to Nramp1 (Natural Resistance-Associated Macrophage Protein 1) in mammals. Herein, the coordination modes of copper(II), iron(II), and zinc(II) ions with select fragments of the MntH were established employing potentiometry, mass spectrometry, and spectroscopic methods. Four model peptides, MNNKRHSTNE-NH2, Ac-KFDHRSS-NH2, Ac-IMPHNLYLHSSI-NH2, and Ac-YSRHNNEE-NH2, were chosen for their metal-binding capabilities and examined to determine their coordination properties and preferences. Our findings suggest that under physiological pH conditions, the N-terminal fragment of MntH demonstrates the highest thermodynamic stability with copper(II) and iron(II) ions. Furthermore, a comparison with other peptides from the S. aureus FeoB transporter indicates different binding affinities.
Collapse
Affiliation(s)
- Valentyn Dzyhovskyi
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States.
| |
Collapse
|
2
|
Dias I, Bon L, Banas A, Chavarria D, Borges F, Guerreiro-Oliveira C, Cardoso SM, Sanna D, Garribba E, Chaves S, Santos MA. Exploiting the potential of rivastigmine-melatonin derivatives as multitarget metal-modulating drugs for neurodegenerative diseases. J Inorg Biochem 2025; 262:112734. [PMID: 39378762 DOI: 10.1016/j.jinorgbio.2024.112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 09/08/2024] [Indexed: 10/10/2024]
Abstract
The multifaceted nature of the neurodegenerative diseases, as Alzheimer's disease (AD) and Parkinson's disease (PD) with several interconnected etiologies, and the absence of effective drugs, led herein to the development and study of a series of multi-target directed ligands (MTDLs). The developed RIV-IND hybrids, derived from the conjugation of an approved anti-AD drug, rivastigmine (RIV), with melatonin analogues, namely indole (IND) derivatives, revealed multifunctional properties, by associating the cholinesterase inhibition of the RIV drug with antioxidant activity, biometal (Cu(II), Zn(II), Fe(III)) chelation properties, inhibition of amyloid-β (Aβ) aggregation (self- and Cu-induced) and of monoamine oxidases (MAOs), as well as neuroprotection capacity in cell models of AD and PD. In particular, two hybrids with hydroxyl-substituted indoles (5a2 and 5a3) could be promising multifunctional compounds that inspire further development of novel anti-neurodegenerative drugs.
Collapse
Affiliation(s)
- Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Leo Bon
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Angelika Banas
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Catarina Guerreiro-Oliveira
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine University of Coimbra (FMUC), 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra (FMUC), 3004-504 Coimbra, Portugal
| | - Daniele Sanna
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Trav. La Crucca 3, I-07040 Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chimica e Farmacia, Università di Sassari, Viale San Pietro, 07100 Sassari, Italy
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Bacchella C, Dell'Acqua S, Nicolis S, Monzani E, Casella L. The reactivity of copper complexes with neuronal peptides promoted by catecholamines and its impact on neurodegeneration. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Capucciati A, Monzani E, Sturini M, Nicolis S, Zucca FA, Bubacco L, Bortolus M, Zecca L, Casella L. Water‐Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain
Locus Coeruleus. Angew Chem Int Ed Engl 2022; 61:e202204787. [DOI: 10.1002/anie.202204787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Andrea Capucciati
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Enrico Monzani
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Michela Sturini
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Stefania Nicolis
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Bubacco
- Department of Biology University of Padova Via Ugo Bassi 58/B 35128 Padova Italy
| | - Marco Bortolus
- Department of Chemical Science University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Casella
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| |
Collapse
|
5
|
Capucciati A, Monzani E, Sturini M, Nicolis S, Zucca FA, Bubacco L, Bortolus M, Zecca L, Casella L. Water‐Soluble Melanin–Protein–Fe/Cu Conjugates Derived from Norepinephrine as Reliable Models for Neuromelanin of Human Brain
Locus Coeruleus. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Andrea Capucciati
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Enrico Monzani
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Michela Sturini
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Stefania Nicolis
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Bubacco
- Department of Biology University of Padova Via Ugo Bassi 58/B 35128 Padova Italy
| | - Marco Bortolus
- Department of Chemical Science University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies National Research Council of Italy Via Cervi 93 20054 Segrate (Milan) Italy
| | - Luigi Casella
- Department of Chemistry University of Pavia Via Taramelli 12 27100 Pavia Italy
| |
Collapse
|
6
|
Rivillas‐Acevedo L, Grande‐Aztatzi R, Juaristi E, Vela A, Quintanar L. Reversible Stereoisomer‐Specific Cotton Effect of the Ligand Field Transitions at a Copper(II) Binding Site of the Prion Protein. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lina Rivillas‐Acevedo
- Centro de Investigación en Dinámica Celular Universidad Autónoma del Estado de Morelos Avenida Universidad #1001 62209 Cuernavaca, México
| | - Rafael Grande‐Aztatzi
- Escuela de Ingeniería y Ciencias Tecnológico de Monterrey Av. Eugenio Garza Sada 2501 64849 Monterrey Nuevo León, México
| | - Eusebio Juaristi
- Departamento de Química Centro de Investigación y de Estudios Avanzados (Cinvestav) Av. IPN #2508, Gustavo A. Madero 07360 Ciudad de México México
- El Colegio Nacional Donceles # 104, Centro Histórico 06020 Ciudad de México Mexico
| | - Alberto Vela
- Departamento de Química Centro de Investigación y de Estudios Avanzados (Cinvestav) Av. IPN #2508, Gustavo A. Madero 07360 Ciudad de México México
| | - Liliana Quintanar
- Departamento de Química Centro de Investigación y de Estudios Avanzados (Cinvestav) Av. IPN #2508, Gustavo A. Madero 07360 Ciudad de México México
| |
Collapse
|
7
|
Sánchez-López C, Quintanar L. β-cleavage of the human prion protein impacts Cu(II) coordination at its non-octarepeat region. J Inorg Biochem 2021; 228:111686. [PMID: 34929540 DOI: 10.1016/j.jinorgbio.2021.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
The cellular prion protein (PrPC) is a membrane-anchored copper binding protein that undergoes proteolytic processing. β-cleavage of PrPC is associated with a pathogenic condition and it yields two fragments: N2 with residues 23-89, and C2 including residues 90-231. The membrane-bound C2 fragment retains the Cu binding sites at His96 and His111, but it also has a free N-terminal NH2 group. In this study, the impact of β-cleavage of PrPC in its Cu(II) binding properties was evaluated, using the peptide of the human prion protein hPrP(90-115) as a model for the C2 fragment. The Cu(II) coordination properties of hPrP(90-115) were studied using circular dichroism (CD) and electron paramagnetic resonance (EPR); while the H96A and H111A substitutions and its acetylated variants were also studied. Cu binding to hPrP(90-115) is dependent on metal ion concentration: At low copper concentrations the participation of His96 and free NH2-terminus is evident, while at high copper concentrations the His111 site is populated without participation of the N-terminal NH2 group. The presence of a free NH2-terminal group in the C2 fragment significantly impacts the Cu(II) coordination properties of the His96 site, where the NH2 group also anchors the metal ion. This study provides further insights into the impact of proteolytic processing of PrPC in the Cu binding properties of this important neuronal protein.
Collapse
Affiliation(s)
- Carolina Sánchez-López
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| |
Collapse
|
8
|
Dell’Acqua S, Massardi E, Monzani E, Di Natale G, Rizzarelli E, Casella L. Interaction between Hemin and Prion Peptides: Binding, Oxidative Reactivity and Aggregation. Int J Mol Sci 2020; 21:ijms21207553. [PMID: 33066163 PMCID: PMC7589926 DOI: 10.3390/ijms21207553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
We investigate the interaction of hemin with four fragments of prion protein (PrP) containing from one to four histidines (PrP106-114, PrP95-114, PrP84-114, PrP76-114) for its potential relevance to prion diseases and possibly traumatic brain injury. The binding properties of hemin-PrP complexes have been evaluated by UV-visible spectrophotometric titration. PrP peptides form a 1:1 adduct with hemin with affinity that increases with the number of histidines and length of the peptide; the following log K1 binding constants have been calculated: 6.48 for PrP76-114, 6.1 for PrP84-114, 4.80 for PrP95-114, whereas for PrP106-114, the interaction is too weak to allow a reliable binding constant calculation. These constants are similar to that of amyloid-β (Aβ) for hemin, and similarly to hemin-Aβ, PrP peptides tend to form a six-coordinated low-spin complex. However, the concomitant aggregation of PrP induced by hemin prevents calculation of the K2 binding constant. The turbidimetry analysis of [hemin-PrP76-114] shows that, once aggregated, this complex is scarcely soluble and undergoes precipitation. Finally, a detailed study of the peroxidase-like activity of [hemin-(PrP)] shows a moderate increase of the reactivity with respect to free hemin, but considering the activity over long time, as for neurodegenerative pathologies, it might contribute to neuronal oxidative stress.
Collapse
Affiliation(s)
- Simone Dell’Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
- Correspondence: (S.D.); (L.C.)
| | - Elisa Massardi
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
| | - Giuseppe Di Natale
- Istituto di Cristallografia, s.s. Catania, Consiglio Nazionale delle Ricerche, via Paolo Gaifami 18, 95126 Catania, Italy; (G.D.N.); (E.R.)
| | - Enrico Rizzarelli
- Istituto di Cristallografia, s.s. Catania, Consiglio Nazionale delle Ricerche, via Paolo Gaifami 18, 95126 Catania, Italy; (G.D.N.); (E.R.)
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy; (E.M.); (E.M.)
- Correspondence: (S.D.); (L.C.)
| |
Collapse
|
9
|
Csire G, Turi I, Sóvágó I, Kárpáti E, Kállay C. Complex formation processes and metal ion catalyzed oxidation of model peptides related to the metal binding site of the human prion protein. J Inorg Biochem 2020; 203:110927. [DOI: 10.1016/j.jinorgbio.2019.110927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
|
10
|
Hecel A, Kola A, Valensin D, Kozlowski H, Rowinska-Zyrek M. Metal Complexes of Two Specific Regions of ZnuA, a Periplasmic Zinc(II) Transporter from Escherichia coli. Inorg Chem 2020; 59:1947-1958. [PMID: 31970989 PMCID: PMC7467640 DOI: 10.1021/acs.inorgchem.9b03298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The crystal structure of ZnZnuA from Escherichia coli reveals two metal binding sites. (i) The primary binding site, His143, is located close the His-rich loop (residues 116-138) and plays a significant role in Zn(II) acquisition. (ii) The secondary binding site involves His224. In this work, we focus on understanding the interactions of two metal ions, Zn(II) and Cu(II), with two regions of ZnuA, which are possible anchoring sites for Zn(II): Ac-115MKSIHGDDDDHDHAEKSDEDHHHGDFNMHLW145-NH2 (primary metal binding site) and Ac-223GHFTVNPEIQPGAQRLHE240-NH2 (secondary metal binding site). The histidine-rich loop (residues 116-138) has a role in the capture of zinc(II), which is then further delivered into other regions of the protein. For both Zn(II) complexes, histidine residues constitute the main anchoring donors. In the longer, His-rich fragment, a tetrahedral complex with four His residues is formed, while in the second ligand, two imidazole nitrogens are involved in zinc(II) binding. In both cases, so-called loop structures are formed. One consists of a 125HxHxExxxExHxH137 motif with seven amino acid residues in the loop between the two central histidines, while the other is formed by a 224HFTVNPEIQPGAQRLH239 motif with 14 amino acid residues in the loop between the two nearest coordinating histidines. The number of available imidazoles also strongly affects the structure of copper(II) complexes; the more histidines in the studied region, the higher the pH in which amide nitrogens will participate in Cu(II) binding.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry , University of Wroclaw , F. Joliot-Curie 14 , 50-383 Wroclaw , Poland
| | - Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy , University of Siena , Via A. Moro 2 , 53100 Siena , Italy
| | - Henryk Kozlowski
- Faculty of Chemistry , University of Wroclaw , F. Joliot-Curie 14 , 50-383 Wroclaw , Poland.,Public Higher Medical Professional School in Opole , Katowicka 68 , 45-060 Opole , Poland
| | | |
Collapse
|
11
|
Bacchella C, Nicolis S, Dell'Acqua S, Rizzarelli E, Monzani E, Casella L. Membrane Binding Strongly Affecting the Dopamine Reactivity Induced by Copper Prion and Copper/Amyloid-β (Aβ) Peptides. A Ternary Copper/Aβ/Prion Peptide Complex Stabilized and Solubilized in Sodium Dodecyl Sulfate Micelles. Inorg Chem 2019; 59:900-912. [PMID: 31869218 DOI: 10.1021/acs.inorgchem.9b03153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The combination between dyshomeostatic levels of catecholamine neurotransmitters and redox-active metals such as copper and iron exacerbates the oxidative stress condition that typically affects neurodegenerative diseases. We report a comparative study of the oxidative reactivity of copper complexes with amyloid-β (Aβ40) and the prion peptide fragment 76-114 (PrP76-114), containing the high-affinity binding site, toward dopamine and 4-methylcatechol, in aqueous buffer and in sodium dodecyl sulfate micelles, as a model membrane environment. The competitive oxidative and covalent modifications undergone by the peptides were also evaluated. The high binding affinity of Cu/peptide to micelles and lipid membranes leads to a strong reduction (Aβ40) and quenching (PrP76-114) of the oxidative efficiency of the binary complexes and to a stabilization and redox silencing of the ternary complex CuII/Aβ40/PrP76-114, which is highly reactive in solution. The results improve our understanding of the pathological and protective effects associated with these complexes, depending on the physiological environment.
Collapse
Affiliation(s)
- Chiara Bacchella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Stefania Nicolis
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini , Consiglio Nazionale delle Ricerche , Via P. Gaifami 18 , 95125 Catania , Italy
| | - Enrico Monzani
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Luigi Casella
- Dipartimento di Chimica , Università di Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
12
|
Kowalik-Jankowska T, Lesiów M, Krupa K, Kuczer M, Czarniewska E. Copper(ii) complexes with alloferon analogues containing phenylalanine H6F and H12F stability and biological activity lower stabilization of complexes compared to analogues containing tryptophan. Metallomics 2019; 11:1700-1715. [PMID: 31490528 DOI: 10.1039/c9mt00182d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(ii) complex formation processes between alloferon 1 (Allo1) (H1 GVSGH6 GQH9 GVH12G) analogues where the phenylalanine residue is introduced in the place of His residue H6F and H12F have been studied by potentiometric, UV-visible, CD and EPR spectroscopic, and MS methods. For the phenylalanine analogues of alloferon 1, complex speciation has been obtained for a 1 : 1, 2 : 1 and 3 : 1 metal-to-ligand molar ratio. At physiological pH and in 1 : 1 metal-to-ligand molar ratio the phenylalanine analogues of alloferon 1 form a CuL complex similar to that of alanine analogues with the 4N{NH2,N1Im,2NIm} coordination mode. The stability of the complexes of the phenylalanine analogues is higher in comparison to those of alanine analogues, but lower in comparison to those containing tryptophan. Injection of Allo12F into insects induced prominent apoptotic changes in all hemocytes. The presence of apoptotic bodies only in the insect hemolymph testifies to the fact that Allo12F is an extremely pro-apoptotic peptide.
Collapse
|
13
|
Pariente Cohen N, Lo Presti E, Dell'Acqua S, Jantz T, Shimon LJW, Levy N, Nassir M, Elbaz L, Casella L, Fischer B. Aminomethylene-Phosphonate Analogue as a Cu(II) Chelator: Characterization and Application as an Inhibitor of Oxidation Induced by the Cu(II)-Prion Peptide Complex. Inorg Chem 2019; 58:8995-9003. [PMID: 31247811 DOI: 10.1021/acs.inorgchem.9b00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, we reported on a series of aminomethylene-phosphonate (AMP) analogues, bearing one or two heterocyclic groups on the aminomethylene moiety, as promising Zn(II) chelators. Given the strong Zn(II) binding properties of these compounds, they may find useful applications in metal chelation therapy. With a goal of inhibiting the devastating oxidative damage caused by prion protein in prion diseases, we explored the most promising ligand, {bis[(1H-imidazol-4-yl)methyl]amino}methylphosphonic acid, AMP-(Im)2, 4, as an inhibitor of the oxidative reactivity associated with the Cu(II) complex of prion peptide fragment 84-114. Specifically, we first characterized the Cu(II) complex with AMP-(Im)2 by ultraviolet-visible spectroscopy and electrochemical measurements that indicated the high chemical and electrochemical stability of the complex. Potentiometric pH titration provided evidence of the formation of a stable 1:1 [Cu(II)-AMP-(Im)2]+ complex (ML), with successive binding of a second AMP-(Im)2 molecule yielding ML2 complex [Cu(II)-(AMP-(Im)2)2]+ (log K' = 15.55), and log β' = 19.84 for ML2 complex. The CuN3O1 ML complex was demonstrated by X-ray crystallography, indicating the thermodynamically stable square pyramidal complex. Chelation of Cu(II) by 4 significantly reduced the oxidation potential of the former. CuCl2 and the 1:2 Cu:AMP-(Im)2 complex showed one-electron redox of Cu(II)/Cu(I) at 0.13 and -0.35 V, respectively. Indeed, 4 was found to be a potent antioxidant that at a 1:1:1 AMP-(Im)2:Cu(II)-PrP84-114 molar ratio almost totally inhibited the oxidation reaction of 4-methylcatechol. Circular dichroism data suggest that this antioxidant activity is due to formation of a ternary, redox inactive Cu(II)-Prp84-114-[AMP-(Im)2] complex. Future studies in prion disease animal models are warranted to assess the potential of 4 to inhibit the devastating oxidative damage caused by PrP.
Collapse
Affiliation(s)
| | - Eliana Lo Presti
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Simone Dell'Acqua
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Thomas Jantz
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Linda J W Shimon
- Faculty of Chemistry, Crystallography Unit , Weizmann Institute , Rehovot 76100 , Israel
| | - Naomi Levy
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Molhm Nassir
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Lior Elbaz
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| | - Luigi Casella
- Department of Chemistry , University of Pavia , Via Taramelli 12 , 27100 Pavia , Italy
| | - Bilha Fischer
- Department of Chemistry , Bar-Ilan University , Ramat Gan 5290002 , Israel
| |
Collapse
|
14
|
Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamin, oxidativer Stress und Protein‐Chinonmodifikationen bei Parkinson und anderen neurodegenerativen Erkrankungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Enrico Monzani
- Department of ChemistryUniversity of Pavia 27100 Pavia Italien
| | | | | | | | | | - Fabio A. Zucca
- Institute of Biomedical TechnologiesNational Research Council of Italy Segrate (Mailand) Italien
| | - Eugene V. Mosharov
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
- Departments Neurology, PharmacologyColumbia University Medical Center New York NY USA
| | - David Sulzer
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
- Departments Neurology, PharmacologyColumbia University Medical Center New York NY USA
| | - Luigi Zecca
- Institute of Biomedical TechnologiesNational Research Council of Italy Segrate (Mailand) Italien
- Department of PsychiatryColumbia University Medical CenterNew York State Psychiatric Institute New York NY USA
| | - Luigi Casella
- Department of ChemistryUniversity of Pavia 27100 Pavia Italien
| |
Collapse
|
15
|
Monzani E, Nicolis S, Dell'Acqua S, Capucciati A, Bacchella C, Zucca FA, Mosharov EV, Sulzer D, Zecca L, Casella L. Dopamine, Oxidative Stress and Protein-Quinone Modifications in Parkinson's and Other Neurodegenerative Diseases. Angew Chem Int Ed Engl 2019; 58:6512-6527. [PMID: 30536578 DOI: 10.1002/anie.201811122] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Dopamine (DA) is the most important catecholamine in the brain, as it is the most abundant and the precursor of other neurotransmitters. Degeneration of nigrostriatal neurons of substantia nigra pars compacta in Parkinson's disease represents the best-studied link between DA neurotransmission and neuropathology. Catecholamines are reactive molecules that are handled through complex control and transport systems. Under normal conditions, small amounts of cytosolic DA are converted to neuromelanin in a stepwise process involving melanization of peptides and proteins. However, excessive cytosolic or extraneuronal DA can give rise to nonselective protein modifications. These reactions involve DA oxidation to quinone species and depend on the presence of redox-active transition metal ions such as iron and copper. Other oxidized DA metabolites likely participate in post-translational protein modification. Thus, protein-quinone modification is a heterogeneous process involving multiple DA-derived residues that produce structural and conformational changes of proteins and can lead to aggregation and inactivation of the modified proteins.
Collapse
Affiliation(s)
- Enrico Monzani
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Stefania Nicolis
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | | | | | - Chiara Bacchella
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milano), Italy
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA.,Departments of Neurology and Pharmacology, Columbia University Medical Center, New York, NY, USA
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate (Milano), Italy.,Department of Psychiatry, Columbia University Medical Center, New York State Psychiatric Institute, New York, NY, USA
| | - Luigi Casella
- Department of Chemistry, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
16
|
Hautier A, Carvalho T, Valensin D, Simaan AJ, Faure B, Mateus P, Delgado R, Iranzo O. The role of methylation in the copper(ii) coordination properties of a His-containing decapeptide. Dalton Trans 2019; 48:1859-1870. [DOI: 10.1039/c8dt05037f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Methylation: a simple strategy to stabilize copper species lacking amidate coordination at neutral pH value.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Dipartimento di Biotecnologie
- Chimica e Farmacia
- Università di Siena
- 53100 Siena
- Italy
| | | | - Bruno Faure
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| | - Pedro Mateus
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa
- 2780-157 Oeiras
- Portugal
| | - Olga Iranzo
- Aix Marseille Univ
- CNRS
- Centrale Marseille
- iSm2
- Marseille
| |
Collapse
|
17
|
Structural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper Ions. Int J Mol Sci 2018; 20:ijms20010018. [PMID: 30577569 PMCID: PMC6337743 DOI: 10.3390/ijms20010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
The N-terminus of the prion protein is a large intrinsically disordered region encompassing approximately 125 amino acids. In this paper, we review its structural and functional properties, with a particular emphasis on its binding to copper ions. The latter is exploited by the region’s conformational flexibility to yield a variety of biological functions. Disease-linked mutations and proteolytic processing of the protein can impact its copper-binding properties, with important structural and functional implications, both in health and disease progression.
Collapse
|
18
|
Sánchez-López C, Rivillas-Acevedo L, Cruz-Vásquez O, Quintanar L. Methionine 109 plays a key role in Cu(II) binding to His111 in the 92–115 fragment of the human prion protein. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.09.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Magrì A, Di Natale G, Rizzarelli E. Copper-assisted interaction between amyloid-β and prion: Ternary metal complexes with Aβ N-terminus and octarepeat. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Dell'Acqua S, Bacchella C, Monzani E, Nicolis S, Di Natale G, Rizzarelli E, Casella L. Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress. Inorg Chem 2017; 56:11317-11325. [PMID: 28846410 DOI: 10.1021/acs.inorgchem.7b01757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copper(II) binding to prion peptides does not prevent Cu redox cycling and formation of reactive oxygen species (ROS) in the presence of reducing agents. The toxic effects of these species are exacerbated in the presence of catecholamines, indicating that dysfunction of catecholamine vesicular sequestration or recovery after synaptic release is a dangerous amplifier of Cu induced oxidative stress. Cu bound to prion peptides including the high affinity site involving histidines adjacent to the octarepeats exhibits marked catalytic activity toward dopamine and 4-methylcatechol. The resulting quinone oxidation products undergo parallel oligomerization and endogenous peptide modification yielding catechol adducts at the histidine binding ligands. These modifications add to the more common oxidation of Met and His residues produced by ROS. Derivatization of Cu-prion peptides is much faster than that undergone by Cu-β-amyloid and Cu-α-synuclein complexes in the same conditions.
Collapse
Affiliation(s)
- Simone Dell'Acqua
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Chiara Bacchella
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Stefania Nicolis
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| | - Giuseppe Di Natale
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche , Via P. Gaifami 18, Catania, Italy
| | - Enrico Rizzarelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche , Via P. Gaifami 18, Catania, Italy
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia , Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
21
|
Kadej A, Kuczer M, Czarniewska E, Urbański A, Rosiński G, Kowalik-Jankowska T. High stability and biological activity of the copper(II) complexes of alloferon 1 analogues containing tryptophan. J Inorg Biochem 2016; 163:147-161. [PMID: 27453534 DOI: 10.1016/j.jinorgbio.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/21/2016] [Accepted: 07/07/2016] [Indexed: 11/28/2022]
Abstract
Copper(II) complex formation processes between the alloferon 1 (Allo1) (HGVSGHGQHGVHG) analogues where the tryptophan residue is introducing in the place His residue H1W, H6W, H9W and H12W have been studied by potentiometric, UV-visible, CD and EPR spectroscopic, and MS methods. For all analogues of alloferon 1 complex speciation have been obtained for a 1:1 metal-to-ligand molar ratio and 2:1 of H1W because of precipitation at higher (2:1, 3:1 and 4:1) ratios. At physiological pH7.4 and a 1:1 metal-to-ligand molar ratio the tryptophan analogues of alloferon 1 form the CuH-1L and/or CuH-2L complexes with the 4N binding mode. The introduction of tryptophan in place of histidine residues changes the distribution diagram of the complexes formed with the change of pH and their stability constants compared to the respective substituted alanine analogues of alloferon 1. The CuH-1L, CuH-2L and CuH-3L complexes of the tryptophan analogues are more stable from 1 to 5 log units in comparison to those of the alanine analogues. This stabilization of the complexes may result from cation(Cu(II))-π and indole/imidazole ring interactions. The induction of apoptosis in vivo, in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 was studied. The biological results show that copper(II) ions in vivo did not cause any apparent apoptotic features. The most active were the H12W peptide and Cu(II)-H12W complex formed at pH7.4.
Collapse
Affiliation(s)
- Agnieszka Kadej
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Mariola Kuczer
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Elżbieta Czarniewska
- Department of Animal Physiology and Development, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland; Department of Systematic Zoology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | | |
Collapse
|
22
|
Sóvágó I, Várnagy K, Lihi N, Grenács Á. Coordinating properties of peptides containing histidyl residues. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Pitchumani Violet Mary C, Shankar R, Vijayakumar S, Kolandaivel P. Interaction studies of human prion protein (HuPrP109–111: methionine-lysine-histidine) tripeptide model with transition metal cations. J Mol Graph Model 2016; 69:111-26. [DOI: 10.1016/j.jmgm.2016.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023]
|
24
|
Di Natale G, Sinopoli A, Grenács Á, Sanna D, Sóvágó I, Pappalardo G. Copper(ii) coordination properties of the Aβ(1–16)2 peptidomimetic: experimental evidence of intermolecular macrochelate complex species in the Aβ dimer. NEW J CHEM 2016. [DOI: 10.1039/c6nj02354a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coordination features of the copper(ii) complexes with a Aβ(1–16)2 dimeric model are reported for the first time.
Collapse
Affiliation(s)
| | - Alessandro Sinopoli
- PhD Program in Translational Biomedicine
- University of Catania
- 95125 Catania
- Italy
| | - Ágnes Grenács
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Hungary
| | - Daniele Sanna
- CNR Institute of Biomolecular Chemistry
- 07040 Sassari
- Italy
| | - Imre Sóvágó
- Department of Inorganic and Analytical Chemistry
- University of Debrecen
- Hungary
| | | |
Collapse
|
25
|
Matusiak A, Kuczer M, Czarniewska E, Urbański A, Rosiński G, Kowalik-Jankowska T. Copper(II) complexes of terminally free alloferon peptide mutants containing two different histidyl (H1 and H6 or H9 or H12) binding sites Structure Stability and Biological Activity. J Inorg Biochem 2015; 151:44-57. [DOI: 10.1016/j.jinorgbio.2015.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/27/2015] [Accepted: 06/26/2015] [Indexed: 11/25/2022]
|
26
|
Fragoso A, Carvalho T, Rousselot-Pailley P, Correia dos Santos MM, Delgado R, Iranzo O. Effect of the Peptidic Scaffold in Copper(II) Coordination and the Redox Properties of Short Histidine-Containing Peptides. Chemistry 2015; 21:13100-11. [DOI: 10.1002/chem.201501715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 01/07/2023]
|
27
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
28
|
Kadej A, Kuczer M, Kowalik-Jankowska T. Copper(ii) complexes of terminally free alloferon mutants containing two histidyl binding sites inside peptide chain structure and stability. Dalton Trans 2015; 44:20659-74. [DOI: 10.1039/c5dt01911g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The characterization of Cu(ii) complexes with alloferon 1 mutants H1A/H12A, H1A/H9A and H1A/H6A by potentiometry, CD, UV-Vis and EPR spectroscopic techniques, and ESI-MS spectrometry is reported.
Collapse
Affiliation(s)
- Agnieszka Kadej
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Mariola Kuczer
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | |
Collapse
|
29
|
Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity. J Inorg Biochem 2014; 138:99-113. [DOI: 10.1016/j.jinorgbio.2014.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 01/04/2023]
|
30
|
Timári S, Turi I, Várnagy K, Sóvágó I. Studies on the formation of coordination isomers in the copper(II) and nickel(II) complexes of peptides containing histidyl residues. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.04.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Stanyon HF, Cong X, Chen Y, Shahidullah N, Rossetti G, Dreyer J, Papamokos G, Carloni P, Viles JH. Developing predictive rules for coordination geometry from visible circular dichroism of copper(II) and nickel(II) ions in histidine and amide main-chain complexes. FEBS J 2014; 281:3945-54. [DOI: 10.1111/febs.12934] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/03/2014] [Accepted: 07/14/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Helen F. Stanyon
- School of Biological and Chemical Sciences; Queen Mary; University of London; UK
| | - Xiaojing Cong
- Computational Biophysics; German Research School for Simulation Sciences (Joint venture of RWTH Aachen University and Forschungszentrum Jülich); Germany
- Institute for Advanced Simulations IAS-5; Computational Biomedicine; Forschungszentrum Jülich Germany
| | - Yan Chen
- School of Biological and Chemical Sciences; Queen Mary; University of London; UK
| | - Nabeela Shahidullah
- School of Biological and Chemical Sciences; Queen Mary; University of London; UK
| | - Giulia Rossetti
- Computational Biophysics; German Research School for Simulation Sciences (Joint venture of RWTH Aachen University and Forschungszentrum Jülich); Germany
- Institute for Advanced Simulations IAS-5; Computational Biomedicine; Forschungszentrum Jülich Germany
- Jülich Supercomputing Center; Forschungszentrum Jülich Germany
- Computational Biomedicine Section INM-9; Institute for Neuroscience and Medicine; Jülich Germany
| | - Jens Dreyer
- Computational Biophysics; German Research School for Simulation Sciences (Joint venture of RWTH Aachen University and Forschungszentrum Jülich); Germany
- Institute for Advanced Simulations IAS-5; Computational Biomedicine; Forschungszentrum Jülich Germany
| | - George Papamokos
- Computational Biophysics; German Research School for Simulation Sciences (Joint venture of RWTH Aachen University and Forschungszentrum Jülich); Germany
- Institute for Advanced Simulations IAS-5; Computational Biomedicine; Forschungszentrum Jülich Germany
- Scuola Internazionale Superiore di Studi Avanzati; Trieste Italy
| | - Paolo Carloni
- Computational Biophysics; German Research School for Simulation Sciences (Joint venture of RWTH Aachen University and Forschungszentrum Jülich); Germany
- Institute for Advanced Simulations IAS-5; Computational Biomedicine; Forschungszentrum Jülich Germany
- Computational Biomedicine Section INM-9; Institute for Neuroscience and Medicine; Jülich Germany
| | - John H. Viles
- School of Biological and Chemical Sciences; Queen Mary; University of London; UK
| |
Collapse
|
32
|
Vajda T, Perczel A. Role of water in protein folding, oligomerization, amyloidosis and miniprotein. J Pept Sci 2014; 20:747-59. [PMID: 25098401 DOI: 10.1002/psc.2671] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 01/02/2023]
Abstract
The essential involvement of water in most fundamental extra-cellular and intracellular processes of proteins is critically reviewed and evaluated in this article. The role of water in protein behavior displays structural ambivalence; it can protect the disordered peptide-chain by hydration or helps the globular chain-folding, but promotes also the protein aggregation, as well (see: diseases). A variety of amyloid diseases begins as benign protein monomers but develops then into toxic amyloid aggregates of fibrils. Our incomplete knowledge of this process emphasizes the essential need to reveal the principles of governing this oligomerization. To understand the biophysical basis of the simpler in vitro amyloid formation may help to decipher also the in vivo way. Nevertheless, to ignore the central role of the water's effect among these events means to receive an uncompleted picture of the true phenomenon. Therefore this review represents a stopgap role, because the most published studies--with a few exceptions--have been neglected the crucial importance of water in the protein research. The following questions are discussed from the water's viewpoint: (i) interactions between water and proteins, (ii) protein hydration/dehydration, (iii) folding of proteins and miniproteins, (iv) peptide/protein oligomerization, and (v) amyloidosis.
Collapse
Affiliation(s)
- Tamás Vajda
- MTA-ELTE Protein Modelling Research Group, Eötvös Loránd University and Laboratory of Structural Chemistry & Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | | |
Collapse
|
33
|
Evolutionary implications of metal binding features in different species' prion protein: an inorganic point of view. Biomolecules 2014; 4:546-65. [PMID: 24970230 PMCID: PMC4101497 DOI: 10.3390/biom4020546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022] Open
Abstract
Prion disorders are a group of fatal neurodegenerative conditions of mammals. The key molecular event in the pathogenesis of such diseases is the conformational conversion of prion protein, PrPC, into a misfolded form rich in β-sheet structure, PrPSc, but the detailed mechanistic aspects of prion protein conversion remain enigmatic. There is uncertainty on the precise physiological function of PrPC in healthy individuals. Several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ mainly through a domain composed by four to five repeats of eight amino acids. In addition to mammals, PrP homologues have also been identified in birds, reptiles, amphibians and fish. The globular domain of protein is retained in the different species, suggesting that the protein carries out an essential common function. However, the comparison of amino acid sequences indicates that prion protein has evolved differently in each vertebrate class. The primary sequences are strongly conserved in each group, but these exhibit a low similarity with those of mammals. The N-terminal domain of different prions shows tandem amino acid repeats with an increasing amount of histidine residues going from amphibians to mammals. The difference in the sequence affects the number of copper binding sites, the affinity and the coordination environment of metal ions, suggesting that the involvement of prion in metal homeostasis may be a specific characteristic of mammalian prion protein. In this review, we describe the similarities and the differences in the metal binding of different species' prion protein, as revealed by studies carried out on the entire protein and related peptide fragments.
Collapse
|
34
|
Błaszak M, Jankowska E, Kowalik-Jankowska T. Copper(II) complexes of neuropeptide gamma mutant (H4A) products of metal-catalyzed oxidation. Polyhedron 2014. [DOI: 10.1016/j.poly.2013.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Copper(II) complexes of neuropeptide gamma with point mutations (S8,16A) products of metal-catalyzed oxidation. J Inorg Biochem 2013; 129:62-70. [DOI: 10.1016/j.jinorgbio.2013.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/28/2013] [Accepted: 08/29/2013] [Indexed: 01/05/2023]
|
36
|
Binary and ternary mixed metal complexes of terminally free peptides containing two different histidyl binding sites. J Inorg Biochem 2013; 128:17-25. [DOI: 10.1016/j.jinorgbio.2013.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/24/2022]
|
37
|
Turi I, Sanna D, Garribba E, Pappalardo G, Sóvágó I. The effect of non-coordinating side chains on the metal binding affinities of peptides of histidine. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Kuczer M, Błaszak M, Czarniewska E, Rosiński G, Kowalik-Jankowska T. Mono- and Polynuclear Copper(II) Complexes of Alloferons 1 with Point Mutations (H6A) and (H12A): Stability Structure and Cytotoxicity. Inorg Chem 2013; 52:5951-61. [DOI: 10.1021/ic400160d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mariola Kuczer
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Marta Błaszak
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Elzbieta Czarniewska
- Department of Animal Physiology and Development,
Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development,
Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | | |
Collapse
|
39
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
40
|
Jankowska E, Błaszak M, Kowalik-Jankowska T. Copper(II) complexes of neurokinin A with point mutation (S5A) and products of copper-catalyzed oxidation; role of serine residue in peptides containing neurokinin A sequence. J Inorg Biochem 2013; 121:1-9. [DOI: 10.1016/j.jinorgbio.2012.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/20/2023]
|
41
|
Fragoso A, Delgado R, Iranzo O. Copper(II) coordination properties of decapeptides containing three His residues: the impact of cyclization and Asp residue coordination. Dalton Trans 2013; 42:6182-92. [PMID: 23529654 DOI: 10.1039/c3dt32384f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two decapeptides containing three His and two Pro-Gly β-turn inducer units (C-Asn, cyclic) and three His and a single Pro-Gly unit (O-Asn, open) have been synthesized. A detailed potentiometric study showed that while O-Asn binds up to 3 equiv. of Cu(2+) ions, C-Asn only coordinates two before precipitation occurred. Nonetheless, at a 1 : 1 Cu(2+)/peptide ratio both peptides form a major [CuHL](3+) species and spectroscopic studies (UV-Vis, CD and EPR) revealed a very similar copper(ii) complex where the metal ion is coordinated solely by the imidazole rings of the His residues adopting a square planar or square pyramidal geometry. The corrected stability constants of the protonated species (log K(CuH(O-Asn)) = 8.17 and log K(CuH(C-Asn)) = 9.11) indicate that the cyclic peptide binds Cu(2+) with higher affinity and this value represents the highest value reported so far for this type of coordination. Additionally, the calculated value of the effective stability constant, K(eff), showed that C-Asn has a higher affinity for Cu(2+) at all pH values not only at a 1 : 1 ratio but even at a 2 : 1 ratio. The replacement of the asparagine residue by an aspartic amino acid increases the Cu(2+) affinity of the aspartic counterparts, C-Asp and O-Asp, which at a 1 : 1 Cu(2+)/peptide ratio also form a major species, [CuHL](2+) in these cases, with Cu(2+) coordinated to the three histidine residues and one aspartic residue. These data show how cyclization and coordination to the aspartic residue increase the binding strength and preclude the coordination of the amide nitrogen up to higher pH values, stabilizing therefore, the species where Cu(2+) is solely coordinated by the side chain functionalities.
Collapse
Affiliation(s)
- Ana Fragoso
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
42
|
Di Natale G, Ősz K, Kállay C, Pappalardo G, Sanna D, Impellizzeri G, Sóvágó I, Rizzarelli E. Affinity, speciation, and molecular features of copper(II) complexes with a prion tetraoctarepeat domain in aqueous solution: insights into old and new results. Chemistry 2013; 19:3751-61. [PMID: 23355367 DOI: 10.1002/chem.201202912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/29/2012] [Indexed: 11/08/2022]
Abstract
Characterization of the copper(II) complexes formed with the tetraoctarepeat peptide at low and high metal-to-ligand ratios and in a large pH range, would provide a breakthrough in the interpretation of biological relevance of the different metal complexes of copper(II)-tetraoctarepeat system. In the present work, the potentiometric, UV/Vis, circular dichroism (CD), and electron paramagnetic resonance (EPR) studies were carried out on copper(II) complexes with a PEG-ylated derivative of the tetraoctarepeats peptide sequence (Ac-PEG27 -(PHGGGWGQ)4 -NH2 ) and the peptide Ac-(PHGGGWGQ)2 -NH2 . Conjugation of tetraoctarepeat peptide sequence with polyethyleneglycol improved the solubility of the copper(II) complexes. The results enable a straightforward explanation of the conflicting results originated from the underestimation of all metal-ligand equilibria and the ensuing speciation. A complete and reliable speciation is therefore obtained with the released affinity and binding details of the main complexes species formed in aqueous solution. The results contribute to clarify the discrepancies of several studies in which the authors ascribe the redox activity of copper(II)-tetraoctarepeat system considering only the average effects of several coexisting species with very different stoichiometries and binding modes.
Collapse
Affiliation(s)
- Giuseppe Di Natale
- CNR Institute of Biostructures and Bioimaging, V.le A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Grande-Aztatzi R, Rivillas-Acevedo L, Quintanar L, Vela A. Structural Models for Cu(II) Bound to the Fragment 92–96 of the Human Prion Protein. J Phys Chem B 2013; 117:789-99. [DOI: 10.1021/jp310000h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rafael Grande-Aztatzi
- Departamento de Química, Cinvestav, Av. IPN 2508,
San Pedro Zacatenco, México, D.F.,
07360, México
| | - Lina Rivillas-Acevedo
- Departamento de Química, Cinvestav, Av. IPN 2508,
San Pedro Zacatenco, México, D.F.,
07360, México
| | - Liliana Quintanar
- Departamento de Química, Cinvestav, Av. IPN 2508,
San Pedro Zacatenco, México, D.F.,
07360, México
| | - Alberto Vela
- Departamento de Química, Cinvestav, Av. IPN 2508,
San Pedro Zacatenco, México, D.F.,
07360, México
| |
Collapse
|
44
|
Fragoso A, Lamosa P, Delgado R, Iranzo O. Harnessing the flexibility of peptidic scaffolds to control their copper(II)-coordination properties: a potentiometric and spectroscopic study. Chemistry 2013; 19:2076-88. [PMID: 23293061 DOI: 10.1002/chem.201203545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Indexed: 02/02/2023]
Abstract
Designing small peptides that are capable of binding Cu(2+) ions mainly through the side-chain functionalities is a hard task because the amide nitrogen atoms strongly compete for Cu(2+) ion coordination. However, the design of such peptides is important for obtaining biomimetic small systems of metalloenyzmes as well as for the development of artificial systems. With this in mind, a cyclic decapeptide, C-Asp, which contained three His residues and one Asp residue, and its linear derivative, O-Asp, were synthesized. The C-Asp peptide has two Pro-Gly β-turn-inducer units and, as a result of cyclization, and as shown by CD spectroscopy, its backbone is constrained into a more defined conformation than O-Asp, which is linear and contains a single Pro-Gly unit. A detailed potentiometric, mass spectrometric, and spectroscopic study (UV/Vis, CD, and EPR spectroscopy) showed that at a 1:1 Cu(2+)/peptide ratio, both peptides formed a major [CuHL](2+) species in the pH range 5.0-7.5 (C-Asp) and 5.5-7.0 (O-Asp). The corrected stability constants of the protonated species (log K*(CuH(O-Asp))=9.28 and log K*(CuH(C-Asp))=10.79) indicate that the cyclic peptide binds Cu(2+) ions with higher affinity. In addition, the calculated value of K(eff) shows that this higher affinity for Cu(2+) ions prevails at all pH values, not only for a 1:1 ratio but even for a 2:1 ratio. The spectroscopic data of both [CuHL](2+) species are consistent with the exclusive coordination of Cu(2+) ions by the side-chain functionalities of the three His residues and the Asp residue in a square-planar or square-pyramidal geometry. Nonetheless, although these data show that, upon metal coordination, both peptides adopt a similar fold, the larger conformational constraints that are present in the cyclic scaffold results in different behaviour for both [CuHL](2+) species. CD and NMR analysis revealed the formation of a more rigid structure and a slower Cu(2+)-exchange rate for [CuH(C-Asp)](2+) compared to [CuH(O-Asp](2+). This detailed comparative study shows that cyclization has a remarkable effect on the Cu(2+)-coordination properties of the C-Asp peptide, which binds Cu(2+) ions with higher affinity at all pH values, stabilizes the [CuHL](2+) species in a wider pH range, and has a slower Cu(2+)-exchange rate compared to O-Asp.
Collapse
Affiliation(s)
- Ana Fragoso
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
45
|
Metal ions and amyloid fiber formation in neurodegenerative diseases. Copper, zinc and iron in Alzheimer's, Parkinson's and prion diseases. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.05.003] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Zawisza I, Rózga M, Bal W. Affinity of copper and zinc ions to proteins and peptides related to neurodegenerative conditions (Aβ, APP, α-synuclein, PrP). Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Sóvágó I, Kállay C, Várnagy K. Peptides as complexing agents: Factors influencing the structure and thermodynamic stability of peptide complexes. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.026] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Arena G, La Mendola D, Pappalardo G, Sóvágó I, Rizzarelli E. Interactions of Cu2+ with prion family peptide fragments: Considerations on affinity, speciation and coordination. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
49
|
Jószai V, Turi I, Kállay C, Pappalardo G, Di Natale G, Rizzarelli E, Sóvágó I. Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein. J Inorg Biochem 2012; 112:17-24. [DOI: 10.1016/j.jinorgbio.2012.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/16/2011] [Accepted: 02/20/2012] [Indexed: 12/23/2022]
|
50
|
Copper(II) complexation to 1-octarepeat peptide from a prion protein: insights from theoretical and experimental UV-visible studies. J Inorg Biochem 2012; 114:1-7. [PMID: 22687559 DOI: 10.1016/j.jinorgbio.2012.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 12/30/2022]
Abstract
The octarepeat domain in cellular prion protein (PrP(C)) has attracted much attention over the last 10 years because of its importance in the complexation of copper with PrP(C). The aim of this research was to study the UV-vis spectra of a peptide similar to the 1-repeat of the octarepeat region in PrP(C) using experimental and theoretical approaches and to gain insight into the complexation of the PrP(C) octarepeat domain with copper(II) ions in solution. We found that the copper atom was responsible for the peptide conformation, which allows for charge transfers between its two terminal residues.
Collapse
|