1
|
Kong FX, Chen YX, Wang YK, Chen JF. Simultaneous electrocoagulation and E-peroxone coupled with ultrafiltration membrane for shale gas produced water treatment. CHEMOSPHERE 2024; 355:141834. [PMID: 38565376 DOI: 10.1016/j.chemosphere.2024.141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Membrane fouling caused by the organics-coated particles was the main obstacle for the highly efficient shale gas produced water (SGPW) treatment and recycling. In this study, a novel hybrid electrocoagulation (EC) and E-peroxone process coupled with UF (ECP-UF) process was proposed to examine the efficacy and elucidate the mechanism for UF fouling mitigation in assisting SGPW reuse. Compared to the TMP (transmembrane pressure) increase of -15 kPa in the EC-UF process, TMP in ECP-UF system marginally increased to -1.4 kPa for 3 filtration cycles under the current density of 15 mA/cm2. Both the total fouling index and hydraulically irreversible fouling index of the ECP-UF process were significantly lower than those of EC-UF process. According to the extended Derjaguin-Landau-Verwey-Overbeek theory, the potential barriers was the highest for ECP-UF processes due to the substantial increase of the acid-base interaction energy in ECP-UF process, which was well consistent with the TMP and SEM results. Turbidity and TOC of ECP-UF process were 63.6% and 45.8% lower than those of EC-UF process, respectively. According to the MW distribution, the variations of compounds and their relative contents were probably due to the oxidation and decomposing products of the macromolecular organics. The number of aromatic compound decreased, while the number of open-chain compounds (i.e., alkenes, alkanes and alcohols) increased in the permeate of ECP-UF process. Notably, the substantial decrease in the relative abundance of di-phthalate compounds was attributed to the high reactivity of these compounds with ·OH. Mechanism study indicated that ECP could realize the simultaneous coagulation, H2O2 generation and activation by O3, facilitating the enhancement of ·OH and Alb production and therefore beneficial for the improved water quality and UF fouling mitigation. Therefore, the ECP-UF process emerges as a high-efficient and space-saving approach, yielding a synergistic effect in mitigating UF fouling for SGPW recycling.
Collapse
Affiliation(s)
- Fan-Xin Kong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China.
| | - Yu-Xuan Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Yu-Kun Wang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| | - Jin-Fu Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, China University of Petroleum, Beijing, 102249, China
| |
Collapse
|
2
|
Nigam M, Mishra P, Kumar P, Rajoriya S, Pathak P, Singh SR, Kumar S, Singh L. Comprehensive technological assessment for different treatment methods of leather tannery wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124686-124703. [PMID: 35680745 DOI: 10.1007/s11356-022-21259-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/30/2022] [Indexed: 05/16/2023]
Abstract
The leather-making process necessitates large amounts of water and consequently generates tons of liquid waste as leather tannery wastewater (TWW) is disposed of directly in the open environment. Open disposal of untreated TWW into the natural environment causes an accumulation of various polluting compounds, including heavy metals, dyes, suspended solids inorganic matter, biocides, oils, tannins, and other toxic chemicals. It thus poses potential hazards to the environment and human health. This study primarily focuses on providing in-depth insight into the characteristics, treatment strategies, and regulatory frameworks for managing TWW in leather processing industries. Different technologies of conventional physico-chemical (equalization, coagulation, and adsorption), advanced approaches (Fenton oxidation, ozonation, cavitation), thermo-catalytic and biological treatments available to treat TWW, and their integrative approaches were also highlighted. This review also sheds light on the most frequently applied technologies to reduce contaminant load from TWW though there are several limitations associated with it such as being ineffective for large quantities of TWW, waste generation during treatment, and high operational and maintenance (O&M) costs. It is concluded that the sustainable alternatives applied in the current TWW technologies can minimize O&M costs and recirculate the treated water in the environment. The exhaustive observations and recommendations presented in this article are helpful in the industry to manage TWW and recirculate the water in a sustainable manner.
Collapse
Affiliation(s)
- Mohit Nigam
- Chemical Engineering Department, Raja Balwant Singh Engineering Technical Campus, Agra, 283105, India
| | - Puranjan Mishra
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Pradeep Kumar
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | | | - Pankaj Pathak
- Department of Environmental Science, SRM University-AP, Amaravati, Andhra Pradesh, 522502, India
| | - Shraddha Rani Singh
- Chemical Engineering Department, Raja Balwant Singh Engineering Technical Campus, Agra, 283105, India
| | - Smita Kumar
- Department of Environmental Sciences, J.C. Bose University of Science & Technology, YMCA, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Lakhveer Singh
- Department of Chemistry, Sardar Patel University, Mandi, Himachal Pradesh, 175001, India
- Department of Civil Engineering, Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| |
Collapse
|
3
|
Mannacharaju M, Ganesan S, Lee JK, Rajagopal R, Chang SW, Ravindran B. Bacterial cell immobilized packed bed reactor for the elimination of dissolved organics from biologically treated post-tanning wastewater and its microbial community profile. CHEMOSPHERE 2023; 320:138022. [PMID: 36739983 DOI: 10.1016/j.chemosphere.2023.138022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
In conventional, the biologically treated tannery wastewaters are rich in dissolved organics and the application of reverse osmosis (RO) to biologically treated tannery wastewater was challenged with fouling and failure of RO membrane due to existence of lingering dissolved organic compounds. In present investigation the bacterial cell immobilized packed bed reactor (CIPBR) was operated to remove the dissolved organic compounds in biologically treated post-tanning wastewater to avoid membrane fouling in RO. The efficient microbial syndicate to eliminate dissolved organics in post-tanning wastewater was isolated and immobilized on to the carbon silica matrix (CSM) in the range of 2.98 ± 0.2 × 107 cells gm-1 of CSM and the same was used as a carrier matrix in the packed bed reactor. The CIPBR established the CODtot, CODdis and BOD removal efficiency by 61 ± 4%, 57 ± 4% and 87 ± 3% respectively with CODtot, CODdis and BOD remained in the treated wastewater as 236 ± 21 mg/L, 228 ± 21 mg/L, and 12 ± 3 mg/L under continuous operation. The removal of dissolved organic compounds from the post-tanning wastewater was confirmed using UV-Visible and FT-IR spectroscopic studies. Among the total microbial community, the phylum Proteobacteria played most abundant role with 48.47% of relative abundance for the removal of dissolved organics in biologically treated post-tanning wastewater. The significance of the study is to replace the tertiary treatment unit operation in the conventional ETP/CETP to remove dissolved organics in wastewater.
Collapse
Affiliation(s)
- Mahesh Mannacharaju
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai, 20, TN, India; Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sekaran Ganesan
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute (CLRI), Adyar, Chennai, 20, TN, India; SRM Institute of Science and Technology, Ramapuram Campus, Chennai-600089, India.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC, J1M 0C8, Canada
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| |
Collapse
|
4
|
|
5
|
Engineering aspects of catalytic ozonation for purification of real textile industry wastewater at the pilot scale. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Naumczyk JH, Kucharska MA. Electrochemical treatment of tannery wastewater-Raw, coagulated, and pretreated by AOPs. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:649-664. [PMID: 28328295 DOI: 10.1080/10934529.2017.1297140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study on tannery wastewater treatment showed that indirect electrooxidation by chlorine generated at a Ti/SnO2/PdO2/RuO2 (SPR) anode led to full ammonia removal, and a decrease in chemical oxygen demand (COD) of up to 77.0%. A combined process of coagulation + H2O2/UV + electrooxidation allowed us to achieve a decrease in COD of up to 97.5%. Equations describing the kinetics of the decrease in COD, the relationship between the decrease in COD and current, and the relationship between the current efficiency of COD reduction and the initial concentrations of the reagents were established. The changes in the Adsorbable Organically Bound Halogen (AOX) value were determined, and the individual compounds, including chloroorganics, present in raw and treated wastewater were identified by gas chromatography mass spectrometry (GC-MS). Values of AOX increased in the initial phase of electrooxidation, while afterwards they decreased.
Collapse
Affiliation(s)
- Jeremi H Naumczyk
- a Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| | - Małgorzata A Kucharska
- a Faculty of Building Services, Hydro and Environmental Engineering , Warsaw University of Technology , Warsaw , Poland
| |
Collapse
|
7
|
Huang G, Pan F, Fan G, Liu G. Application of heterogeneous catalytic ozonation as a tertiary treatment of effluent of biologically treated tannery wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2016; 51:626-633. [PMID: 27088814 DOI: 10.1080/10934529.2016.1159863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The present study employed a Mn-Cu/Al2O3 heterogeneous catalytic ozonation process for tertiary treatment of actual tannery wastewater, focusing on its feasibility in that application. The primary factors affecting the removal efficiency of organic pollutants were investigated, including catalyst dosage, ozone dosage, and initial pH value. The experimental results showed that the addition of a Mn-Cu/Al2O3 catalyst improved the removal efficiency of chemical oxygen demand (COD) during ozonation, which initiated a 29.3% increase for COD removal, compared to ozonation alone after 60 min. The optimum pH, catalyst dosage, and ozone dosage were determined to be 7.0, 2.0 g/L, and 0.3 g/h, respectively. Under these conditions, following 60 min of reaction, the COD removal efficiency and the concentration in effluent were 88%, and 17 mg/L, respectively. In addition, the presence of tert-butanol (a well known hydroxyl radical scavenger) strongly inhibited COD removal via Mn-Cu/Al2O3 catalytic ozonation, indicating that the Mn-Cu/Al2O3 catalytic ozonation process follows a hydroxyl radical (OH·) reaction mechanism. The Mn-Cu/Al2O3 catalyst exhibited good stability and reusability. Finally, the kinetic analysis revealed that the apparent reaction rate constant of COD removal with the Mn-Cu/Al2O3 catalytic ozonation system (0.0328 min(-1)) was 2.3 times that of an ozonation system alone (0.0141 min(-1)). These results demonstrated that the catalytic ozonation using Mn-Cu/Al2O3 is an effective and promising process for tertiary treatment of tannery effluent in biological systems.
Collapse
Affiliation(s)
- Guangdao Huang
- a School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Xinxiang , Henan , P. R. China
- b Environmental Protection & Design institute, Huaqiao University , Quanzhou , Fujian , P. R. China
| | - Feng Pan
- a School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Xinxiang , Henan , P. R. China
| | - Guofeng Fan
- b Environmental Protection & Design institute, Huaqiao University , Quanzhou , Fujian , P. R. China
| | - Guoguang Liu
- a School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Xinxiang , Henan , P. R. China
| |
Collapse
|
8
|
Oxidation of diatrizoate in aqueous phase by advanced oxidation processes based on solar radiation. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Mechanism for enhancing biodegradability of antibiotic pharmacy wastewater by in-situ generation of H2O2 and radicals over MnOx/nano-G/2-EAQ/AC cathode. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.01.074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Wu D, Lu G, Zhang R, Lin Q, Yan Z, Liu J, Li Y. Enhanced hydroxyl radical generation in the combined ozonation and electrolysis process using carbon nanotubes containing gas diffusion cathode. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15812-15820. [PMID: 26036588 DOI: 10.1007/s11356-015-4783-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/25/2015] [Indexed: 06/04/2023]
Abstract
Combination of ozone together with electrolysis (ozone-electrolysis) is a promising wastewater treatment technology. This work investigated the potential use of carbon nanotube (CNT)-based gas diffusion cathode (GDC) for ozone-electrolysis process employing hydroxyl radicals (·OH) production as an indicator. Compared with conventional active carbon (AC)-polytetrafluoroethylene (PTFE) and carbon black (CB)-PTFE cathodes, the production of ·OH in the coupled process was improved using CNTs-PTFE GDC. Appropriate addition of acetylene black (AB) and pore-forming agent Na2SO4 could enhance the efficiency of CNTs-PTFE GDC. The optimum GDC composition was obtained by response surface methodology (RSM) analysis and was determined as CNTs 31.2 wt%, PTFE 60.6 wt%, AB 3.5 wt%, and Na2SO4 4.7 wt%. Moreover, the optimized CNT-based GDC exhibited much more effective than traditional Ti and graphite cathodes in Acid Orange 7 (AO7) mineralization and possessed the desirable stability without performance decay after ten times reaction. The comparison tests revealed that peroxone reaction was the main pathway of ·OH production in the present system, and cathodic reduction of ozone could significantly promote ·OH generation. These results suggested that application of CNT-based GDC offers considerable advantages in ozone-electrolysis of organic wastewater.
Collapse
Affiliation(s)
- Donghai Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Ran Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, P.O. Box 2606, 202 Haihe Road, Harbin, 150090, China
| | - Qiuhong Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
11
|
Hasegawa MC, Daniel JFDS, Takashima K, Batista GA, da Silva SMCP. COD removal and toxicity decrease from tannery wastewater by zinc oxide-assisted photocatalysis: a case study. ENVIRONMENTAL TECHNOLOGY 2014; 35:1589-1595. [PMID: 24956748 DOI: 10.1080/09593330.2013.874499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work reports the optimization of degradation conditions and toxicity decrease in the tannery wastewater, collected in the retanning and dyeing steps. This effluent was filtered, diluted in a 1:200 proportion, and investigated as a case study on a bench scale by heterogeneous photocatalysis. These conditions were attained when the suspension, containing 1 g L-1 of ZnO and effluent, was irradiated for 4h at pH 8.0 and 30 degrees C. Physico-chemical parameters such as chemical oxygen demand (COD) decreased from 15,023 to 350 mg O2 L-1; fifth-day biochemical oxygen demand (BODs) from 4374 to 10 mg O2 L-1; total solids from 28,500 to 188 mg L-1; total organic carbon (TOC) from 4685 to 4.93 mg L-1, and turbidity from 331 to 1.15NTU after 4h of irradiation. The LC50 increase from 14.90% to 56.82% in the lethality assay of Artemia salina L. microcrustacean as well as the dissolved oxygen of 6.45mg L-1 indicated efficiency in this treatment.
Collapse
|
12
|
Isarain-Chávez E, de la Rosa C, Godínez LA, Brillas E, Peralta-Hernández JM. Comparative study of electrochemical water treatment processes for a tannery wastewater effluent. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Sha B, Wang J, Zhou L, Zhang X, Han L, Zhao L. Adsorption of organic amines from wastewater by carboxyl group-modified polyacrylonitrile fibers. J Appl Polym Sci 2012. [DOI: 10.1002/app.38643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|