• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4694197)   Today's Articles (5088)
For: Liu Y, Gao Z, Li P, Wang H. Just-in-Time Kernel Learning with Adaptive Parameter Selection for Soft Sensor Modeling of Batch Processes. Ind Eng Chem Res 2012. [DOI: 10.1021/ie201650u] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Song MJ, Ju SH, Lee JM. Soft sensor development based on just-in-time learning and dynamic time warping for multi-grade processes. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
2
Zhu W, Zhang Z, Liu Y. Dynamic Data Reconciliation for Improving the Prediction Performance of the Data-Driven Model on Distributed Product Outputs. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
3
Zhang F, Kang T, Sun J, Wang J, Zhao W, Gao S, Wang W, Ma Q. Improving TVB-N prediction in pork using portable spectroscopy with just-in-time learning model updating method. Meat Sci 2022;188:108801. [DOI: 10.1016/j.meatsci.2022.108801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022]
4
Tulsyan A, Khodabandehlou H, Wang T, Schorner G, Coufal M, Undey C. Spectroscopic models for real‐time monitoring of cell culture processes using spatiotemporal just‐in‐time Gaussian processes. AIChE J 2021. [DOI: 10.1002/aic.17210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
5
Qiu K, Wang J, Zhou X, Guo Y, Wang R. Soft Sensor Framework Based on Semisupervised Just-in-Time Relevance Vector Regression for Multiphase Batch Processes with Unlabeled Data. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03806] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Joshi T, Goyal V, Kodamana H. A Novel Dynamic Just-in-Time Learning Framework for Modeling of Batch Processes. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
7
Weighted similarity based just-in-time model predictive control for batch trajectory tracking. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.07.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
8
Azizi A, Rooki R, Mollayi N. Modeling and prediction of wear rate of grinding media in mineral processing industry using multiple kernel support vector machine. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]  Open
9
Liu K, Shao W, Chen G. Autoencoder-based nonlinear Bayesian locally weighted regression for soft sensor development. ISA TRANSACTIONS 2020;103:143-155. [PMID: 32171594 DOI: 10.1016/j.isatra.2020.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
10
Semi-Supervised Hybrid Local Kernel Regression for Soft Sensor Modelling of Rubber-Mixing Process. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6981302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
11
Mickel VM, Yeo WS, Saptoro A. Evaluating the Performance of Newly Integrated Model in Nonlinear Chemical Process Against Missing Measurements. CHEMICAL PRODUCT AND PROCESS MODELING 2019. [DOI: 10.1515/cppm-2018-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
12
Yeo WS, Saptoro A, Kumar P. Adaptive Soft Sensor Development for Non-Gaussian and Nonlinear Processes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Mu G, Liu T, Chen J, Xia L, Yu C. 110th Anniversary: Real-Time End Point Detection of Fluidized Bed Drying Process Based on a Switching Model of Near-Infrared Spectroscopy. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Pan B, Jin H, Yang B, Qian B, Zhao Z. Soft Sensor Development for Nonlinear Industrial Processes Based on Ensemble Just-in-Time Extreme Learning Machine through Triple-Modal Perturbation and Evolutionary Multiobjective Optimization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
15
Liu H, Yang C, Carlsson B, Qin SJ, Yoo C. Dynamic Nonlinear Partial Least Squares Modeling Using Gaussian Process Regression. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00701] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Kim S, Mishima K, Kano M, Hasebe S. Database Management Method Based on Strength of Nonlinearity for Locally Weighted Linear Regression. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2019. [DOI: 10.1252/jcej.18we119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
17
Pan B, Jin H, Wang L, Qian B, Chen X, Huang S, Li J. Just-in-time learning based soft sensor with variable selection and weighting optimized by evolutionary optimization for quality prediction of nonlinear processes. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
18
Soft-Sensor Modeling for Semi-Batch Chemical Process Using Limited Number of Sampling. JOURNAL OF COMPUTER AIDED CHEMISTRY 2019. [DOI: 10.2751/jcac.20.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
19
Santos BFD, Simiqueli APR, Ponezi AN, Pastore GM, Fileti AMF. MONITORING OF BIOSURFACTANT PRODUCTION BY Bacillus subtilis USING BEET PEEL AS CULTURE MEDIUM VIA THE DEVELOPMENT OF A NEURAL SOFT-SENSOR IN AN ELECTRONIC SPREADSHEET. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180354s20160664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
20
Liu J, Liu T, Chen J. Quality prediction for multi-grade processes by just-in-time latent variable modeling with integration of common and special features. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
21
Shokry A, Vicente P, Escudero G, Pérez-Moya M, Graells M, Espuña A. Data-driven soft-sensors for online monitoring of batch processes with different initial conditions. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
22
Taqvi SA, Tufa LD, Zabiri H, Maulud AS, Uddin F. Multiple Fault Diagnosis in Distillation Column Using Multikernel Support Vector Machine. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
23
Jia L, Tan W. Just-in-time learning based integrated MPC-ILC control for batch processes. Chin J Chem Eng 2018. [DOI: 10.1016/j.cjche.2018.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
24
Zhong W, Jiang C, Peng X, Li Z, Qian F. Online Quality Prediction of Industrial Terephthalic Acid Hydropurification Process Using Modified Regularized Slow-Feature Analysis. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01270] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Li Y, Wang X, Liu Z, Bai X, Tan J. A data‐based optimal setting method for the coking flue gas denitration process. CAN J CHEM ENG 2018. [DOI: 10.1002/cjce.23226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
26
Ding Y, Wang Y, Zhou D. Mortality prediction for ICU patients combining just-in-time learning and extreme learning machine. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.10.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
27
Zhu J, Gao F. Improved Nonlinear Quality Estimation for Multiphase Batch Processes Based on Relevance Vector Machine with Neighborhood Component Variable Selection. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b03590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
28
Liu Y, Liang Y, Gao Z. Industrial polyethylene melt index prediction using ensemble manifold learning-based local model. J Appl Polym Sci 2017. [DOI: 10.1002/app.45094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
29
Yu H, Khan F. Improved latent variable models for nonlinear and dynamic process monitoring. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.04.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
30
Liu Y, Wu QY, Chen J. Active Selection of Informative Data for Sequential Quality Enhancement of Soft Sensor Models with Latent Variables. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04620] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
31
Wang H, Ni C, Yan X. Optimizing the echo state network based on mutual information for modeling fed-batch bioprocesses. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
32
Wang L, Jin H, Chen X, Dai J, Yang K, Zhang D. Soft Sensor Development Based on the Hierarchical Ensemble of Gaussian Process Regression Models for Nonlinear and Non-Gaussian Chemical Processes. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
33
Liu Y, Fan Y, Zhou L, Jin F, Gao Z. Ensemble Correntropy-Based Mooney Viscosity Prediction Model for an Industrial Rubber Mixing Process. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201600017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
34
Liu H, Yoo C. A robust localized soft sensor for particulate matter modeling in Seoul metro systems. JOURNAL OF HAZARDOUS MATERIALS 2016;305:209-218. [PMID: 26686480 DOI: 10.1016/j.jhazmat.2015.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
35
Liu Y, Zhang Z, Chen J. Ensemble local kernel learning for online prediction of distributed product outputs in chemical processes. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
36
Shao W, Tian X, Wang P. Supervised local and non-local structure preserving projections with application to just-in-time learning for adaptive soft sensor. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
37
Feedforward kernel neural networks, generalized least learning machine, and its deep learning with application to image classification. Appl Soft Comput 2015. [DOI: 10.1016/j.asoc.2015.07.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
38
Jin H, Chen X, Wang L, Yang K, Wu L. Adaptive Soft Sensor Development Based on Online Ensemble Gaussian Process Regression for Nonlinear Time-Varying Batch Processes. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01495] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
39
Liu Y, Chen T, Chen J. Auto-Switch Gaussian Process Regression-Based Probabilistic Soft Sensors for Industrial Multigrade Processes with Transitions. Ind Eng Chem Res 2015. [DOI: 10.1021/ie504185j] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
40
Shao W, Tian X, Wang P. Soft sensor development for nonlinear and time-varying processes based on supervised ensemble learning with improved process state partition. ASIA-PAC J CHEM ENG 2015. [DOI: 10.1002/apj.1874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
41
Shao W, Tian X. Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.01.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
42
Liu Y, Gao Z. Industrial melt index prediction with the ensemble anti-outlier just-in-time Gaussian process regression modeling method. J Appl Polym Sci 2015. [DOI: 10.1002/app.41958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
43
Shen F, Ge Z, Song Z. Multivariate Trajectory-Based Local Monitoring Method for Multiphase Batch Processes. Ind Eng Chem Res 2015. [DOI: 10.1021/ie503921t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
44
Gopi E, Palanisamy P. Maximizing Gaussianity using kurtosis measurement in the kernel space for kernel linear discriminant analysis. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
45
Lu WZ, Wang D. Learning machines: Rationale and application in ground-level ozone prediction. Appl Soft Comput 2014. [DOI: 10.1016/j.asoc.2014.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
46
Paulsson D, Gustavsson R, Mandenius CF. A soft sensor for bioprocess control based on sequential filtering of metabolic heat signals. SENSORS 2014;14:17864-82. [PMID: 25264951 PMCID: PMC4239934 DOI: 10.3390/s141017864] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 11/16/2022]
47
Shao W, Tian X, Wang P. Local Partial Least Squares Based Online Soft Sensing Method for Multi-output Processes with Adaptive Process States Division. Chin J Chem Eng 2014. [DOI: 10.1016/j.cjche.2014.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
48
Zhang Z, Chuang YY, Chen J. Pervasive Knowledge Discovery by Just-in-Time Learning to Solve Simultaneous Data Reconciliation and Parameter Estimation of Industrial Processes. Ind Eng Chem Res 2014. [DOI: 10.1021/ie4043455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
49
Ge Z, Song Z. Online Monitoring and Quality Prediction of Multiphase Batch Processes with Uneven Length Problem. Ind Eng Chem Res 2014. [DOI: 10.1021/ie403210t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
50
Development of soft-sensors for online quality prediction of sequential-reactor-multi-grade industrial processes. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2013.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA