1
|
Xiao L, Spies JA, Sheehan CJ, Zeng Z, Gao Y, Gao T, Ehrlacher A, Zuerch MW, Brudvig GW, Mallouk TE. Electron Transfer Dynamics at Dye-Sensitized SnO 2/TiO 2 Core/Shell Electrodes in Aqueous/Nonaqueous Electrolyte Mixtures. J Am Chem Soc 2024; 146:18117-18127. [PMID: 38900942 DOI: 10.1021/jacs.4c05187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The dynamics of photoinduced electron transfer were measured at dye-sensitized photoanodes in aqueous (acetate buffer), nonaqueous (acetonitrile), and mixed solvent electrolytes by nanosecond transient absorption spectroscopy (TAS) and ultrafast optical-pump terahertz-probe spectroscopy (OPTP). Higher injection efficiencies were found in mixed solvent electrolytes for dye-sensitized SnO2/TiO2 core/shell electrodes, whereas the injection efficiency of dye-sensitized TiO2 electrodes decreased with the increasing acetonitrile concentration. The trend in injection efficiency for the TiO2 electrodes was consistent with the solvent-dependent trend in the semiconductor flat band potential. Photoinduced electron injection in core/shell electrodes has been understood as a two-step process involving ultrafast electron trapping in the TiO2 shell followed by slower electron transfer to the SnO2 core. The driving force for shell-to-core electron transfer increases as the flat band potential of TiO2 shifts negatively with increasing concentrations of acetonitrile. In acetonitrile-rich electrolytes, electron injection is suppressed due to the very negative flat band potential of the TiO2 shell. Interestingly, a net negative photoconductivity in the SnO2 core is observed in mixed solvent electrolytes by OPTP. We hypothesize that an electric field is formed across the TiO2 shell from the oxidized dye molecules after injection. Conduction band electrons in SnO2 are trapped at the core/shell interface by the electric field, resulting in a negative photoconductivity transient. The overall electron injection efficiency of the dye-sensitized SnO2/TiO2 core/shell photoanodes is optimized in mixed solvents. The ultrafast transient conductivity data illustrate the crucial role of the electrolyte in regulating the driving forces for electron injection and charge separation at dye-sensitized semiconductor interfaces.
Collapse
Affiliation(s)
- Langqiu Xiao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacob A Spies
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Colton J Sheehan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zichen Zeng
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yunhan Gao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Tianyue Gao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Annika Ehrlacher
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael W Zuerch
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Thomas E Mallouk
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
2
|
Tang K, Shao JY, Yan Y, Zhong YW. Photoelectrochemical Cells with a Pyridine-Anchored Bilayer Photoanode for Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6244-6252. [PMID: 38482812 DOI: 10.1021/acs.langmuir.3c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A dye-sensitized photoanode is prepared by coassembling a Ru complex photosensitizer and a Ru water oxidation catalyst (WOC) on a TiO2 substrate, in which the WOC molecules are immobilized in a layer-by-layer fashion through metal-pyridine coordination with the aid of a bifunctional anchoring and bridging molecule containing multiple pyridine groups. Under visible-light irradiation, an anodic photocurrent of around 200 μA/cm2 has been achieved with O2 and H2 being generated at the photoanode and Pt counter electrode, respectively. The pyridine anchoring strategy provides a simple method to prepare photoelectrodes for applications in photoelectrochemical cells.
Collapse
Affiliation(s)
- Kun Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190, China
| | - Yongli Yan
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Morozkov GV, Abel AS, Lyssenko KA, Roznyatovsky VA, Averin AD, Beletskaya IP, Bessmertnykh-Lemeune A. Ruthenium(II) complexes with phosphonate-substituted phenanthroline ligands as reusable photoredox catalysts. Dalton Trans 2024; 53:535-551. [PMID: 38053435 DOI: 10.1039/d3dt02936k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Ru(II) complexes with polypyridyl ligands (2,2'-bipyridine = bpy, 1,10-phenanthroline = phen) play a central role in the development of photocatalytic organic reactions. In this work, we synthesized four mixed-ligand [Ru(phen)(bpy)2]2+-type complexes (Ru-Pcat-A) bearing two phosphonate substituents P(O)(OH)(OR) (R = H, Et) attached to the phen core at positions 3,8 (Ru-3,8PH and Ru-3,8PHEt) and 4,7 (Ru-4,7PH and Ru-4,7PHEt) of the heterocycle in high yields (87-99%) and characterized them using spectral methods. Single crystal X-ray diffraction was employed to determine the coordination mode of the ditopic phen ligand in Ru-4,7PH. This complex exists as the neutral species and forms a 1D hydrogen-bonded framework in the crystals. The light absorption characteristics were found to be similar for all complexes prepared in this work. However, the emission maxima in aqueous solutions were significantly affected by the substitution of the heterocycle, ranging from 629 nm for Ru-4,7PH to 661 nm for Ru-3,8PHEt. The emission quantum yields in Ar-saturated deionized water showed a strong dependence on the substitution pattern of the phen ligand, with maximal values reaching approximately 0.11 for Ru-4,7PHEt and Ru-4,7PH, which is twice as high as that of the classical [Ru(bpy)3]2+ complex (Ru-bpy). The photocatalytic performance of Ru-Pcat-A was investigated using visible light photoredox catalytic transformations of tertiary amines. With Ru-Pcat-A, we achieved the phosphonylation of N-aryl-1,2,3,4-tetrahydroisoquinolines (THIQs) and cyanation of THIQs and N,N-dimethylaniline in methanol, while a mixture of nitromethane/methanol (1 : 1 v/v) proved to be the optimal solvent for conducting the nitromethylation of THIQs. In the majority of the studied reactions, Ru-4,7PHEt exhibited greater efficiency compared to Ru-bpy, and it could be easily separated from the products using water extraction and reused in the next catalytic cycle. We successfully performed seven consecutive nitromethylation and phosphonylation of N-phenyl-1,2,3,4-tetrahydroisoquinoline using the recycled homogeneous photoredox catalyst.
Collapse
Affiliation(s)
- Gleb V Morozkov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russian Federation.
| | - Anton S Abel
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russian Federation.
| | - Konstantin A Lyssenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russian Federation.
- National Research University Higher School of Economics, Miasnitskaya Str. 20, 101000, Moscow, Russian Federation.
| | - Vitaly A Roznyatovsky
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russian Federation.
| | - Alexei D Averin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russian Federation.
| | - Irina P Beletskaya
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow 119991, Russian Federation.
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Pr. 31, Moscow 119071, Russian Federation
| | - Alla Bessmertnykh-Lemeune
- ENS de Lyon, UMR 5182, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie, 69342 Lyon, France.
| |
Collapse
|
4
|
Robb AJ, Miles D, Salpage SR, Watson N, He Q, Wu Q, Hanson K. Role of Metal Ion-Linked Multilayer Thickness and Substrate Porosity in Surface Loading, Diffusion, and Solar Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38003-38011. [PMID: 32799530 DOI: 10.1021/acsami.0c07968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal ion-linked multilayers offer an easily prepared and modular architecture for controlling energy and electron transfer events on nanoparticle, metal oxide films. However, unlike with planar electrodes, the mesoporous nature of the films inherently limits both the thickness of the multilayer and subsequent diffusion through the pores. Here, we systematically investigated the role of TiO2 nanoparticle film porosity and metal ion-linked multilayer thickness in surface loading, through-pore diffusion, and overall device performance. The TiO2 porosity was controlled by varying TiO2 sintering times. Molecular multilayer thickness was controlled through assembling ZnII-linked bridging molecules (B = p-terphenyl diphosphonic acid) between the metal oxide and the Ru(bpy)2((4,4'-PO3H2)2bpy)]Cl2 dye (RuP), thus producing TiO2-(Bn)-RuP films. Using attenuated total reflectance infrared absorption and UV-vis spectroscopy, we observed that at least two molecular layers (i.e., TiO2-B2 or TiO2-B1-RuP) could be formed on all films but subsequent loading was dependent on the porosity of the TiO2. Rough estimates indicate that in a film with 34 nm average pore diameter, the maximum multilayer film thickness is on the order of 4.6-6 nm, which decreases with decreasing pore size. These films were then incorporated as the photoanodes in dye-sensitized solar cells with cobalt(II/III)tris(4,4'-di-tert-butyl-2,2'-bipyridine) as a redox mediator. In agreement with the surface-loading studies, electrochemical impedance spectroscopy measurements indicate that mediator diffusion is significantly hindered in films with thicker multilayers and less porous TiO2. Collectively, these results show that care must be taken to balance multilayer thickness, substrate porosity, and size of the mediator in designing and maximizing the performance of new multilayer energy and electron management architectures.
Collapse
Affiliation(s)
- Alex J Robb
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Dalton Miles
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Sahan R Salpage
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Noelle Watson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Qingquan He
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Qiang Wu
- Department of Electrical and Computer Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, Florida 32310, United States
| | - Kenneth Hanson
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
5
|
Coupling of Cu Catalyst and Phosphonated Ru Complex Light Absorber with TiO2 as Bridge to Achieve Superior Visible Light CO2 Photoreduction. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s12209-020-00264-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Zheng D, Zhang Y, Liu X, Wang J. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. PHOTOSYNTHESIS RESEARCH 2020; 143:221-231. [PMID: 31317382 DOI: 10.1007/s11120-019-00660-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Visible light-driven redox reactions have been widely adopted for the production of chemicals to combat energy shortage and global warming. Key elements of such a reaction system include a photosensitizer, a catalyst, and an electron source. In this review, we introduce the small molecules and nanoparticles that are widely used as photosensitizers, as well as the development of a photosensitizer protein that is based on the expansion of genetic code, with a fluorescent protein that is used as a scaffold. Visible light-driven enzymes using proteins as photosensitizers or as catalysts such as carbon monoxide dehydrogenase (CODH), formic acid dehydrogenase (FDH), hydrogenase, nitrogenase, cytochrome P450 BM3, and alkane synthase are then described. CODH can be coupled with photosensitizing nanoparticles to reduce CO2 to CO, and hydrogenase can produce H2 using high-energy electrons produced from dye-sensitized nanoparticles. When water-soluble zinc porphyrin is coupled with FDH, visible light drives CO2 to produce formic acid. Nitrogenase can reduce N2 to NH3 using CdS nanoparticle as photosensitizer. Cytochrome P450 BM3 can be enhanced by a visible light-driven redox system and thus by hydroxylate lauric acid or fatty acids. CvFAP, an alkane synthase, can decarboxylate palmitic acid to pentadecane under blue light excitation. Moreover, we describe a genetically encoded photosensitive protein, which mimics the function of natural photosynthesis and catalyzes the conversion of CO2 to CO when covalently attached with a Ni-terpyridine complex.
Collapse
Affiliation(s)
- Dandan Zheng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Ying Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaohong Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Stikane A, Hwang ET, Ainsworth E, Piper SEH, Critchley K, Butt JN, Reisner E, Jeuken LJC. Towards compartmentalized photocatalysis: multihaem proteins as transmembrane molecular electron conduits. Faraday Discuss 2019; 215:26-38. [DOI: 10.1039/c8fd00163d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We show a proof-of-concept for using MtrCAB as a lipid membrane-spanning building block for compartmentalised photocatalysis that mimics photosynthesis.
Collapse
Affiliation(s)
- Anna Stikane
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| | - Ee Taek Hwang
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| | - Emma V. Ainsworth
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Samuel E. H. Piper
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Kevin Critchley
- The Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds
- UK
- School of Physics and Astronomy
| | - Julea N. Butt
- Centre for Molecular and Structural Biochemistry
- School of Chemistry and School of Biological Sciences
- University of East Anglia
- Norwich
- UK
| | - Erwin Reisner
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Lars J. C. Jeuken
- School of Biomedical Sciences
- University of Leeds
- Leeds
- UK
- The Astbury Centre for Structural Molecular Biology
| |
Collapse
|
8
|
Hwang ET, Orchard KL, Hojo D, Beton J, Lockwood CWJ, Adschiri T, Butt JN, Reisner E, Jeuken LJC. Exploring Step-by-Step Assembly of Nanoparticle:Cytochrome Biohybrid Photoanodes. ChemElectroChem 2017; 4:1959-1968. [PMID: 28920010 PMCID: PMC5573906 DOI: 10.1002/celc.201700030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Indexed: 11/07/2022]
Abstract
Coupling light-harvesting semiconducting nanoparticles (NPs) with redox enzymes has been shown to create artificial photosynthetic systems that hold promise for the synthesis of solar fuels. High quantum yields require efficient electron transfer from the nanoparticle to the redox protein, a property that can be difficult to control. Here, we have compared binding and electron transfer between dye-sensitized TiO2 nanocrystals or CdS quantum dots and two decaheme cytochromes on photoanodes. The effect of NP surface chemistry was assessed by preparing NPs capped with amine or carboxylic acid functionalities. For the TiO2 nanocrystals, binding to the cytochromes was optimal when capped with a carboxylic acid ligand, whereas for the CdS QDs, better adhesion was observed for amine capped ligand shells. When using TiO2 nanocrystals, dye-sensitized with a phosphonated bipyridine Ru(II) dye, photocurrents are observed that are dependent on the redox state of the decaheme, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the decaheme conduit. In contrast, when CdS NPs are used, photocurrents are not dependent on the redox state of the decaheme, consistent with a model in which electron transfer from CdS to the photoanode bypasses the decaheme protein. These results illustrate that although the organic shell of NPs nanoparticles crucially affects coupling with proteinaceous material, the coupling can be difficult to predict or engineer.
Collapse
Affiliation(s)
- Ee Taek Hwang
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| | - Katherine L. Orchard
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWU.K.
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Daisuke Hojo
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Joseph Beton
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| | - Colin W. J. Lockwood
- Centre for Molecular and Structural BiochemistrySchool of Chemistry, and School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Tadafumi Adschiri
- Advanced Institute for Materials ResearchTohoku University2-1-1 Katahira Aoba-ku SendaiMiyagi980-8577Japan
| | - Julea N. Butt
- Centre for Molecular and Structural BiochemistrySchool of Chemistry, and School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUnited Kingdom
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWU.K.
| | - Lars J. C. Jeuken
- School of Biomedical Sciences, and The Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTU.K
| |
Collapse
|
9
|
Gish MK, Lapides AM, Brennaman MK, Templeton JL, Meyer TJ, Papanikolas JM. Ultrafast Recombination Dynamics in Dye-Sensitized SnO 2/TiO 2 Core/Shell Films. J Phys Chem Lett 2016; 7:5297-5301. [PMID: 27973875 DOI: 10.1021/acs.jpclett.6b02388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interfacial dynamics are investigated in SnO2/TiO2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([RuII(bpy)2(4,4'-(PO3H2)2bpy)]2+, RuP) using transient absorption methods. Electron injection from the chromophore into the TiO2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived charge-separated states (CSS) depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO2 core and must tunnel through the TiO2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of dye-sensitized photoelectrosynthesis cells (DSPECs).
Collapse
Affiliation(s)
- Melissa K Gish
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Alexander M Lapides
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - M Kyle Brennaman
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Joseph L Templeton
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - John M Papanikolas
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
10
|
Pashaei B, Shahroosvand H, Graetzel M, Nazeeruddin MK. Influence of Ancillary Ligands in Dye-Sensitized Solar Cells. Chem Rev 2016; 116:9485-564. [PMID: 27479482 DOI: 10.1021/acs.chemrev.5b00621] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dye-sensitized solar cells (DSSCs) have motivated many researchers to develop various sensitizers with tailored properties involving anchoring and ancillary ligands. Ancillary ligands carry favorable light-harvesting abilities and are therefore crucial in determining the overall power conversion efficiencies. The use of ancillary ligands having aliphatic chains and/or π-extended aromatic units decreases charge recombination and permits the collection of a large fraction of sunlight. This review aims to provide insight into the relationship between ancillary ligand structure and DSSC properties, which can further guide the function-oriented design and synthesis of different sensitizers for DSSCs. This review outlines how the new and rapidly expanding class of chelating ancillary ligands bearing 2,2'-bipyridyl, 1,10-phenanthroline, carbene, dipyridylamine, pyridyl-benzimidazole, pyridyl-azolate, and other aromatic ligands provides a conduit for potentially enhancing the performance and stability of DSSCs. Finally, these classes of Ru polypyridyl complexes have gained increasing interest for feasible large-scale commercialization of DSSCs due to their more favorable light-harvesting abilities and long-term thermal and chemical stabilities compared with other conventional sensitizers. Therefore, the main idea is to inspire readers to explore new avenues in the design of new sensitizers for DSSCs based on different ancillary ligands.
Collapse
Affiliation(s)
- Babak Pashaei
- Chemistry Department, University of Zanjan , Zanjan, Iran
| | | | - Michael Graetzel
- Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne , CH-1951 Sion, Switzerland
| |
Collapse
|
11
|
Ashford DL, Gish MK, Vannucci AK, Brennaman MK, Templeton JL, Papanikolas JM, Meyer TJ. Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chem Rev 2015; 115:13006-49. [DOI: 10.1021/acs.chemrev.5b00229] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Dennis L. Ashford
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Melissa K. Gish
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Aaron K. Vannucci
- Department
of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - M. Kyle Brennaman
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Joseph L. Templeton
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - John M. Papanikolas
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Akimov AV, Asahi R, Jinnouchi R, Prezhdo OV. What Makes the Photocatalytic CO2 Reduction on N-Doped Ta2O5 Efficient: Insights from Nonadiabatic Molecular Dynamics. J Am Chem Soc 2015; 137:11517-25. [DOI: 10.1021/jacs.5b07454] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexey V. Akimov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Ryoji Asahi
- Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-shi, Aichi 480-1192, Japan
| | - Ryosuke Jinnouchi
- Toyota Central Research and Development Laboratories, Inc., 41-1 Yokomichi, Nagakute-shi, Aichi 480-1192, Japan
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
13
|
Hwang ET, Sheikh K, Orchard KL, Hojo D, Radu V, Lee CY, Ainsworth E, Lockwood C, Gross MA, Adschiri T, Reisner E, Butt JN, Jeuken LJC. A Decaheme Cytochrome as a Molecular Electron Conduit in Dye-Sensitized Photoanodes. ADVANCED FUNCTIONAL MATERIALS 2015; 25:2308-2315. [PMID: 26180522 PMCID: PMC4493899 DOI: 10.1002/adfm.201404541] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/05/2015] [Indexed: 06/04/2023]
Abstract
In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems.
Collapse
Affiliation(s)
- Ee Taek Hwang
- School of Biomedical Sciences, University of Leeds Leeds, LS2 9JT, UK E-mail: ; The Astbury Centre for Structural Molecular Biology, University of Leeds Leeds, LS2 9JT, UK
| | - Khizar Sheikh
- School of Biomedical Sciences, University of Leeds Leeds, LS2 9JT, UK E-mail: ; The Astbury Centre for Structural Molecular Biology, University of Leeds Leeds, LS2 9JT, UK
| | - Katherine L Orchard
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail: ; Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira Aoba-ku Sendai, Miyagi, 980-8577, Japan E-mail:
| | - Daisuke Hojo
- Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira Aoba-ku Sendai, Miyagi, 980-8577, Japan E-mail:
| | - Valentin Radu
- School of Biomedical Sciences, University of Leeds Leeds, LS2 9JT, UK E-mail: ; The Astbury Centre for Structural Molecular Biology, University of Leeds Leeds, LS2 9JT, UK
| | - Chong-Yong Lee
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Emma Ainsworth
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK E-mail:
| | - Colin Lockwood
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK E-mail:
| | - Manuela A Gross
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Tadafumi Adschiri
- Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira Aoba-ku Sendai, Miyagi, 980-8577, Japan E-mail:
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge, CB2 1EW, UK E-mail:
| | - Julea N Butt
- Centre for Molecular and Structural Biochemistry, School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park, Norwich, NR4 7TJ, UK E-mail:
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds Leeds, LS2 9JT, UK E-mail: ; The Astbury Centre for Structural Molecular Biology, University of Leeds Leeds, LS2 9JT, UK
| |
Collapse
|
14
|
Son HJ, Kim CH, Kim DW, Jeong NC, Prasittichai C, Luo L, Wu J, Farha OK, Wasielewski MR, Hupp JT. Post-assembly atomic layer deposition of ultrathin metal-oxide coatings enhances the performance of an organic dye-sensitized solar cell by suppressing dye aggregation. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5150-5159. [PMID: 25695408 DOI: 10.1021/am507405b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dye aggregation and concomitant reduction of dye excited-state lifetimes and electron-injection yields constitute a significant mechanism for diminution of light-to-electrical energy conversion efficiencies in many dye-sensitized solar cells (DSCs). For TiO2-based DSCs prepared with an archetypal donor-acceptor organic dye, (E)-2-cyano-3-(5'-(5''-(p-(diphenylamino)phenyl)-thiophen-2''-yl)thiophen-2'-yl)acrylic acid (OrgD), we find, in part via ultrafast spectroscopy measurements, that postdye-adsorption atomic layer deposition (ALD) of ultrathin layers of either TiO2 or Al2O3 effectively reverses residual aggregation. Notably, the ALD treatment is significantly more effective than the widely used aggregation-inhibiting coadsorbent, chenodeoxycholic acid. Primarily because of reversal of OrgD aggregation, and resulting improved injection yields, ALD post-treatment engenders a 30+% increase in overall energy conversion efficiency. A secondary contributor to increased currents and efficiencies is an ALD-induced attenuation of the rate of interception of injected electrons, resulting in slightly more efficient charge collection.
Collapse
Affiliation(s)
- Ho-Jin Son
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kajikawa A, Togashi T, Orikasa Y, Cui BB, Zhong YW, Sakamoto M, Kurihara M, Kanaizuka K. Construction of hybrid films of silver nanoparticles and polypyridine ruthenium complexes on substrates. Dalton Trans 2015; 44:15244-9. [DOI: 10.1039/c5dt00563a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two types of hybrid films of AgNPs and ruthenium complexes are constructed via chemical bond formation and electroreductive polymerization.
Collapse
Affiliation(s)
- Azusa Kajikawa
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Takanari Togashi
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Yuka Orikasa
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Bin-Bin Cui
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Masatomi Sakamoto
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Masato Kurihara
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| | - Katsuhiko Kanaizuka
- Department of Material and Biological Chemistry
- Faculty of Science
- Yamagata University
- Yamagata 990-8560
- Japan
| |
Collapse
|
16
|
Pallavicini P, Dacarro G, Diaz-Fernandez YA, Taglietti A. Coordination chemistry of surface-grafted ligands for antibacterial materials. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Stalder R, Xie D, Islam A, Han L, Reynolds JR, Schanze KS. Panchromatic donor-acceptor-donor conjugated oligomers for dye-sensitized solar cell applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8715-22. [PMID: 24807377 DOI: 10.1021/am501515s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report on a sexithienyl and two donor-acceptor-donor oligothiophenes, employing benzothiadiazole and isoindigo as electron-acceptors, each functionalized with a phosphonic acid group for anchoring onto TiO2 substrates as light-harvesting molecules for dye sensitized solar cells (DSSCs). These dyes absorb light to wavelengths as long as 700 nm, as their optical HOMO/LUMO energy gaps are reduced from 2.40 to 1.77 eV with increasing acceptor strength. The oligomers were adsorbed onto mesoporous TiO2 films on fluorine doped tin oxide (FTO)/glass substrates and incorporated into DSSCs, which show AM1.5 power conversion efficiencies (PCEs) ranging between 2.6% and 6.4%. This work demonstrates that the donor-acceptor-donor (D-A-D) molecular structures coupled to phosphonic acid anchoring groups, which have not been used in DSSCs, can lead to high PCEs.
Collapse
Affiliation(s)
- Romain Stalder
- Department of Chemistry, Center for Macromolecular Science and Engineering, University of Florida , Gainesville, Florida 32611, United States
| | | | | | | | | | | |
Collapse
|
18
|
Murakami TN, Yoshida E, Koumura N. Carbazole dye with phosphonic acid anchoring groups for long-term heat stability of dye-sensitized solar cells. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Norris MR, Concepcion JJ, Glasson CRK, Fang Z, Lapides AM, Ashford DL, Templeton JL, Meyer TJ. Synthesis of Phosphonic Acid Derivatized Bipyridine Ligands and Their Ruthenium Complexes. Inorg Chem 2013; 52:12492-501. [DOI: 10.1021/ic4014976] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael R. Norris
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Javier J. Concepcion
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Christopher R. K. Glasson
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Zhen Fang
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Alexander M. Lapides
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Dennis L. Ashford
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Joseph L. Templeton
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Son HJ, Prasittichai C, Mondloch JE, Luo L, Wu J, Kim DW, Farha OK, Hupp JT. Dye Stabilization and Enhanced Photoelectrode Wettability in Water-Based Dye-Sensitized Solar Cells through Post-assembly Atomic Layer Deposition of TiO2. J Am Chem Soc 2013; 135:11529-32. [DOI: 10.1021/ja406538a] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ho-Jin Son
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208,
United States
| | - Chaiya Prasittichai
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208,
United States
| | - Joseph E. Mondloch
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208,
United States
| | - Langli Luo
- Department
of Materials Science
and Engineering, NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Jinsong Wu
- Department
of Materials Science
and Engineering, NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Dong Wook Kim
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208,
United States
| | - Omar K. Farha
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208,
United States
| | - Joseph T. Hupp
- Department of Chemistry and
Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208,
United States
- Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois
60439, United States
| |
Collapse
|
21
|
Zhao Z, Liu H, Chen S. Charge transport at the metal oxide and organic interface. NANOSCALE 2012; 4:7301-7308. [PMID: 23085686 DOI: 10.1039/c2nr32216a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This review focuses on electron transfer at the interfaces between metal oxides and dye molecules within the context of the chemical nature of the anchoring functional groups, the structure of the dye molecules and the morphology of the metal oxides. In dye-sensitized metal oxides, the efficiency of interfacial charge separation and hence photon-to-current conversion may be sensitively manipulated by the interfacial bonding interactions whereby the dye molecules are adsorbed onto the oxide surface, as well as by the oxide surface morphologies. In these studies, it has been found that upon photoirradiation, the electron injection from the excited dye molecules into the conduction band of metal oxides and electron transport in the metal oxide are two of the most important steps. Therefore, a fundamental understanding of how the interfacial electron transfer dynamics is impacted by these structural parameters is critical for the design and optimization of dye-sensitized photocatalysis and photovoltaics.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 S. Shanda Road, Jinan 250100, China
| | | | | |
Collapse
|
22
|
Lakadamyali F, Reynal A, Kato M, Durrant JR, Reisner E. Electron Transfer in Dye-Sensitised Semiconductors Modified with Molecular Cobalt Catalysts: Photoreduction of Aqueous Protons. Chemistry 2012; 18:15464-75. [DOI: 10.1002/chem.201202149] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Indexed: 11/11/2022]
|
23
|
Mulhern KR, Orchard A, Watson DF, Detty MR. Influence of surface-attachment functionality on the aggregation, persistence, and electron-transfer reactivity of chalcogenorhodamine dyes on TiO2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7071-7082. [PMID: 22475038 DOI: 10.1021/la300668k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chalcogenorhodamine dyes bearing phosphonic acids and carboxylic acids were compared as sensitizers of nanocrystalline TiO(2) in dye-sensitized solar cells (DSSCs). The dyes were constructed around a 3,6-bis(dimethylamino)chalcogenoxanthylium core and varied in the 9 substituent: 5-carboxythien-2-yl in dyes 1-E (E = O, Se), 4-carboxyphenyl in dyes 2-E (E = O, S), 5-phosphonothien-2-yl in dyes 3-E (E = O, Se), and 4-phosphonophenyl in dyes 4-E (E = O, Se). All dyes adsorbed to TiO(2) as mixtures of H aggregates and monomers, which exhibited broadened absorption spectra relative to those of purely amorphous monolayers. Surface coverages of dyes and the extent of H aggregation varied minimally with the surface-attachment functionality, the structure of the 9-aryl group, and the identity of the chalcogen heteroatom. Carboxylic acid-functionalized dyes 1-E and 2-E desorbed rapidly and completely from TiO(2) into acidified CH(3)CN, but phosphonic acid-functionalized dyes 3-E and 4-E persisted on TiO(2) for days. Short-circuit photocurrent action spectra of DSSCs corresponded closely to the absorptance spectra of dye-functionalized films; thus, H aggregation did not decrease the electron-injection yield or charge-collection efficiency. Maximum monochromatic incident photon-to-current efficiencies (IPCEs) of DSSCs ranged from 53 to 95% and were slightly higher for carboxylic acid-functionalized dyes 1-E and 2-E. Power-conversion efficiencies of DSSCs under white-light illumination were low (<1%), suggesting that dye regeneration was inefficient at high light intensities. The photoelectrochemical performance (under monochromatic or white-light illumination) of 1-E and 2-E decayed significantly within 20-80 min of the assembly of DSSCs, primarily because of the desorption of the dyes. In contrast, the performance of phosphonic acid-functionalized dyes remained stable or improved slightly on similar timescales. Thus, replacing carboxylic acids with phosphonic acids increased the inertness of chalcogenorhodamine-TiO(2) interfaces without greatly impacting the aggregation of dyes or the interfacial electron-transfer reactivity.
Collapse
Affiliation(s)
- Kacie R Mulhern
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | | | | | | |
Collapse
|
24
|
Queffélec C, Petit M, Janvier P, Knight DA, Bujoli B. Surface modification using phosphonic acids and esters. Chem Rev 2012; 112:3777-807. [PMID: 22530923 DOI: 10.1021/cr2004212] [Citation(s) in RCA: 557] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Clémence Queffélec
- LUNAM Université, CNRS, UMR, Chimie Et Interdisciplinarité: Synthèse Analyse Modélisation, UFR Sciences et Techniques, Nantes, France
| | | | | | | | | |
Collapse
|
25
|
Singh SK, Chauhan R, Singh B, Diwan K, Kociok-Köhn G, Bahadur L, Singh N. Enhanced light harvesting efficiencies of bis(ferrocenylmethyl)-based sulfur rich sensitizers used in dye sensitized TiO2solar cells. Dalton Trans 2012; 41:1373-80. [DOI: 10.1039/c1dt11576f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Lakadamyali F, Kato M, Reisner E. Colloidal metal oxide particles loaded with synthetic catalysts for solar H2production. Faraday Discuss 2012; 155:191-205; discussion 207-22. [DOI: 10.1039/c1fd00077b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Reisner E, Armstrong FA. A TiO₂ nanoparticle system for sacrificial solar H₂ production prepared by rational combination of a hydrogenase with a ruthenium photosensitizer. Methods Mol Biol 2011; 743:107-117. [PMID: 21553186 DOI: 10.1007/978-1-61779-132-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A hybrid system comprising a hydrogenase and a photosensitizer co-attached to a nanoparticle serves as a rational model for fast dihydrogen (H(2)) production using visible light. This chapter describes a stepwise procedure for preparing TiO(2) nanoparticles functionalized with a hydrogenase from Desulfomicrobium baculatum (Db [NiFeSe]-H) and a tris(bipyridyl)ruthenium photosensitizer (RuP). Upon irradiation with visible light, these particles produce H(2) from neutral water at room temperature in the presence of a sacrificial electron donor - a test-system for the cathodic half reaction of water splitting. In particular, we describe how a hydrogenase and a photosensitizer with desired properties, including strong adsorption on TiO(2), can be selected by electrochemical methods. The catalyst Db [NiFeSe]-H is selected for its high H(2) production activity even when H(2) and traces of O(2) are present. Adsorption of Db [NiFeSe]-H and RuP on TiO(2) electrodes results in high electrochemical and photocatalytic activities that translate into nanoparticles exhibiting efficient light harvesting, charge separation, and sacrificial H(2) generation.
Collapse
Affiliation(s)
- Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
28
|
Spampinato V, Tuccitto N, Quici S, Calabrese V, Marletta G, Torrisi A, Licciardello A. Functionalization of oxide surfaces by terpyridine phosphonate ligands: surface reactions and anchoring geometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:8400-8406. [PMID: 20349973 DOI: 10.1021/la9048314] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A strategy for creating a general-purposes surface functionalization platform is reported, based on direct attachment of phosphate groups onto hydroxylated surfaces and subsequent formation of a terpyridine-based monolayer. Such a platform is suitable for the construction, onto technologically relevant oxide surfaces, of single- and multilayer structures of interest in technological applications. In particular, the paper describes the successful attachment of 4-(2,2':6',2''-terpyridine-4-yl)benzenephosphonic acid (1, PPTP) onto a SiO(2) surface previously functionalized by means of Zr-phosphate groups. Two alternative anchoring strategies of the PPTP were explored: (i) a direct one-step way, implying no protection of terpyridinic functionality, and (ii) a three-step way, implying protection and successive deprotection of this group. It was found that, in the first case, the PPTP ligand anchoring to the Zr-containing phosphate layer takes place by means of terpyridinic group. At variance of this, in the second case, due to the protection of the terpyridinic functionality, the anchoring process takes place through the phosphonic group, making the terpyridinic moiety available for further reactions, i.e., multilayer constructs. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used to study the functionalized surfaces, providing information on coverage, chemical structure, and stoichiometry of the various functionalized layers and, among the others, clear evidence of the PPTP linkage and orientation.
Collapse
Affiliation(s)
- Valentina Spampinato
- Laboratorio di Superfici Molecolari e Nanotecnologie, Dipartimento di Scienze Chimiche Università degli Studi di Catania, viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Reisner E, Powell DJ, Cavazza C, Fontecilla-Camps JC, Armstrong FA. Visible Light-Driven H2 Production by Hydrogenases Attached to Dye-Sensitized TiO2 Nanoparticles. J Am Chem Soc 2009; 131:18457-66. [DOI: 10.1021/ja907923r] [Citation(s) in RCA: 362] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Erwin Reisner
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom, and Laboratoire de Crystallographie et Crystallogènese des Protéines, Institut de Biologie Structurale, J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue J. Horrowitz, 38027 Grenoble Cedex 1, France
| | - Daniel J. Powell
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom, and Laboratoire de Crystallographie et Crystallogènese des Protéines, Institut de Biologie Structurale, J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue J. Horrowitz, 38027 Grenoble Cedex 1, France
| | - Christine Cavazza
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom, and Laboratoire de Crystallographie et Crystallogènese des Protéines, Institut de Biologie Structurale, J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue J. Horrowitz, 38027 Grenoble Cedex 1, France
| | - Juan C. Fontecilla-Camps
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom, and Laboratoire de Crystallographie et Crystallogènese des Protéines, Institut de Biologie Structurale, J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue J. Horrowitz, 38027 Grenoble Cedex 1, France
| | - Fraser A. Armstrong
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, United Kingdom, and Laboratoire de Crystallographie et Crystallogènese des Protéines, Institut de Biologie Structurale, J.P. Ebel, CEA, CNRS, Université Joseph Fourier, 41, rue J. Horrowitz, 38027 Grenoble Cedex 1, France
| |
Collapse
|
30
|
|
31
|
Reisner E, Fontecilla-Camps JC, Armstrong FA. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2production. Chem Commun (Camb) 2009:550-2. [DOI: 10.1039/b817371k] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Terada K, Kobayashi K, Haga MA. Synthesis, electrochemical, and molecular inclusion properties of ‘canopied’ trinuclear ruthenium complexes with six anchoring groups on an ITO electrode. Dalton Trans 2008:4846-54. [DOI: 10.1039/b807526c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Hornstein BJ, Dattelbaum DM, Schoonover JR, Meyer TJ. Reactivity of an Adsorbed Ru(VI)−Oxo Complex: Oxidation of Benzyl Alcohol. Inorg Chem 2007; 46:8139-45. [PMID: 17718559 DOI: 10.1021/ic0700506] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phosphonated ruthenium complex, [Ru(tpy-PO(3)H(2))(OH(2))(3)](2+) (1) (tpy-PO(3)H(2) = 4'-phosphonato-2,2':6',2' '-terpyridine), was synthesized and attached to glass|ITO or glass|ITO|TiO(2) electrodes. After attachment to the metal oxide surface through the phosphonate linkage, 1 can be oxidized (either chemically or electrochemically) to the reactive Ru(VI)-dioxo complex, glass|ITO|[((HO)(2)OP)tpy)RuVI(O)(2)(OH(2))](2+), which remains attached to the surface. The attached Ru(VI) complex reacts with benzyl alcohol through mechanisms similar to those proposed for the solution analog. More specifically, Ru(VI) is reduced in a stepwise fashion to Ru(IV) and then finally to Ru(II). The reduction of Ru(VI) is accompanied by a rate-limiting insertion to the C-H bond of benzyl alcohol, followed by solvolysis of the aldehyde hydrate. In addition, the surface-bound Ru(VI) acts as an electrooxidation catalyst which carries out approximately 130 (2e(-)) turnovers before deactivation.
Collapse
|
34
|
Park H, Bae E, Lee JJ, Park J, Choi W. Effect of the anchoring group in Ru-bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO2 electrodes: carboxylate versus phosphonate linkages. J Phys Chem B 2007; 110:8740-9. [PMID: 16640430 DOI: 10.1021/jp060397e] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of the number of anchoring groups (carboxylate vs phosphonate) in Ru-bipyridyl complexes on their binding to TiO(2) surface and the photoelectrochemical performance of the sensitized TiO(2) electrodes were systematically investigated. Six derivatives of Ru-bipyridyl complexes having di-, tetra-, or hexacarboxylate (C2, C4, and C6) and di-, tetra-, or hexaphosphonate (P2, P4, and P6) as the anchoring group were synthesized. The properties and efficiencies of C- and P-complexes as a sensitizer depended on the number of anchoring groups in very different ways. Although C4 exhibited the lowest visible light absorption, C4-TiO(2) electrode showed the best cell performance and stability among C-TiO(2) electrodes. However, P6, which has the highest visible light absorption, was more efficient than P2 and P4 as a sensitizer of TiO(2). The surface binding (strength and stability) of C-complexes on TiO(2) is highly influenced by the number of carboxylate groups and is the most decisive factor in controlling the sensitization efficiency. A phosphonate anchor, however, can provide a stronger chemical linkage to TiO(2) surface, and the overall sensitization performance was less influenced by the adsorption capability of P-complexes. The apparent effect of the anchoring group number on the P-complex sensitization seems to be mainly related with the visible light absorption efficiency of each P-complex.
Collapse
Affiliation(s)
- Hyunwoong Park
- School of Environmental Science and Engineering and Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | | | | | | | |
Collapse
|
35
|
Kanaizuka K, Kato S, Moriyama H, Pac C. Photophysical and electrochemical behavior of thin solid films based on a three-dimensional ruthenium complex network. RESEARCH ON CHEMICAL INTERMEDIATES 2007. [DOI: 10.1163/156856707779160780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Kanaizuka K, Kato S, Moriyama H, Pac C. Electron Transfer in Tris(bipyridine)ruthenium(II) Complex Films on ITO. CHEM LETT 2007. [DOI: 10.1246/cl.2007.178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Nazeeruddin MK, Grätzel M. Transition Metal Complexes for Photovoltaic and Light Emitting Applications. PHOTOFUNCTIONAL TRANSITION METAL COMPLEXES 2007. [DOI: 10.1007/430_2007_056] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
38
|
Bae E, Choi W. Effect of the Anchoring Group (Carboxylate vs Phosphonate) in Ru-Complex-Sensitized TiO2on Hydrogen Production under Visible Light. J Phys Chem B 2006; 110:14792-9. [PMID: 16869588 DOI: 10.1021/jp062540+] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We synthesized six Ru-bipyridyl complexes having di-, tetra-, and hexacarboxylate (C2, C4, and C6) and di-, tetra-, and hexaphosphonate (P2, P4, and P6) as the anchoring group, prepared six different sensitized TiO2 samples by using them, and then systematically tested their visible light reactivity for hydrogen production in aqueous suspension (with EDTA as an electron donor) under lambda > 420 nm illumination. The properties and efficiencies of C- and P-complexes as a sensitizer depended on the number and kind of anchoring groups in very different ways. The adsorption of P-complexes on TiO2 is strong enough not to be hampered by the presence of competing adsorbates (EDTA), whereas that of C-complexes is significantly inhibited. As a result, P-TiO2 exhibited much higher activity for the hydrogen production than C-TiO2, although the visible light absorbing capabilities are comparable among C- and P-complexes. Among the six sensitizers, P2 was the most active one for the H2 production. The hydrogen production activities of C-TiO2 and P-TiO2 depended on the concentration of sensitizers and electron donors in different ways as well. How the sensitizing activity for hydrogen production is influenced by the anchoring group and the experimental conditions was investigated and discussed in detail. It is also notable that the effects of the anchoring group on the sensitized production of hydrogen were drastically different from those on the dye-sensitized solar cell we recently reported for the same set of six sensitizers.
Collapse
Affiliation(s)
- Eunyoung Bae
- School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
| | | |
Collapse
|
39
|
Gallagher LA, Serron SA, Wen X, Hornstein BJ, Dattelbaum DM, Schoonover JR, Meyer TJ. Photoelectrochemistry on RuII-2,2‘-bipyridine-phosphonate-Derivatized TiO2 with the I3-/I- and Quinone/Hydroquinone Relays. Design of Photoelectrochemical Synthesis Cells. Inorg Chem 2005; 44:2089-97. [PMID: 15762737 DOI: 10.1021/ic0400991] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photocurrent measurements have been made on nanocrystalline TiO2 surfaces derivatized by adsorption of a catalyst precursor, [Ru(tpy)(bpy(PO3H2)2)(OH2)]2+, or chromophore, [Ru(bpy)2 (bpy(PO3H2)2)]2+ (tpy is 2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, and bpy(PO3H2)2 is 2,2'-bipyridyl-4,4'-diphosphonic acid), and on surfaces containing both complexes. This is an extension of earlier work on an adsorbed assembly containing both catalyst and chromophore. The experiments were carried out with the I3-/I- or quinone/hydroquinone (Q/H2Q) relays in propylene carbonate, propylene carbonate-water mixtures, and acetonitrile-water mixtures. Electrochemical measurements show that oxidation of surface-bound Ru(III)-OH2(3+) to Ru(IV)=O(2+) is catalyzed by the bpy complex. Addition of aqueous 0.1 M HClO4 greatly decreases photocurrent efficiencies for adsorbed [Ru(tpy)(bpy(PO3H2)2)(OH2)]2+ with the I3-/I- relay, but efficiencies are enhanced for the Q/H2Q relay in both propylene carbonate-HClO4 and acetonitrile-HClO4 mixtures. The dependence of the incident photon-to-current efficiency (IPCE) on added H2Q in 95% propylene carbonate and 5% 0.1 M HClO4 is complex and can be interpreted as changing from rate-limiting diffusion to the film at low H2Q to rate-limiting diffusion within the film at high H2Q. There is no evidence for photoelectrochemical cooperativity on mixed surfaces containing both complexes with the IPCE response reflecting the relative surface compositions of the two complexes. These results provide insight into the possible design of photoelectrochemical synthesis cells for the oxidation of organic substrates.
Collapse
Affiliation(s)
- Laurie A Gallagher
- Department of Chemistry, The University of North Carolina at Chapel Hill, CB #3290, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Mutin PH, Guerrero G, Vioux A. Hybrid materials from organophosphorus coupling molecules. ACTA ACUST UNITED AC 2005. [DOI: 10.1039/b505422b] [Citation(s) in RCA: 332] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Sugimoto H, Tsukube H, Tanaka K. Immobilization of a High-Valent Rhenium Complex on an Indium-Doped Tin-Oxide Electrode: Enhanced Catalytic Activity of atrans-Dioxorhenium(V) Complex in Electrochemical Oxidation of Alcohols. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200400546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Wang P, Klein C, Moser JE, Humphry-Baker R, Cevey-Ha NL, Charvet R, Comte P, Zakeeruddin SM, Grätzel M. Amphiphilic Ruthenium Sensitizer with 4,4‘-Diphosphonic Acid-2,2‘-bipyridine as Anchoring Ligand for Nanocrystalline Dye Sensitized Solar Cells. J Phys Chem B 2004. [DOI: 10.1021/jp046932x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Wang
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Cédric Klein
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Jacques-E. Moser
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Robin Humphry-Baker
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Ngoc-Le Cevey-Ha
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Raphael Charvet
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Pascal Comte
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Shaik M. Zakeeruddin
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory for Photonics and Interfaces, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Bae E, Choi W, Park J, Shin HS, Kim SB, Lee JS. Effects of Surface Anchoring Groups (Carboxylate vs Phosphonate) in Ruthenium-Complex-Sensitized TiO2 on Visible Light Reactivity in Aqueous Suspensions. J Phys Chem B 2004. [DOI: 10.1021/jp047777p] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eunyoung Bae
- School of Environmental Science and Engineering, Department of Chemistry, and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Wonyong Choi
- School of Environmental Science and Engineering, Department of Chemistry, and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jaiwook Park
- School of Environmental Science and Engineering, Department of Chemistry, and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Hyeon Suk Shin
- School of Environmental Science and Engineering, Department of Chemistry, and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seung Bin Kim
- School of Environmental Science and Engineering, Department of Chemistry, and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jae Sung Lee
- School of Environmental Science and Engineering, Department of Chemistry, and Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
44
|
Altobello S, Bignozzi C, Caramori S, Larramona G, Quici S, Marzanni G, Lakhmiri R. Sensitization of TiO2 with ruthenium complexes containing boronic acid functions. J Photochem Photobiol A Chem 2004. [DOI: 10.1016/j.jphotochem.2004.04.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Polo AS, Itokazu MK, Murakami Iha NY. Metal complex sensitizers in dye-sensitized solar cells. Coord Chem Rev 2004. [DOI: 10.1016/j.ccr.2004.04.013] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Moss JA, Yang JC, Stipkala JM, Wen X, Bignozzi CA, Meyer GJ, Meyer TJ. Sensitization and Stabilization of TiO2 Photoanodes with Electropolymerized Overlayer Films of Ruthenium and Zinc Polypyridyl Complexes: A Stable Aqueous Photoelectrochemical Cell. Inorg Chem 2004; 43:1784-92. [PMID: 14989672 DOI: 10.1021/ic030081a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Overlayer thin films of vinylbipyridine (vbpy)-containing Ru and Zn complexes have been formed on top of ruthenium dye complexes adsorbed to TiO(2) by reductive electropolymerization. The goal was to create an efficient, water-stable photoelectrode or electrodes. An adsorbed-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(3)](PF(6))(2) surface composite displays excellent stability toward dissolution in water, but the added overlayer film greatly decreases incident photon-to-current conversion efficiencies (IPCE) in propylene carbonate with I(3)(-)/I(-) as the carrier couple. An ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Zn(vbpy)(3)](PF(6))(2) composite displays no loss in IPCE compared to ads-[Ru(vbpy)(2)(dcb)](PF(6))(2) but is susceptible to film breakdown in the presence of water by solvolysis and loss of the cross-linking Zn(2+) ions. Success was attained with an ads-[Ru(vbpy)(2)(dcb)](PF(6))(2)/poly-[Ru(vbpy)(2)(dppe)](PF(6))(2) composite. In this case the electropolymerized layer is transparent in the visible. The composite electrode is stable in water, the IPCE in propylene carbonate with I(3)(-)/I(-) is comparable to the adsorbed complex, and a significant IPCE is observed in water with the quinone/hydroquinone carrier couple. The assembly [(bpy)(2)(CN)Ru(CN)Ru(vbpy)(2)(NC)Ru(CN)(bpy)(2)](PF(6))(2) ([Ru(CN)Ru(NC)Ru](PF(6))(2)) adsorbs spontaneously on TiO(2), and electropolymerization of thin layers of the assembly to give ads-[Ru(CN)Ru(NC)Ru](PF(6))(2)/poly-[Ru(CN)Ru(NC)Ru](PF(6))(2) enhances IPCE and has no deleterious effect on the IPCE/Ru.
Collapse
Affiliation(s)
- John A Moss
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Zabri H, Gillaizeau I, Bignozzi CA, Caramori S, Charlot MF, Cano-Boquera J, Odobel F. Synthesis and Comprehensive Characterizations of New cis-RuL2X2 (X = Cl, CN, and NCS) Sensitizers for Nanocrystalline TiO2 Solar Cell Using Bis-Phosphonated Bipyridine Ligands (L). Inorg Chem 2003; 42:6655-66. [PMID: 14552617 DOI: 10.1021/ic034403m] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The preparation and the properties of several ruthenium complexes of the general formula cis-RuL(2)X(2) with L = 2,2'-bipyridine-4,4'-bisphosphonic acid, L' = 2,2'-bipyridine-5,5'-bisphosphonic acid, and X = Cl, CN, or NCS are reported. The synthesis of these complexes relies on the preparation of the key intermediates cis-Ru(bipyridinebis(diethyl ester phosphonate))Cl(2). The ground-state second pK(a) values of the thiocyanato complexes were determined and are 6.0 and 6.1 for cis-RuL(2)(NCS)(2) and for cis-RuL'(2)(NCS)(2), respectively. For these species, (13)C NMR and IR demonstrate that the thiocyanato ligands are bound to Ru via the N atom. The new complexes exhibit a blue-shifted electronic absorption spectrum with respect to the analogous complexes containing carboxylic acid groups. Density functional theory molecular orbital calculations show that the LUMO of the bipyridine phosphonated ligands is at higher energy than the corresponding dicarboxylate complexes and that the thiocyanato ligands are not simple spectator ligands, whose role is to enrich electron density on the ruthenium, but are also involved in transitions from PiRu-NCS to Pibpy that extend the absorbance of the dye in the low energy part of the absorption spectrum. The photoaction spectra recorded in a sandwich regenerative photovoltaic cell indicate that the cyano and thiocyanato complexes containing the bipyridine substituted in 4,4' positions exhibit a 90-95% photoconversion efficiency on the MLCT band, whereas those containing the bipyridine substituted in 5,5' positions display lower efficiency (60-65%). The most efficient complex in the series is cis-RuL(2)(NCS)(2); however, its overall efficiency is about 30% lower than the analogue cis-Ru(H(2)dcb)(2)(NCS)(2) (H(2)dcb = 2,2'-bipyridine-4,4'-dicarboxylic acid) due to a lower absorbance in the red part of the visible spectrum.
Collapse
Affiliation(s)
- Hervé Zabri
- Laboratoire de Synthèse Organique, UMR 6513 CNRS, Faculté des Sciences et des Techniques de Nantes, BP 92208, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Gholamkhass B, Koike K, Negishi N, Hori H, Sano T, Takeuchi K. Adjacent- versus remote-site electron injection in TiO2 surfaces modified with binuclear ruthenium complexes. Inorg Chem 2003; 42:2919-32. [PMID: 12716184 DOI: 10.1021/ic0341237] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanocrystalline thin films of TiO2 cast on an optically transparent indium tin oxide glass were sensitized with ruthenium homo- and heterobinuclear complexes, [LL'Ru(BL)RuLL']n+ (n = 2, 3), where L and L' are 4,4'-dicarboxy-2,2'-bipyridine (dcb) and/or 2,2'-bipyridine (bpy) and BL is a rigid and linear heteroaromatic entity (tetrapyrido[3,2-a:2',3'-c:3",2"-h:2'",3'"-j]phenazine (tpphz) or 1,4-bis([1,10]phenanthroline[5,6-d]imidazol-2-yl)benzene (bfimbz)). The photophysical behavior of the RuII-RuII diads in solution indicated the occurrence of intercomponent energy transfer from the upper-lying Ru --> bpy charge-transfer (CT) excited state of the Ru(bpy)(2) moiety to the lower-lying Ru --> dcb CT excited state of the Ru(bpy)(dcb) (or Ru(dcb)(2)) subunit in the heterobinuclear complexes. These sensitizer diads adsorbed on nanostructured TiO2 surfaces in a perpendicular or parallel attachment mode. Adsorption was through the dcb ligands on one or both chromophoric subunits. The behavior of the adsorbed species was studied by nanosecond time-resolved transient absorption and emission spectroscopy, as well as by photocurrent measurements. In the TiO2-adsorbed samples where BL was bfimbz, the electron injection kinetics was very fast and could not be resolved because an electron is promoted from the metal center to the dcb ligand directly linked to the semiconductor. In the TiO2-adsorbed samples where BL was tpphz, for which, in the excited state, a BL localization of the lowest-lying metal-to-ligand charge transfer (MLCT) is observed, slower injection rates (9.5 x 10(7) s(-1) in [(bpy)(2)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2 and 5.5 x 10(7) s(-1) in [(bpy)(dcb)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2) were obtained. Among the systems, the heterotriad assembly [(bpy)(2)Ru(bfimbz)Ru(bpy)(dcb(2-))](2+)/TiO2 gave the best photovoltaic performance. In the first case, this was attributed to a fast electron injection initiated from a dcb-localized MLCT; in the second case, this is attributed to improved molecular orientation on the surface, which was due to rigidity and, at the same time, linearity of the heterotriad system, resulting in a slower charge recombination between the injected electron and the hole.
Collapse
Affiliation(s)
- Bobak Gholamkhass
- Photoenergy Application Group, Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba West, Ibaraki 305-8569, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Bae E, Choi W. Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2003; 37:147-152. [PMID: 12542303 DOI: 10.1021/es025617q] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study reports an example of visible-light photocatalyst based on TiO2 modified by ruthenium-complex sensitizers and noble metal deposits. The photodegradation of trichloroacetate (TCA) and carbon tetrachloride was used as a probe reaction for evaluating the visible light activity of the photocatalyst under the illumination of lambda > 420 nm. Photodeposition of platinum nanoparticles on dye-sensitized TiO2 (Pt/TiO2/Ru(II)L3) drastically enhanced the degradation rate of TCA and CCl4. The visible light reactivity of Pt/TiO2/Ru(II)L3 was optimal with [Ru(II)L3] = 10 microM, [TiO2] = 0.5 g/L, and Pt loading of about 0.2 wt %. Although no electron donors to regenerate the oxidized Ru-sensitizers were added in the aqueous suspension, the photoreductive dechlorination of perchlorinated compounds proceeded far beyond the stoichiometric limit of the initial sensitizer concentration. Water acted as an electron donor to regenerate the sensitizer with a concurrent production of dioxygen. On the other hand, Pt/TiO2/Ru(II)L3 was completely inactive in the presence of dissolved oxygen and the in-situ generated dioxygen gradually decelerated the dechlorination rate. Conduction band electrons transferred to O2 in preference to CCl4 and TCA on Pt deposits. Other noble metals (Ag, Au, and Pd) deposited on TiO2 showed a better oxygen-tolerance but less visible-light reactivity than PtTiO2/Ru(II)L3. Effects of metal loading on the visible light activity and its implications for the efficientvisible-light photocatalyst development are discussed.
Collapse
Affiliation(s)
- Eunyoung Bae
- School of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | |
Collapse
|
50
|
Gillaizeau-Gauthier I, Odobel F, Alebbi M, Argazzi R, Costa E, Bignozzi CA, Qu P, Meyer GJ. Phosphonate-based bipyridine dyes for stable photovoltaic devices. Inorg Chem 2001; 40:6073-9. [PMID: 11681930 DOI: 10.1021/ic010192e] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I Gillaizeau-Gauthier
- Laboratoire de Synthèse Organique, UMR 6513 CNRS, Faculté des Sciences et des Techniques de Nantes, BP 92208, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France
| | | | | | | | | | | | | | | |
Collapse
|