1
|
Phongprueksathat N, Ting KW, Mine S, Jing Y, Toyoshima R, Kondoh H, Shimizu KI, Toyao T, Urakawa A. Bifunctionality of Re Supported on TiO 2 in Driving Methanol Formation in Low-Temperature CO 2 Hydrogenation. ACS Catal 2023; 13:10734-10750. [PMID: 37614518 PMCID: PMC10442859 DOI: 10.1021/acscatal.3c01599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Low temperature and high pressure are thermodynamically more favorable conditions to achieve high conversion and high methanol selectivity in CO2 hydrogenation. However, low-temperature activity is generally very poor due to the sluggish kinetics, and thus, designing highly selective catalysts active below 200 °C is a great challenge in CO2-to-methanol conversion. Recently, Re/TiO2 has been reported as a promising catalyst. We show that Re/TiO2 is indeed more active in continuous and high-pressure (56 and 331 bar) operations at 125-200 °C compared to an industrial Cu/ZnO/Al2O3 catalyst, which suffers from the formation of methyl formate and its decomposition to carbon monoxide. At lower temperatures, precise understanding and control over the active surface intermediates are crucial to boosting conversion kinetics. This work aims at elucidating the nature of active sites and active species by means of in situ/operando X-ray absorption spectroscopy, Raman spectroscopy, ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Transient operando DRIFTS studies uncover the activation of CO2 to form active formate intermediates leading to methanol formation and also active rhenium carbonyl intermediates leading to methane over cationic Re single atoms characterized by rhenium tricarbonyl complexes. The transient techniques enable us to differentiate the active species from the spectator one on TiO2 support, such as less reactive formate originating from spillover and methoxy from methanol adsorption. The AP-XPS supports the fact that metallic Re species act as H2 activators, leading to H-spillover and importantly to hydrogenation of the active formate intermediate present over cationic Re species. The origin of the unique reactivity of Re/TiO2 was suggested as the coexistence of cationic highly dispersed Re including single atoms, driving the formation of monodentate formate, and metallic Re clusters in the vicinity, activating the hydrogenation of the formate to methanol.
Collapse
Affiliation(s)
- Nat Phongprueksathat
- Catalysis
Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, Netherlands
| | - Kah Wei Ting
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Ryo Toyoshima
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroshi Kondoh
- Department
of Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Ken-ichi Shimizu
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute
for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Atsushi Urakawa
- Catalysis
Engineering, Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, Netherlands
| |
Collapse
|
2
|
A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H2 and CO2 with Intermediate Condensation Steps. Processes (Basel) 2022. [DOI: 10.3390/pr10081535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to increase the typically low equilibrium CO2 conversion to methanol using commercially proven technology, the addition of two intermediate condensation units between reaction steps is evaluated in this work. Detailed process simulations with heat integration and techno-economic analyses of methanol synthesis from green H2 and captured CO2 are presented here, comparing the proposed process with condensation steps with the conventional approach. In the new process, a CO2 single-pass conversion of 53.9% was achieved, which is significantly higher than the conversion of the conventional process (28.5%) and its equilibrium conversion (30.4%). Consequently, the total recycle stream flow was halved, which reduced reactant losses in the purge stream and the compression work of the recycle streams, lowering operating costs by 4.8% (61.2 M€·a−1). In spite of the additional number of heat exchangers and flash drums related to the intermediate condensation units, the fixed investment costs of the improved process decreased by 22.7% (94.5 M€). This was a consequence of the increased reaction rates and lower recycle flows, reducing the required size of the main equipment. Therefore, intermediate condensation steps are beneficial for methanol synthesis from H2/CO2, significantly boosting CO2 single-pass conversion, which consequently reduces both the investment and operating costs.
Collapse
|
3
|
Alamer AM, Somiari I, Flytzani-Stephanopoulos M, Manousiouthakis VI. Chemical-Phase Equilibrium of CO–CO 2–H 2–CH 3OH–DME–H 2O Mixtures in C–H–O Atom-Mol Fraction Space Using Gibbs Free Energy Minimization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdulaziz M. Alamer
- Department of Chemical and Biomolecular Engineering, Hydrogen Engineering Research Consortium (HERC), University of California at Los Angeles (UCLA), Los Angeles, California 90095-1592, United States of America
| | - Ibubeleye Somiari
- Department of Chemical and Biomolecular Engineering, Hydrogen Engineering Research Consortium (HERC), University of California at Los Angeles (UCLA), Los Angeles, California 90095-1592, United States of America
| | - Maria Flytzani-Stephanopoulos
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States of America
| | - Vasilios I. Manousiouthakis
- Department of Chemical and Biomolecular Engineering, Hydrogen Engineering Research Consortium (HERC), University of California at Los Angeles (UCLA), Los Angeles, California 90095-1592, United States of America
| |
Collapse
|
4
|
Sha F, Han Z, Tang S, Wang J, Li C. Hydrogenation of Carbon Dioxide to Methanol over Non-Cu-based Heterogeneous Catalysts. CHEMSUSCHEM 2020; 13:6160-6181. [PMID: 33146940 DOI: 10.1002/cssc.202002054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The increasing atmospheric CO2 level makes CO2 reduction an urgent challenge facing the world. Catalytic transformation of CO2 into chemicals and fuels utilizing renewable energy is one of the promising approaches toward alleviating CO2 emissions. In particular, the selective hydrogenation of CO2 to methanol utilizing renewable hydrogen potentially enables large scale transformation of CO2 . The Cu-based catalysts have been extensively investigated in CO2 hydrogenation. However, it is not only limited by long-term instability but also displays unsatisfactory catalytic performance. The supported metal-based catalysts (Pd, Pt, Au, and Ag) can achieve high methanol selectivity at low temperatures. The mixed oxide catalysts represented by Ma ZrOx (Ma =Zn, Ga, and Cd) solid solution catalysts present high methanol selectivity and catalytic activity as well as excellent stability. This Review focuses on the recent advances in developing Non-Cu-based heterogeneous catalysts and current understandings of catalyst design and catalytic performance. First, the thermodynamics of CO2 hydrogenation to methanol is discussed. Then, the progress in supported metal-based catalysts, bimetallic alloys or intermetallic compounds catalysts, and mixed oxide catalysts is discussed. Finally, a summary and a perspective are presented.
Collapse
Affiliation(s)
- Feng Sha
- School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Zhe Han
- School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Shan Tang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Jijie Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China
| |
Collapse
|
5
|
Roode‐Gutzmer QI, Kaiser D, Bertau M. Renewable Methanol Synthesis. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900012] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Quirina I. Roode‐Gutzmer
- Freiberg University of Mining and TechnologyInstitute of Chemical Technology Leipziger Strasse 29 09599 Freiberg Germany
| | - Doreen Kaiser
- Freiberg University of Mining and TechnologyInstitute of Chemical Technology Leipziger Strasse 29 09599 Freiberg Germany
| | - Martin Bertau
- Freiberg University of Mining and TechnologyInstitute of Chemical Technology Leipziger Strasse 29 09599 Freiberg Germany
| |
Collapse
|
6
|
Bos MJ, Slotboom Y, Kersten SRA, Brilman DWF. 110th Anniversary: Characterization of a Condensing CO2 to Methanol Reactor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin J. Bos
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Yordi Slotboom
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Sascha R. A. Kersten
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Derk W. F. Brilman
- Sustainable Process Technology, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
7
|
Development of Two Novel Processes for Hydrogenation of CO2 to Methanol over Cu/ZnO/Al2O3 Catalyst to Improve the Performance of Conventional Dual Type Methanol Synthesis Reactor. Catalysts 2018. [DOI: 10.3390/catal8070255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Development of an Efficient Methanol Production Process for Direct CO2 Hydrogenation over a Cu/ZnO/Al2O3 Catalyst. Catalysts 2017. [DOI: 10.3390/catal7110332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
9
|
Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO 2 Hydrogenation Processes. Chem Rev 2017; 117:9804-9838. [PMID: 28656757 PMCID: PMC5532695 DOI: 10.1021/acs.chemrev.6b00816] [Citation(s) in RCA: 600] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The recent advances in the development
of heterogeneous catalysts
and processes for the direct hydrogenation of CO2 to formate/formic
acid, methanol, and dimethyl ether are thoroughly reviewed, with special
emphasis on thermodynamics and catalyst design considerations. After
introducing the main motivation for the development of such processes,
we first summarize the most important aspects of CO2 capture
and green routes to produce H2. Once the scene in terms
of feedstocks is introduced, we carefully summarize the state of the
art in the development of heterogeneous catalysts for these important
hydrogenation reactions. Finally, in an attempt to give an order of
magnitude regarding CO2 valorization, we critically assess
economical aspects of the production of methanol and DME and outline
future research and development directions.
Collapse
Affiliation(s)
- Andrea Álvarez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avinguda dels Països Catalans 16, 43007 Tarragona, Spain
| | - Atul Bansode
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avinguda dels Països Catalans 16, 43007 Tarragona, Spain
| | - Atsushi Urakawa
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avinguda dels Països Catalans 16, 43007 Tarragona, Spain
| | - Anastasiya V Bavykina
- Catalysis Engineering, Chemical Engineering Department, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tim A Wezendonk
- Catalysis Engineering, Chemical Engineering Department, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Michiel Makkee
- Catalysis Engineering, Chemical Engineering Department, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jorge Gascon
- Catalysis Engineering, Chemical Engineering Department, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Freek Kapteijn
- Catalysis Engineering, Chemical Engineering Department, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
10
|
Reymond H, Amado-Blanco V, Lauper A, Rudolf von Rohr P. Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol. CHEMSUSCHEM 2017; 10:1166-1174. [PMID: 27981806 DOI: 10.1002/cssc.201601361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/20/2016] [Indexed: 06/06/2023]
Abstract
Condensation promotes CO2 hydrogenation to CH3 OH beyond equilibrium through in situ product separation. Although primordial for catalyst and reactor design, triggering conditions as well as the impact on sub-equilibrium reaction behaviour remain unclear. Herein we used an in-house designed micro-view-cell to gain chemical and physical insights into reaction and phase behaviour under high-pressure conditions over a commercial Cu/ZnO/Al2 O3 catalyst. Raman microscopy and video monitoring, combined with online gas chromatography analysis, allowed the complete characterisation of the reaction bulk up to 450 bar (1 bar=0.1 MPa) and 350 °C. Dew points of typical effluent streams related to a parametric study suggest that the improving reaction performance and reverting selectivities observed from 230 °C strongly correlate with (i) a regime transition from kinetic to thermodynamic, and (ii) a phase transition from a single supercritical to a biphasic reaction mixture. Our results advance a rationale behind transitioning CH3 OH selectivities for an improved understanding of CO2 hydrogenation under high pressure.
Collapse
Affiliation(s)
- Helena Reymond
- Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zürich, Switzerland
| | - Victor Amado-Blanco
- Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zürich, Switzerland
| | - Andreas Lauper
- Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092, Zürich, Switzerland
| | | |
Collapse
|
11
|
Gaikwad R, Bansode A, Urakawa A. High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol. J Catal 2016. [DOI: 10.1016/j.jcat.2016.02.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Kobl K, Thomas S, Zimmermann Y, Parkhomenko K, Roger AC. Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper–zinc oxide catalysts with alumina or zirconia supports. Catal Today 2016. [DOI: 10.1016/j.cattod.2015.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Graaf GH, Winkelman JGM. Chemical Equilibria in Methanol Synthesis Including the Water–Gas Shift Reaction: A Critical Reassessment. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00815] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Geert H. Graaf
- Graaf Independent Energy Advice, Parklaan 4, 9724AL Groningen, The Netherlands
| | - Jozef G. M. Winkelman
- Department
of Chemical Engineering, ENTEG, University of Groningen, Nijenborgh
4, 9747AG Groningen, The Netherlands
| |
Collapse
|
14
|
Meyer JJ, Tan P, Apfelbacher A, Daschner R, Hornung A. Modeling of a Methanol Synthesis Reactor for Storage of Renewable Energy and Conversion of CO2- Comparison of Two Kinetic Models. Chem Eng Technol 2015. [DOI: 10.1002/ceat.201500084] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
|
16
|
van Bennekom J, Venderbosch R, Winkelman J, Wilbers E, Assink D, Lemmens K, Heeres H. Methanol synthesis beyond chemical equilibrium. Chem Eng Sci 2013. [DOI: 10.1016/j.ces.2012.10.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|