1
|
Wei S, Li H, Li K, Zhang R, Wang G, Liu R. Design of Prussian Blue Analogue-Derived Magnetic Binary Ce–Fe Oxide Catalysts for the Selective Oxidation of Cyclohexane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Shuang Wei
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Hao Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Kexin Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Ruirui Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
| | - Ruixia Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| |
Collapse
|
2
|
Hu P, Chen Y, Yan X, Lang WZ, Guo YJ. Correlation of the Vanadium Precursor and Structure Performance of Porous VOX-SiO2 Solids for Catalytic Dehydrogenation of Propane. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ping Hu
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Yan Chen
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Xi Yan
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Wan-Zhong Lang
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| | - Ya-Jun Guo
- The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
| |
Collapse
|
3
|
Chu YJ, Chen XM, Liu CG. Computational study on epoxidation of propylene by dioxygen using the silanol-functionalized polyoxometalate-supported osmium oxide catalyst. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00900k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The silanol-functionalized POM-supported single-site Os oxide catalyst has been theoretically considered for epoxidation of propylene in the presence of dioxygen based on density functional theory calculations.
Collapse
Affiliation(s)
- Yun-Jie Chu
- Department of Chemistry
- Faculty of Science
- Beihua University
- Jilin City
- P. R. China
| | - Xue-Mei Chen
- College of Chemical Engineering
- Northeast Electric Power University
- Jilin City
- P. R. China
| | - Chun-Guang Liu
- Department of Chemistry
- Faculty of Science
- Beihua University
- Jilin City
- P. R. China
| |
Collapse
|
4
|
Zhang C, Han P, Lu X, Mao Q, Qu J, Li Y. Preparation and photocatalytic activity characterization of activated carbon fiber-BiVO 4 composites. RSC Adv 2018; 8:24665-24672. [PMID: 35539183 PMCID: PMC9082370 DOI: 10.1039/c8ra04659j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022] Open
Abstract
Herein, we describe the hydrothermal immobilization of BiVO4 on activated carbon fibers (ACFs) and characterize the obtained composite by several instrumental techniques, using Reactive Black KN-B (RB5) as a model pollutant for photocatalytic performance evaluation and establishing the experimental conditions yielding maximal photocatalytic activity. The photocatalytic degradation of RB5 is well fitted by a first-order kinetic model, and the good cycling stability and durability of BiVO4@ACFs highlight the potential applicability of the proposed composite. The enhanced photocatalytic activity of BiVO4@ACFs compared to those of BiVO4 and ACFs individually was mechanistically rationalized, and the suggested mechanism was verified by ultraviolet-visible spectroscopy, attenuated total reflectance Fourier-transform infrared spectroscopy, and RB5 degradation experiments. Thus, this work contributes to the development of BiVO4@ACF composites as effective photocatalysts for environmental remediation applications. Herein, we describe the hydrothermal immobilization of BiVO4 on activated carbon fibers, using Reactive Black KN-B photocatalytic performance evaluation and establishing the experimental conditions yielding maximalphotocatalytic activity.![]()
Collapse
Affiliation(s)
- Chencheng Zhang
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 210009 PR China .,College of Textile and Garment, Nantong University Nantong 226019 PR China
| | - Pingfang Han
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 210009 PR China
| | - Xiaoping Lu
- Biotechnology and Pharmaceutical Engineering, Nanjing Tech University Nanjing 210009 PR China
| | - Qinghui Mao
- College of Textile and Garment, Nantong University Nantong 226019 PR China
| | - Jiangang Qu
- College of Textile and Garment, Nantong University Nantong 226019 PR China
| | - Ya Li
- Nantong College of Science and Technology Nantong 226007 PR China
| |
Collapse
|
5
|
Hu P, Lang WZ, Yan X, Chu LF, Guo YJ. Influence of gelation and calcination temperature on the structure-performance of porous VOX-SiO2 solids in non-oxidative propane dehydrogenation. J Catal 2018. [DOI: 10.1016/j.jcat.2017.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Li FT, Xue YB, Li B, Hao YJ, Wang XJ, Liu RH, Zhao J. Precipitation Synthesis of Mesoporous Photoactive Al2O3 for Constructing g-C3N4-Based Heterojunctions with Enhanced Photocatalytic Activity. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5036258] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fa-tang Li
- College of Science and ‡Analytical & Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ya-bin Xue
- College of Science and ‡Analytical & Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bo Li
- College of Science and ‡Analytical & Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ying-juan Hao
- College of Science and ‡Analytical & Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiao-jing Wang
- College of Science and ‡Analytical & Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Rui-hong Liu
- College of Science and ‡Analytical & Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jun Zhao
- College of Science and ‡Analytical & Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
7
|
Zhao Z, Dai H, Deng J, Liu Y, Au CT. Effect of sulfur doping on the photocatalytic performance of BiVO4 under visible light illumination. CHINESE JOURNAL OF CATALYSIS 2013. [DOI: 10.1016/s1872-2067(12)60632-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Liu Y, Dai H, Deng J, Zhang L, Au CT. Three-dimensional ordered macroporous bismuth vanadates: PMMA-templating fabrication and excellent visible light-driven photocatalytic performance for phenol degradation. NANOSCALE 2012; 4:2317-2325. [PMID: 22374295 DOI: 10.1039/c2nr12046a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three-dimension ordered macroporous (3D-OM) bismuth vanadates with a monoclinic crystal structure and high surface area (18-24 m(2) g(-1)) have been prepared using ascorbic acid (AA)- or citric acid (CA)-assisted poly(methyl methacrylate) (PMMA)-templating strategy with bismuth nitrate and ammonium metavanadate as the metal sources, HNO(3) as the pH adjuster and ethylene glycol and methanol as the solvent. The materials were characterized by a number of analytical techniques. The photocatalytic performance of the porous BiVO(4) samples was evaluated for the degradation of phenol in the presence of a small amount of H(2)O(2) under visible light illumination. The effects of the initial phenol concentration and the H(2)O(2) amount on the photocatalytic activity of the photocatalyst were examined. It is shown that the chelating agent, AA or CA, and the amount in which it is added had a significant impact on the quality of the 3D-OM structure, with a "(Bi + V):chelating agent" molar ratio of 2:1 being the most appropriate. Among the as-prepared BiVO(4) samples, the one with a surface area of ca. 24 m(2) g(-1) showed the best visible light-driven photocatalytic performance for phenol degradation (phenol conversion = ca. 94% at phenol concentration = 0.1 mmol L(-1) and in the presence of 0.6 mL H(2)O(2)). A higher phenol conversion could be achieved within the same reaction time if the phenol concentration in the aqueous solution was lowered, but an excess amount of H(2)O(2) was not a favorable factor for the enhancement of the catalytic activity. It is concluded that the excellent photocatalytic activity of 3D-OM BiVO(4) is due to the high quality 3D-OM structured BiVO(4) that has a high surface area and surface oxygen vacancy density. We are sure that the 3D-OM material is a promising photocatalyst for the removal of organics from wastewater under visible light illumination.
Collapse
Affiliation(s)
- Yuxi Liu
- Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | | | | | | | | |
Collapse
|