1
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39484694 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Mofidfar M, Mehrgardi MA, Zare RN. Water Microdroplets Surrounded by Alcohol Vapor Cause Spontaneous Oxidation of Alcohols to Organic Peroxides. J Am Chem Soc 2024; 146:18498-18503. [PMID: 38935892 DOI: 10.1021/jacs.4c04092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Using real-time mass spectrometric (MS) monitoring, we demonstrate one-step, catalyst-free spontaneous oxidation of various alcohols (ROH) to key reactive intermediates for the formation of ROO- compounds on the surface of water microdroplets surrounded by alcohol vapor, carried out under ambient conditions. These organic peroxides (POs) can act as important secondary organic aerosols (SOA). We used hydrogen-deuterium exchange by spraying D2O instead of H2O to learn about the reaction mechanism, and the results demonstrate the crucial role of the water-air interface in microdroplet chemistry. We find that the formation of POs relies on electron transfer occurring at the microdroplet interface, which generates hydrogen atoms and hydroxyl radicals that lead to a cascade of radical reactions. This electron transfer is believed to be driven by two factors: (1) the emergence of a strong electrostatic potential on the microdroplet's surface; and (2) the partial solvation of ions at the interface. Mass spectra reveal that the formation of POs is dependent on the alcohol structure, with tertiary alcohols showing a higher tendency to form organic peroxides than secondary alcohols, which in turn are more reactive than primary alcohols.
Collapse
Affiliation(s)
- Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Xue M, Pan T, Shao Z, Wang W, Li H, Zhao L, Zhou X, Zhang Y. Sustainable Electrochemical Benzylic C-H Oxidation Using MeOH as an Oxygen Source. CHEMSUSCHEM 2024; 17:e202400028. [PMID: 38225209 DOI: 10.1002/cssc.202400028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
New methods and strategies for the direct oxidation of benzylic C-H bonds are highly desirable, owing to the importance of ketone motifs in significant organic transformations and the synthesis of valuable molecules, including pharmaceuticals, pesticides, and fine chemicals. Herein, we describe an electrochemical benzylic C-H oxidation strategy for the synthesis of ketones using MeOH as an oxygen source. Inexpensive and safe KBr serves as both an electrolyte and a bromide radical precursor in the reaction. This transformation also offers several advantages such as mild conditions, broad functional group tolerance, and operational simplicity. Mechanistic investigations by control experiments, radical scavenging experiments, electron paramagnetic resonance (EPR), kinetic studies, cyclic voltammetry (CV), and in-situ Fourier transform infrared (FTIR) spectroscopy support a pathway involving the formation and transformation of benzyl methyl ether via hydrogen atom transfer (HAT) and single-electron transfer (SET). The practical application of our strategy is highlighted by the successful synthesis of five pharmaceuticals, namely lenperone, melperone, diphenhydramine, cinnarizine, and flunarizine.
Collapse
Affiliation(s)
- Meng Xue
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Tao Pan
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Zhichao Shao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Wenxuan Wang
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Hu Li
- School of Ecology and Environment, Ningxia University, 489 Helan Mountain West Road, Yinchuan, 750021, China
| | - Lixing Zhao
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xin Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Yuexia Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
4
|
Siddiquee MN. Prospect of Controlled Autoxidation to Produce High-Value Products from the Low-Value Petroleum Fractions. CHEM REC 2024; 24:e202400015. [PMID: 38629935 DOI: 10.1002/tcr.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/22/2024] [Indexed: 05/29/2024]
Abstract
Substantial amounts of low-value light petroleum fractions and low-value heavy petroleum fractions, such as light naphtha, HVGO, and vacuum residue, are generated during the upgrading and refining of conventional and unconventional petroleum resources. The oil industry emphasizes economic diversification, aiming to produce high-value products from these low petroleum fractions through cost-effective and sustainable methods. Controlled autoxidation (oxidation with air) has the potential to produce industrially important oxygenates, including alcohols, and ketones, from the low-value light petroleum fractions. The produced alcohols can also be converted to olefin through catalytic dehydration. Following controlled autoxidation, the low-value heavy petroleum fractions can be utilized to produce value-added products, including carbon fiber precursors. It would reduce the production cost of a highly demandable product, carbon fiber. This review highlights the prospect of developing an alternative, sustainable, and economic method to produce value-added products from the low-value petroleum fractions following a controlled autoxidation approach.
Collapse
Affiliation(s)
- Muhammad N Siddiquee
- Department of Chemical Engineering, Interdisciplinary Research Centre for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
6
|
Sun W, Pinacho P, Obenchain DA, Schnell M. Gas-Phase Characterization of Adipic Acid, 6-Hydroxycaproic Acid, and Their Thermal Decomposition Products by Rotational Spectroscopy. J Phys Chem Lett 2024; 15:817-825. [PMID: 38232320 PMCID: PMC10823529 DOI: 10.1021/acs.jpclett.3c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
We report the spectroscopic investigation of two bifunctional aliphatic carboxylic acids, namely, adipic acid and 6-hydroxycaproic acid, in the gas phase by combining high-resolution rotational spectroscopy and supersonic expansions. Their pure rotational spectra were successfully identified and characterized. However, due to the low thermal stability of these two chemicals, the measured rotational spectra were significantly congested with transitions corresponding to their decomposition products upon heating. We observed cyclopentanone and adipic anhydride in the spectrum of adipic acid and ε-caprolactone and its monohydrate in the spectrum of 6-hydroxycaproic acid. On the basis of the distinct fingerprints of both carboxylic acids and a series of their decomposition products, the spectra were analyzed in a time-segmented manner. This provides valuable insights into the thermal decomposition mechanisms of these two samples over time, which highlights the robustness of microwave spectroscopy as a potent tool for analyzing complex chemical mixtures in a species-, isomer-, and conformer-selective way.
Collapse
Affiliation(s)
- Wenhao Sun
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Pablo Pinacho
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Melanie Schnell
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute
of Physical Chemistry, Christian-Albrechts-Universität
zu Kiel, Max-Eyth-Strasse 1, 24118 Kiel, Germany
| |
Collapse
|
7
|
Chen C, Wu M, Ma C, Song M, Jiang G. Efficient Photo-Assisted Thermal Selective Oxidation of Toluene Using N-Doped TiO 2. ACS OMEGA 2023; 8:21026-21031. [PMID: 37332816 PMCID: PMC10268642 DOI: 10.1021/acsomega.3c01887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Selective oxidation of toluene is a key reaction to produce high value-added products but remains a big challenge. In this study, we introduce a nitrogen-doped TiO2 (N-TiO2) catalyst to create more Ti3+ and oxygen vacancy (OV), which act as active sites for selective oxidation of toluene via activating O2 to superoxide radical (•O2-). Interestingly, the resulting N-TiO2-2 exhibited an outstanding photo-assisted thermal performance with a product yield of 209.6 mmol·gcat-1 and a toluene conversion of 10960.0 μmol·gcat-1·h-1, which are 1.6 and 1.8 times greater than those obtained under thermal catalysis. We showed that the enhanced performance under photo-assisted thermal catalysis was attributed to more active species generation by making full use of photogenerated carriers. Our work suggests a viewpoint to apply a noble-metal-free TiO2 system in the selective oxidation of toluene under solvent-free conditions.
Collapse
Affiliation(s)
- Cheng Chen
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingge Wu
- Key
Laboratory of Photochemistry, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry,
Chinese Academy of Sciences, Beijing 100190, China
| | - Chunyan Ma
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Maoyong Song
- Key
Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- University
of Chinese Academy of Sciences, Beijing 100049, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| |
Collapse
|
8
|
Ding L, Sun X, Huang C, Li J, Chen B. Insights into the mechanism of cumene catalytic oxidation using ionic liquid [Bmim]OH. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Zhu H, Jackson TA, Subramaniam B. Facile Ozonation of Light Alkanes to Oxygenates with High Atom Economy in Tunable Condensed Phase at Ambient Temperature. JACS AU 2023; 3:498-507. [PMID: 36873707 PMCID: PMC9975831 DOI: 10.1021/jacsau.2c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
We have demonstrated the oxidation of mixed alkanes (propane, n-butane, and isobutane) by ozone in a condensed phase at ambient temperature and mild pressures (up to 1.3 MPa). Oxygenated products such as alcohols and ketones are formed with a combined molar selectivity of >90%. The ozone and dioxygen partial pressures are controlled such that the gas phase is always outside the flammability envelope. Because the alkane-ozone reaction predominantly occurs in the condensed phase, we are able to harness the unique tunability of ozone concentrations in hydrocarbon-rich liquid phases for facile activation of the light alkanes while also avoiding over-oxidation of the products. Further, adding isobutane and water to the mixed alkane feed significantly enhances ozone utilization and the oxygenate yields. The ability to tune the composition of the condensed media by incorporating liquid additives to direct selectivity is a key to achieving high carbon atom economy, which cannot be achieved in gas-phase ozonations. Even in the liquid phase, without added isobutane and water, combustion products dominate during neat propane ozonation, with CO2 selectivity being >60%. In contrast, ozonation of a propane+isobutane+water mixture suppresses CO2 formation to 15% and nearly doubles the yield of isopropanol. A kinetic model based on the formation of a hydrotrioxide intermediate can adequately explain the yields of the observed isobutane ozonation products. Estimated rate constants for the formation of oxygenates suggest that the demonstrated concept has promise for facile and atom-economic conversion of natural gas liquids to valuable oxygenates and broader applications associated with C-H functionalization.
Collapse
Affiliation(s)
- Hongda Zhu
- Center
for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr., Lawrence, Kansas 66047, United States
| | - Timothy A. Jackson
- Center
for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr., Lawrence, Kansas 66047, United States
- Department
of Chemistry, University of Kansas, 1567 Irving Hill Rd, Lawrence, Kansas 66045, United States
| | - Bala Subramaniam
- Center
for Environmentally Beneficial Catalysis, University of Kansas, 1501 Wakarusa Dr., Lawrence, Kansas 66047, United States
- Department
of Chemical and Petroleum Engineering, University
of Kansas, 1530 W. 15th, Lawrence, Kansas 66045, United States
| |
Collapse
|
10
|
Bhuyan D, Kalita SJ, Saikia L. Mesoporous SBA-15 supported gold nanoparticles for solvent-free oxidation of cyclohexane: superior catalytic activity with higher cyclohexanone selectivity. Phys Chem Chem Phys 2022; 24:29781-29790. [PMID: 36459128 DOI: 10.1039/d2cp04198g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Surface modification of mesoporous SBA-15 with (3-mercaptopropyl) trimethoxysilane greatly enhances its capability to adsorb the tetrachloroauric anion (AuCl4-). The calcination of the sample after the adsorption experiment led to the generation of homogeneously dispersed, spherical, single crystalline gold nanoparticles (Au0 NPs) of less than 5 nm size, embedded on SBA-15 as observed from the TEM images. The as-prepared SBA-15/Au0 nanohybrid material has offered excellent catalytic activity for the selective oxidation of cyclohexane using TBHP as the oxidant in the absence of any solvent. A maximum of 48.7% cyclohexane conversion was achieved and surprisingly, cyclohexanone (K) has much higher selectivity (>95%) than cyclohexanol (A). The hot-filtration study confirmed the leach-resistant characteristics as well as the true heterogeneous catalytic activity of the SBA-15/Au0 nanohybrid catalyst. The catalyst was recycled up to four times without significant loss in its catalytic activity.
Collapse
Affiliation(s)
- Diganta Bhuyan
- Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
| | - Sanmilan Jyoti Kalita
- Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India.
| | - Lakshi Saikia
- Materials Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research, CSIR-HRDC, Ghazaiabad, UP, India
| |
Collapse
|
11
|
Wu Y, Zhao J, Meng Q, Bi M, Ma C, Yu Z. Effects of Oxygen: Experimental and VTST/DFT Studies on Cumene Autoxidation with Air under Atmospheric Pressure. ACS OMEGA 2022; 7:34547-34553. [PMID: 36188291 PMCID: PMC9520689 DOI: 10.1021/acsomega.2c04362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The mechanism of how oxygen affects cumene autoxidation related to temperature is still bewildering. Kinetic analysis of cumene autoxidation with air at a pressure of 1.0 atm was investigated by experiments and variational transition state theory/DFT. Oxygen was the limiting factor for cumene autoxidation above 100 °C, although it had negligible impacts on cumene autoxidation at 70-100 °C. The kinetic analysis by VTST coupled with DFT calculations proved that {k 6,reverse[ROO•]}/{k 7,forward[RH]0 [ROO•]} > 103 (70-120 °C), suggesting that ROO• tended to decompose back to R• and O2 rapidly, whereas it was much slower for ROO• abstracting a hydrogen atom from RH to form ROOH. When the concentration of oxygen was higher than the critical value ([O2]critical), it could not significantly affect the equilibrium concentration of ROO•, which in turn could not affect the autoxidation rate significantly. Besides, the critical oxygen concentration ([O2]critical) was exponentially related to 1/T, which was consistent with Hattori's experimental results.
Collapse
|
12
|
Kitano M, Saitoh T, Nishiyama S, Einaga Y, Yamamoto T. Electro-conversion of cumene into acetophenone using boron-doped diamond electrodes. Beilstein J Org Chem 2022; 18:1154-1158. [PMID: 36128427 PMCID: PMC9475189 DOI: 10.3762/bjoc.18.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
A straightforward electro-conversion of cumene into acetophenone has been reported using boron-doped diamond (BDD) electrodes. This particular conversion is driven by the addition reaction of a cathodically generated hydroperoxide anion to an anodically generated cumyl cation, where the BDD’s wide potential window enables the direct anodic oxidation of cumene into the cumyl cation. Since electricity is directly employed as the oxidizing and reducing reagents, the present protocol is easy to use, suitable for scale-up, and inherently safe.
Collapse
Affiliation(s)
- Mana Kitano
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Shigeru Nishiyama
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
13
|
Qian WF, Zhong B, He JY, Zhu C, Xu H. Sustainable Electrochemical C(sp3−H Oxygenation Using Water as the Oxygen Source. Bioorg Med Chem 2022; 72:116965. [DOI: 10.1016/j.bmc.2022.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
|
14
|
Siddiquee MN, Hossain MM, Nazemifard N. Liquid Phase Oxidation of Hydrocarbons to High-Value Chemicals in Microfluidic Reactors - Prospects and Challenges. CHEM REC 2022; 22:e202200022. [PMID: 35502847 DOI: 10.1002/tcr.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/28/2022] [Indexed: 11/05/2022]
Abstract
Liquid phase oxidation (LPO) of hydrocarbon is an industrially important process to produce petrochemicals and pharmaceuticals. It follows a free radical path having initiation, propagation and termination. The initiation step is slow while the propagation and termination steps are fast. The main challenge of such process is to control product selectivity at an appreciable conversion level. With the advancement of microfluidic reactor technology, it is possible to control the free radical steps. The present contribution critically reviewed the reaction engineering aspects of LPO of hydrocarbon, the influence of microfluidic reactor design and operation on reaction mechanism, conversion and product selectivity. It also outlines the challenges associated with microfluidic reactor operation, and prospects to apply the understanding from microfluidic reactors in few sectors. The understanding from the free radical oxidation process can also be applied to any other free radical processes.
Collapse
Affiliation(s)
- Muhammad N Siddiquee
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Refining & Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
| | - Mohammad M Hossain
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia.,Interdisciplinary Research Center for Refining & Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5050, Dhahran, 31261, Saudi Arabia
| | - Neda Nazemifard
- Department of Chemical Engineering, University of Alberta, 9211-116th Street, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
15
|
Thiruvengetam P, Chand DK. Controlled and Predictably Selective Oxidation of Activated and Unactivated C(sp3)–H Bonds Catalyzed by a Molybdenum-Based Metallomicellar Catalyst in Water. J Org Chem 2022; 87:4061-4077. [DOI: 10.1021/acs.joc.1c02855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Dillip Kumar Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
16
|
Caruso M, Petroselli M, Cametti M. Design and Synthesis of Multipurpose Derivatives for N‐Hydroxyimide and NHPI‐based Catalysis Applications**. ChemistrySelect 2021. [DOI: 10.1002/slct.202103792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manfredi Caruso
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| | - Manuel Petroselli
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Massimo Cametti
- Dipartimento di Chimica Materiali e Ingegneria Chimica “Giulio Natta” Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| |
Collapse
|
17
|
Li H, Shang H, Jiang F, Zhu X, Ruan Q, Zhang L, Wang J. Plasmonic O 2 dissociation and spillover expedite selective oxidation of primary C-H bonds. Chem Sci 2021; 12:15308-15317. [PMID: 34976351 PMCID: PMC8635223 DOI: 10.1039/d1sc04632b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Manipulating O2 activation via nanosynthetic chemistry is critical in many oxidation reactions central to environmental remediation and chemical synthesis. Based on a carefully designed plasmonic Ru/TiO2−x catalyst, we first report a room-temperature O2 dissociation and spillover mechanism that expedites the “dream reaction” of selective primary C–H bond activation. Under visible light, surface plasmons excited in the negatively charged Ru nanoparticles decay into hot electrons, triggering spontaneous O2 dissociation to reactive atomic ˙O. Acceptor-like oxygen vacancies confined at the Ru–TiO2 interface free Ru from oxygen-poisoning by kinetically boosting the spillover of ˙O from Ru to TiO2. Evidenced by an exclusive isotopic O-transfer from 18O2 to oxygenated products, ˙O displays a synergistic action with native ˙O2− on TiO2 that oxidizes toluene and related alkyl aromatics to aromatic acids with extremely high selectivity. We believe the intelligent catalyst design for desirable O2 activation will contribute viable routes for synthesizing industrially important organic compounds. Room-temperature O2 dissociation and spillover, as driven by plasmonic Ru on oxygen-deficient TiO2, expedite the selective oxidation of primary C–H bonds in alkyl aromatics for synthesizing industrially important organic compounds.![]()
Collapse
Affiliation(s)
- Hao Li
- Institute of Environmental Engineering, ETH Zürich Zürich 8093 Switzerland .,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
| | - Huan Shang
- Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Fuze Jiang
- Institute of Environmental Engineering, ETH Zürich Zürich 8093 Switzerland .,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design Singapore 487372 Singapore
| | - Lizhi Zhang
- Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich Zürich 8093 Switzerland .,Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
| |
Collapse
|
18
|
Deka B, Rastogi GK, Deb ML, Baruah PK. Ten Years of Glory in the α-Functionalizations of Acetophenones: Progress Through Kornblum Oxidation and C-H Functionalization. Top Curr Chem (Cham) 2021; 380:1. [PMID: 34746982 DOI: 10.1007/s41061-021-00356-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
This review article focuses on the α-functionalization of acetophenones involving Kornblum oxidation and C-H functionalizations. Although various other strategies, such as classical approaches, enamine approaches and umpolung strategy are also known for this functionalization, here we discuss mainly the Kornblum oxidation approach and C-H functionalization strategy as they have advantages over the others. In Kornblum oxidation, the reaction uses iodine and dimethylsulfoxide and proceeds through the formation of arylglyoxal as the key intermediate. In C-H functionalization, the reaction requires metal, or metal-free catalyst, and generates radical intermediate in most cases. α-Functionalization of acetophenones is very important because of their huge applications in the synthesis of various natural products and pharmaceuticals and, therefore, a number of research articles have been published in this area. However, no review articles are available so far. In this article, we present a succinct discussion of various important and novel reactions, along with their mechanisms, published since 2012 to date. We believe that this first review article in this field will give readers one-stop information on this topic and encourage further intriguing work in this area.
Collapse
Affiliation(s)
- Bhaskar Deka
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Gaurav K Rastogi
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Mohit L Deb
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India
| | - Pranjal K Baruah
- Department of Applied Sciences, GUIST, Gauhati University, Guwahati, Assam, 781014, India.
| |
Collapse
|
19
|
Palli S, Kamma Y, Silligandla N, Reddy BM, Tumula VR. Aerobic oxidation of ethylbenzene to acetophenone over mesoporous ceria–cobalt mixed oxide catalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04604-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Kuznetsova N, Karmadonova I, Kuznetsova L, Babushkin D. The influence of Fe(III) acetylacetonate and o-phenanthroline towards improvement of NHPI-catalyzed cumene oxidation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Nitrogen-doped graphene loaded non-noble Co catalysts for liquid-phase cyclohexane oxidation with molecular oxygen. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0825-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Le MD, Warth V, Giarracca L, Moine E, Bounaceur R, Privat R, Jaubert JN, Fournet R, Glaude PA, Sirjean B. Development of a Detailed Kinetic Model for the Oxidation of n-Butane in the Liquid Phase. J Phys Chem B 2021; 125:6955-6967. [PMID: 34132547 DOI: 10.1021/acs.jpcb.1c02988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemistry underlying liquid-phase oxidation of organic compounds, the main cause of their aging, is characterized by a free-radical chain reaction mechanism. The rigorous simulation of these phenomena requires the use of detailed kinetic models that contain thousands of species and reactions. The development of such models for the liquid phase remains a challenge as solvent-dependent thermokinetic parameters have to be provided for all the species and reactions of the model. Therefore, accurate and high-throughput methods to generate these data are required. In this work, we propose new methods to generate these data, and we apply them for the development of a detailed chemical kinetic model for n-butane autoxidation, which is then validated against literature data. Our approach for model development is based on the work of Jalan et al. [J. Phys. Chem. B 2013, 117, 2955-2970] who used Gibbs free energies of solvation [ΔsolvG(T)] to correct the data of the gas-phase kinetic model. In our approach, an equation of state (EoS) is used to compute ΔsolvG as a function of temperature for all the chemical species in the mechanism. Currently, ΔsolvG(T) of free radicals cannot be computed with an EoS and it was calculated for their parent molecule (H-atom added on the radical site). Theoretical calculations with the implicit solvent model were performed to quantify the impact of this assumption and showed that it is acceptable for radicals in n-butane and probably in all n-alkanes. New rate rules were proposed for the most important reactions of the model, based on theoretical calculations and the literature data. The developed detailed kinetic model for n-butane autoxidation is the first proposed model in the literature and was validated against the experimental data from the literature. Simulations showed that the main autoxidation products, sec-butyl hydroperoxides and 2-butanol, are produced from H-abstractions from n-butane by sec-C4H9OO radicals and the C4H9OO + C4H9OO reaction, respectively. The uncertainty of the product ratio ("butanone + 2-butanol"/"2-butoxy + 2-butoxy") of the latter reaction remains high in the literature, and our simulations suggest a 1:1 ratio in n-butane solvent.
Collapse
Affiliation(s)
- M D Le
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - V Warth
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - L Giarracca
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - E Moine
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - R Bounaceur
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - R Privat
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - J-N Jaubert
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - R Fournet
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - P-A Glaude
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - B Sirjean
- Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| |
Collapse
|
23
|
Liu H, Wang K, Cao X, Su J, Gu Z. A new highly active La 2O 3-CuO-MgO catalyst for the synthesis of cumyl peroxide by catalytic oxidation. RSC Adv 2021; 11:12532-12542. [PMID: 35423823 PMCID: PMC8696952 DOI: 10.1039/d1ra00176k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/23/2021] [Indexed: 12/03/2022] Open
Abstract
In this study, different magnesium, copper, lanthanide single metal, and composite multimetal oxide catalysts were prepared via the coprecipitation route for the aerobic oxidation of cumene into cumene hydroperoxide. All catalysts were characterized using several analytical techniques, including XRD, SEM, EDS, FT-IR, BET, CO2-TPD, XPS, and TG-DTG. La2O3–CuO–MgO shows higher oxidation activity and yield than other catalysts. The results of XRD and SEM studies show that the copper and magnesium particles in the catalyst are smaller in size and have a distribution over a larger area due to the introduction of the lanthanum element. The CO2-TPD results confirmed that the catalyst has more alkali density and alkali strength, which can excite active sites and prevent the decomposition of cumene hydroperoxide. XPS results show that due to the promotional effect of La2O3, there are more lattice and active oxygen species in the catalyst, which can effectively utilize the lattice defects under the strong interaction between metal oxides for rapid adsorption and activation, thus improving the oxidation performance. Besides, La2O3–CuO–MgO exhibits good stability and crystalline structure due to its high oxygen mobility inhibiting coking during the cycle stability test. Finally, the possible reaction pathway and promotional mechanism on La2O3–CuO–MgO in cumene oxidation are proposed. We expect this study to shed more light on the nature of the surface-active site(s) of La2O3–CuO–MgO catalyst for cumene oxidation and the development of heterogeneous catalysts with high activity in a wide range of applications. The La2O3–CuO–MgO catalyst acts on the oxidation of cumene and shows excellent catalytic activity through the coordination of surface and interior.![]()
Collapse
Affiliation(s)
- HanShuang Liu
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal Univesity Nanjing Jiangsu 210023 China
| | - KaiJun Wang
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal Univesity Nanjing Jiangsu 210023 China
| | - XiaoYan Cao
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal Univesity Nanjing Jiangsu 210023 China
| | - JiaXin Su
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal Univesity Nanjing Jiangsu 210023 China
| | - Zhenggui Gu
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal Univesity Nanjing Jiangsu 210023 China
| |
Collapse
|
24
|
Modeling of the Co-Mn-Br catalyzed liquid phase oxidation of p-xylene to terephthalic acid and m-xylene to isophthalic acid. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Liang XT, Sun BC, Liu C, Li YH, Zhang N, Xu QQ, Zhang ZC, Han YX, Chen JH, Yang Z. Asymmetric Total Synthesis of (-)-Spirochensilide A, Part 1: Diastereoselective Synthesis of the ABCD Ring and Stereoselective Total Synthesis of 13( R)-Demethyl Spirochensilide A. J Org Chem 2021; 86:2135-2157. [PMID: 33433196 DOI: 10.1021/acs.joc.0c02494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A concise and diastereoselective construction of the ABCD ring system of spirochensilide A is described. The key steps of this synthesis are a semipinacol rearrangement reaction to stereoselectively construct the AB ring system bearing two vicinal quaternary chiral centers and a Co-mediated Pauson-Khand reaction to form the spiro-based bicyclic CD ring system. This chemistry leads to the stereoselective synthesis of 13(R)-demethyl spirochensilide A, paving the way for the first asymmetric total synthesis of (-)-spirochensilide A.
Collapse
Affiliation(s)
- Xin-Ting Liang
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Bao-Chuan Sun
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Chang Liu
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Yuan-He Li
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Nan Zhang
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Qian-Qian Xu
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Zhong-Chao Zhang
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yi-Xin Han
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Jia-Hua Chen
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China
| | - Zhen Yang
- State Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education and Beijing National Laboratory for Molecular Science (BNLMS), College of Chemistry, Peking University, Beijing 100871, China.,Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
26
|
Wang C, Zhan H, Lu X, Jing R, Zhang H, Yang L, Li X, Yue F, Zhou D, Xia Q. A recyclable cobalt( iii)–ammonia complex catalyst for catalytic epoxidation of olefins with air as the oxidant. NEW J CHEM 2021. [DOI: 10.1039/d0nj05466f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A recyclable [Co(NH3)6]Cl3 complex was synthesized to catalyze the epoxidation of α-pinene. With air as the oxidant, [Co(NH3)6]Cl3 obtained 97.4% conversion of α-pinene and 98.3% selectivity of epoxide.
Collapse
Affiliation(s)
- Chenlong Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| | - Hongju Zhan
- Jingchu University of Technology
- Jingmen 448000
- P. R. China
| | - Xinhuan Lu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| | - Run Jing
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| | - Haifu Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| | - Lu Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| | - Xixi Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| | - Fanfan Yue
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| | - Dan Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| | - Qinghua Xia
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University
- Wuhan 430062
- P. R. China
| |
Collapse
|
27
|
Xia H, Tan H, Cui H, Song F, Zhang Y, Zhao R, Chen ZN, Yi W, Li Z. Tunable selectivity of phenol hydrogenation to cyclohexane or cyclohexanol by a solvent-driven effect over a bifunctional Pd/NaY catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02188a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogenation of phenol is an important strategy to produce cyclohexane or cyclohexanol as both of them are raw materials for the synthesis of nylon-6 and nylon-66.
Collapse
Affiliation(s)
- Heng Xia
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Hongzi Tan
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Hongyou Cui
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Feng Song
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Yuan Zhang
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Rongrong Zhao
- School of Chemistry & Chemical Engineering
- Shandong University of Technology
- Zibo
- P. R. China
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences
- Fuzhou
- P. R. China
| | - Weiming Yi
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo
- P. R. China
| | - Zhihe Li
- School of Agricultural Engineering and Food Science
- Shandong University of Technology
- Zibo
- P. R. China
| |
Collapse
|
28
|
Kayahan E, Jacobs M, Braeken L, Thomassen LC, Kuhn S, van Gerven T, Leblebici ME. Dawn of a new era in industrial photochemistry: the scale-up of micro- and mesostructured photoreactors. Beilstein J Org Chem 2020; 16:2484-2504. [PMID: 33093928 PMCID: PMC7554662 DOI: 10.3762/bjoc.16.202] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023] Open
Abstract
Photochemical activation routes are gaining the attention of the scientific community since they can offer an alternative to the traditional chemical industry that mainly utilizes thermochemical activation of molecules. Photoreactions are fast and selective, which would potentially reduce the downstream costs significantly if the process is optimized properly. With the transition towards green chemistry, the traditional batch photoreactor operation is becoming abundant in this field. Process intensification efforts led to micro- and mesostructured flow photoreactors. In this work, we are reviewing structured photoreactors by elaborating on the bottleneck of this field: the development of an efficient scale-up strategy. In line with this, micro- and mesostructured bench-scale photoreactors were evaluated based on a new benchmark called photochemical space time yield (mol·day−1·kW−1), which takes into account the energy efficiency of the photoreactors. It was manifested that along with the selection of the photoreactor dimensions and an appropriate light source, optimization of the process conditions, such as the residence time and the concentration of the photoactive molecule is also crucial for an efficient photoreactor operation. In this paper, we are aiming to give a comprehensive understanding for scale-up strategies by benchmarking selected photoreactors and by discussing transport phenomena in several other photoreactors.
Collapse
Affiliation(s)
- Emine Kayahan
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium
| | - Mathias Jacobs
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium
| | - Leen Braeken
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Leen Cj Thomassen
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Simon Kuhn
- Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Tom van Gerven
- Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - M Enis Leblebici
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Siddiquee MN, Wu Y, de Klerk A, Nazemifard N. The impact of microfluidic reactor configuration on hydrodynamics, conversion and selectivity during indan oxidation. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00111-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Deore TS, Sadgar AL, Jayaram RV. Mixed Micelles of Surface Active Ionic Liquid (
SAIL
)–Octylphenol Ethoxylate: A Novel Reaction Medium for Selective Oxidation of Toluene to Benzaldehyde. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tushar S. Deore
- Department of Chemistry, Institute of Chemical Technology Nathalal Parekh Marg Matugna, Mumbai 400 019 India
| | - Amid L. Sadgar
- Department of Chemistry, Institute of Chemical Technology Nathalal Parekh Marg Matugna, Mumbai 400 019 India
| | - Radha V. Jayaram
- Department of Chemistry, Institute of Chemical Technology Nathalal Parekh Marg Matugna, Mumbai 400 019 India
| |
Collapse
|
31
|
Kushch O, Hordieieva I, Novikova K, Litvinov Y, Kompanets M, Shendrik A, Opeida I. Kinetics of N-oxyl Radicals’ Decay. J Org Chem 2020; 85:7112-7124. [DOI: 10.1021/acs.joc.0c00506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Olga Kushch
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl’ Stus Donetsk National University, Vinnytsia 21021 Ukraine
| | - Iryna Hordieieva
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl’ Stus Donetsk National University, Vinnytsia 21021 Ukraine
| | - Katerina Novikova
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine
| | - Yurii Litvinov
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine
| | - Mykhailo Kompanets
- L.M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine, Kyiv 02660, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056 Ukraine
| | - Alexander Shendrik
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl’ Stus Donetsk National University, Vinnytsia 21021 Ukraine
| | - Iosip Opeida
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl’ Stus Donetsk National University, Vinnytsia 21021 Ukraine
- Department of Physical Chemistry of Fossil Fuels InPOCC, National Academy of Sciences of Ukraine, Lviv 79053, Ukraine
| |
Collapse
|
32
|
Ali AAKF, Danielson ND. Micellar and sub-micellar liquid chromatography of terephthalic acid contaminants using a C18 column coated with Tween 20. Anal Chim Acta 2020; 1105:214-223. [DOI: 10.1016/j.aca.2020.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022]
|
33
|
Salam N, Paul P, Ghosh S, Mandi U, Khan A, Alam SM, Das D, Manirul Islam S. AgNPs encapsulated by an amine-functionalized polymer nanocatalyst for CO2fixation as a carboxylic acid and the oxidation of cyclohexane under ambient conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05865f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel catalyst comprising Ag NPs grafted to a porous polystyrene material was synthesized for the production of valuable propiolic acid derivativesviaCO2(1 atm) incorporation, and the oxidation of cyclohexane under ambient reaction conditions.
Collapse
Affiliation(s)
- Noor Salam
- Department of Chemistry
- University of Kalyani
- Kalyani
- India
- Department of Chemistry
| | - Priyanka Paul
- Department of Chemistry
- University of Kalyani
- Kalyani
- India
- Department of Chemistry
| | | | - Usha Mandi
- Department of Chemistry
- Jogamaya Devi College
- Kolkata
- India
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology
- King Saud University
- Riyadh
- Saudi Arabia
| | | | - Debasis Das
- Department of Chemistry
- The University of Burdwan
- Burdwan
- India
| | | |
Collapse
|
34
|
A partially graphitic carbon catalyst for aerobic oxidation of cyclohexane. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Liu H, Li Z, Wang J, Lu S, Wang M, Liu Y, Li C. Carboxylation of Toluene with CO 2‐derived Dimethyl Carbonate over Amorphous Ti−Zr Mixed‐metal Oxide Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201901276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hailong Liu
- Institution Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Zelong Li
- Institution Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Jijie Wang
- Institution Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Shengmei Lu
- Institution Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Mengmeng Wang
- Institution Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Yan Liu
- Institution Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| | - Can Li
- Institution Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
36
|
Recent advances in the application of acetophenone in heterocyclic compounds synthesis. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01774-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Yang M, Qiu G, Huang C, Han X, Li Y, Chen B. Selective Oxidation of Cumene to the Equivalent Amount of Dimethylbenzyl Alcohol and Cumene Hydroperoxide. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Man Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guo Qiu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chongpin Huang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaomeng Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingxia Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biaohua Chen
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
38
|
Liu M, Shi S, Zhao L, Chen C, Gao J, Xu J. Aliphatic amines modified CoO nanoparticles for catalytic oxidation of aromatic hydrocarbon with molecular oxygen. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63413-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Sun M, Zhang Y, Liu HH, Zhang F, Zhai LF, Wang S. Room-temperature air oxidation of organic pollutants via electrocatalysis by nanoscaled Co-CoO on graphite felt anode. ENVIRONMENT INTERNATIONAL 2019; 131:104977. [PMID: 31295645 DOI: 10.1016/j.envint.2019.104977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Oxygen (O2) in air is an eco-friendly and economical oxidant. However, its activation is an energy-intensive process requiring high operation temperature. Herein, we report the synthesis of nanoscaled Co-CoO on a graphite felt (GF) as an anode material for electrocatalytic wet air oxidation (ECWAO) of water contaminants at room temperature. Such an ECWAO process shows extensive effectiveness in mineralizing a variety of biorefractory organic pollutants. A probe pollutant, bisphenol A (BPA), is rapidly degraded in 180 min with mineralization efficiencies higher than 85% over a wide pH range from 3.0 to 11.0. The Co-CoO/GF electrode exhibits excellent stability in the ECWAO process, without loss of activity and leaching of metal. The ECWAO process is confirmed to be initiated by the electrochemical activation of O2 through a non-radical pathway. The CoO on the surface of Co nanoparticle is identified as the catalytically active site, at which O2 molecules are first converted to chemisorbed oxygen species and then electrochemically oxidized to their activated states. The ECWAO process with the Co-CoO/GF electrode presents the merits of high efficiency, low energy input and environmental friendliness, and has a great potential for practical wastewater treatment.
Collapse
Affiliation(s)
- Min Sun
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hui-Hui Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Feng Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin-Feng Zhai
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Shaobin Wang
- School of Chemical Engineering, the University of Adelaide, Adelaide SA5005, Australia.
| |
Collapse
|
40
|
Engel RV, Alsaiari R, Nowicka E, Miedziak PJ, Kondrat SA, Morgan DJ, Edwards JK, Hutchings GJ. Solvent-free aerobic epoxidation of 1-decene using supported cobalt catalysts. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Lebedeva A, Albuquerque BL, Domingos JB, Lamonier JF, Giraudon JM, Lecante P, Denicourt-Nowicki A, Roucoux A. Ruthenium Trichloride Catalyst in Water: Ru Colloids versus Ru Dimer Characterization Investigations. Inorg Chem 2019; 58:4141-4151. [PMID: 30868870 DOI: 10.1021/acs.inorgchem.8b03144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An easy-to-prepare ruthenium catalyst obtained from ruthenium(III) trichloride in water demonstrates efficient performances in the oxidation of several cycloalkanes with high selectivity toward the ketone. In this work, several physicochemical techniques were used to demonstrate the real nature of the ruthenium salt still unknown in water and to define the active species for this Csp3-H bond functionalization. From transmission electron microscopy analyses corroborated by SAXS analyses, spherical nanoobjects were observed with an average diameter of 1.75 nm, thus being in favor of the formation of reduced species. However, further investigations, based on X-ray scattering and absorption analyses, showed no evidence of the presence of a metallic Ru-Ru bond, proof of zerovalent nanoparticles, but the existence of Ru-O and Ru-Cl bonds, and thus the formation of a water-soluble complex. The EXAFS (extended X-ray absorption fine structure) spectra revealed the presence of an oxygen-bridged diruthenium complex [Ru(OH) xCl3- x]2(μ-O) with a high oxidation state in agreement with catalytic results. This study constitutes a significant advance to determine the true nature of the RuCl3·3H2O salt in water and proves once again the invasive nature of the electron beam in microscopy experiments, routinely used in nanochemistry.
Collapse
Affiliation(s)
- Anastasia Lebedeva
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 , Université de Rennes , F-35000 Rennes , France
| | - Brunno L Albuquerque
- LaCBio, Laboratory of Biomimetic Catalysis, Chemistry Department , Universidade Federal de Santa Catarina , Campus Trindade , Florianópolis 88040-900 , Santa Catarina Brazil.,LAMOCA, Laboratory of Molecular Catalysis, Chemistry Institute , Universidade Federal do Rio Grande do Sul , Campus do Vale , Porto Alegre 91501-970 , Rio Grande do Su , Brazil
| | - Josiel B Domingos
- LaCBio, Laboratory of Biomimetic Catalysis, Chemistry Department , Universidade Federal de Santa Catarina , Campus Trindade , Florianópolis 88040-900 , Santa Catarina Brazil
| | - Jean-François Lamonier
- UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), CNRS, Centrale Lille, ENSCL , Université de Lille and Université D'Artois , Lille , 59000 , France
| | - Jean-Marc Giraudon
- UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), CNRS, Centrale Lille, ENSCL , Université de Lille and Université D'Artois , Lille , 59000 , France
| | - Pierre Lecante
- Centre d'Elaboration des Matériaux et d'Etudes Structurales du CNRS , 9 Rue Marvig, BP 4347 , Toulouse Cedex 31055 , France
| | - Audrey Denicourt-Nowicki
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 , Université de Rennes , F-35000 Rennes , France
| | - Alain Roucoux
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226 , Université de Rennes , F-35000 Rennes , France
| |
Collapse
|
42
|
Bazyar Z, Hosseini-Sarvari M. Visible-Light-Driven Direct Oxidative Coupling Reaction Leading to Alkyl Aryl Ketones, Catalyzed by Nano Pd/ZnO. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zahra Bazyar
- Department of Organic Chemistry; College of Sceince; Shiraz University; Shiraz 7194684795 I. R. Iran
| | - Mona Hosseini-Sarvari
- Department of Organic Chemistry; College of Sceince; Shiraz University; Shiraz 7194684795 I. R. Iran
| |
Collapse
|
43
|
Huang R, Cao C, Liu J, Sun D, Song W. N-Doped carbon nanofibers derived from bacterial cellulose as an excellent metal-free catalyst for selective oxidation of arylalkanes. Chem Commun (Camb) 2019; 55:1935-1938. [DOI: 10.1039/c9cc00185a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
N-Doped carbon nanofibers derived from one-step pyrolysis of low-cost bacterial cellulose with the assistance of urea were an excellent metal-free carbocatalyst for selective oxidation of arylalkanes.
Collapse
Affiliation(s)
- Runkun Huang
- Beijing National Laboratory for Molecular Sciences
- Laboratory of Molecular Nanostructures and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Changyan Cao
- Beijing National Laboratory for Molecular Sciences
- Laboratory of Molecular Nanostructures and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences
- Laboratory of Molecular Nanostructures and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Weiguo Song
- Beijing National Laboratory for Molecular Sciences
- Laboratory of Molecular Nanostructures and Nanotechnology
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
44
|
Fang ZW, Liu HJ, Wang ZH, Wen D, Long XL. Effect of activated carbon modified with oxalic acid on the production of IPA from MX catalyzed by H3PW12O40@carbon and cobalt. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Qiu H, Liang W, Zhang G, Lin M, Liu W, Gao Z, Wei W, Tang C, Jin H, Liang H, Yan X. Aerobic Oxidation of Methyl‐substituted
β
‐Carbolines Catalyzed by N‐Hydroxyphthalimide and Metal Catalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201803007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Hongda Qiu
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Weida Liang
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
- Present address: Department of ChemistryPurdue University West Lafayette, IN 47907 USA
| | - Gongjun Zhang
- Ningbo Institute of Industrial TechnologyChinese Academy of Sciences, Ningbo Zhejiang 315201 P. R. China
| | - Miaoman Lin
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Wanmin Liu
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Zhanghua Gao
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Wenting Wei
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Chunlan Tang
- School of MedicineNingbo University, Ningbo Zhejiang 315211 P. R. Chinan
| | - Haixiao Jin
- School of Marine SciencesNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Hongze Liang
- School of Materials Science and Chemical EngineeringNingbo University, Ningbo Zhejiang 315211 P. R. China
| | - Xiaojun Yan
- School of Marine SciencesNingbo University, Ningbo Zhejiang 315211 P. R. China
| |
Collapse
|
46
|
Kanai Y, Ryu A, Kobayashi K, Suzukawa K. Effects of the Vessel Diameter on Bubble-Induced Oscillation. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yugo Kanai
- Department of Chemical Engineering, Fukuoka University
| | - Aimi Ryu
- Department of Chemical Engineering, Fukuoka University
| | | | | |
Collapse
|
47
|
Fang ZW, Wen D, Wang ZH, Long XL. Effect of H2O2 modification of H3PW12O40@carbon for m-xylene oxidation to isophthalic acid. KOREAN J CHEM ENG 2018. [DOI: 10.1007/s11814-018-0138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Advances in Nanostructured Metal-Encapsulated Porous Organic-Polymer Composites for Catalyzed Organic Chemical Synthesis. Catalysts 2018. [DOI: 10.3390/catal8110492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porous organic polymers (POPs) are of growing research interest owing to their high surface areas, stabilities, controllable chemical configurations, and tunable pore volumes. The molecular nanoarchitecture of POP provides metal or metal oxide binding sites, which is promising for the development of advanced heterogeneous catalysts. This article highlights the development of numerous kinds of POPs and key achievements to date, including their functionalization and incorporation of nanoparticles into their framework structures, characterization methods that are predominantly in use for POP-based materials, and their applications as catalysts in several reactions. Scientists today are capable of preparing POP-based materials that show good selectivity, activity, durability, and recoverability, which can help overcome many of the current environmental and industrial problems. These POP-based materials exhibit enhanced catalytic activities for diverse reactions, including coupling, hydrogenation, and acid catalysis.
Collapse
|
49
|
Study of cobalt molybdenum oxide supported on mesoporous silica for liquid phase cyclohexane oxidation. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Willms T, Kryk H, Hampel U. Partial Isobutane Oxidation totert‐Butyl Hydroperoxide in a Micro Reactor – Comparison of DTBP and Aqueous TBHP as Initiator. CHEM-ING-TECH 2018. [DOI: 10.1002/cite.201700149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Willms
- Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
| | - Holger Kryk
- Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
| | - Uwe Hampel
- Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany
| |
Collapse
|