1
|
Gasque-Belz L, Carrière K, Humeniuk B, Park B, Colville C, Siciliano S, Hogan N, Weber L, Campbell P, Peters R, Hecker M, Hanson M. Application of a new approach method to assess the hazard of complex legacy contaminated groundwater mixtures on fathead minnows in outdoor mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176081. [PMID: 39244049 DOI: 10.1016/j.scitotenv.2024.176081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Assessing the environmental risks of contaminated groundwater presents significant challenges due to its often-complex chemical composition and to dynamic processes affecting exposure of organisms in receiving surface waters. The objective of this study was to characterize the effects of groundwater collected from a legacy contaminated industrial site, in fish under environmentally relevant conditions. A 21-day fish short-term reproduction assay was conducted in outdoor wetland mesocosms by exposing adult fathead minnows (Pimephales promelas) to graded concentrations of groundwater (1 %, 3 %, and 6 %). Offspring were held in mesocosms up to four days post-hatch to apply a new approach method (NAM), the EcoToxChip™, to explore whether traditional apical endpoints could be predicted using an alternative mechanistic approach. None of the groundwater concentrations used in this study were lethal to fish. There was greater cumulative number of eggs produced at the highest concentration of exposure. However, no abnormal histological appearance was observed in the liver and gonads of fish and no significant effect was observed in the relative expression of genes, tubercle counts, and erythrocyte micronuclei counts compared to the negative control. Food availability in the mesocosms was also assessed and the abundance of zooplankton increased in all groundwater-treated mesocosms. Fathead minnow findings are in contrast to those obtained from previous controlled laboratory studies that revealed significant genotoxicity, hepatotoxicity, and reprotoxicity of the same mixtures. Several factors could explain these observations, including the aging of groundwater in mesocosms before fish addition resulting in photo- and biodegradation and binding to sediments of toxic components. Our static exposure scenario likely underestimated realistic exposure scenarios where groundwater inflow to surface water is generally semi-continuous. Nevertheless, focused transcriptome analysis using EcoToxChips also observed greater toxicity during previous laboratory tests compared to mesocosm scenarios, and thus, our results support the use of this NAM in the ecological risk assessment of contaminated groundwater.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Kailey Carrière
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Braedon Humeniuk
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Bradley Park
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
2
|
Li W, Hu J. Photodegradation of the novel herbicide pyraclonil in aqueous solution: Kinetics, identification of photoproducts, mechanism, and toxicity assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124381. [PMID: 38906402 DOI: 10.1016/j.envpol.2024.124381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Pyraclonil is a new type of pyrazole herbicide, whose photochemical fate in aqueous solution has not been reported yet. In this study, effects on the photolysis rate such as light source, pH, NO3-, Fe3+, fulvic acid (FA) and riboflavin (RF) were investigated. Pyraclonil photodegraded in pure water under both UV and simulated sunlight with half-lives of 32.29 min and 42.52 h, respectively. Under UV, the degradation rate of pyraclonil in pH 4 solution (0.0299 ± 0.0033 min-1) was about twice higher than that in pH 9 (0.0160 ± 0.0063 min-1). Under simulated sunlight, low concentration (0.1-1 mg/L) of FA, NO3-, Fe3+ and RF noticeably promoted the photodegradation of pyraclonil. Then, with the combination of experimental UPLC-Q-TOF/MS and computational calculation of density functional theory (DFT), fourteen transformation products (TPs) of pyraclonil were identified with possible mechanism of C-N bond cleavage, photorearrangement, demethylation, hydroxylation and oxidation. Additionally, acute toxicity assessment was conducted through ECOSAR prediction and laboratory bioassays. The prediction results indicated that toxicity of TP157 to daphnid and green algae was 1.3 and 1.4 times higher than that of the parent, respectively. The bioassay results indicated that toxicities of TP157 and TP263 to C. vulgaris were about 1.6 and 5.9 times higher than that of the parent, respectively. The results provided a reference for elucidating the potential hazards of pyraclonil to non-target organisms and promoting its rational use.
Collapse
Affiliation(s)
- Wei Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiye Hu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
3
|
Theoretical studies on the mechanism, kinetics, and degradation pathways of auxin mimic herbicides by •OH radical in aqueous media. Struct Chem 2022. [DOI: 10.1007/s11224-022-02055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Goulart LA, Santos GOS, Eguiluz KIB, Salazar-Banda GR, Lanza MRV, Saez C, Rodrigo MA. Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates. CHEMOSPHERE 2021; 271:129451. [PMID: 33450425 DOI: 10.1016/j.chemosphere.2020.129451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In this work, it is proposed a novel strategy to increase the photostability of the ZnO photoelectrocatalyst under prolonged light irradiation, without the addition or deposition of metals and/or semiconductor oxides during their synthesis. This strategy is based on the use of a mixed metal oxide (MMO-Ru0.3Ti0.7O2) coating as the substrate for the electrodeposition of ZnO. To assess it, the electrodeposition of ZnO films on Ti and Ti/MMO substrates and the photoelectrocatalytic activity of these materials for the degradation of the herbicide clopyralid were studied. The results showed that the substrate directly influenced the photo-stability of the ZnO film. Under the incidence of UV light and polarization, the novel Ti/MMO/ZnO electrode showed greater photocurrent stability as compared to Ti/ZnO, which is a very important outcome because the behavior of these electrodes was similar when compared in terms of the degradation of clopyralid. Single electrolysis was not able to degrade efficiently clopyralid at the different potentials studied. However, the irradiation of UV light on the polarized surface of the Ti/ZnO and Ti/MMO/ZnO electrodes increased markedly the degradation rate of clopyralid. A synergistic effect was observed between light and electrode polarization, since the rate of degradation of clopyralid was twice as high in photoelectrocatalysis (PhEC) than in photocatalysis (PhC) and different intermediates were formed. From these results, mechanisms of degradation of clopyralid for the PhC and PhEC systems with the Ti/ZnO and Ti/MMO/ZnO electrodes were presented. Therefore, the Ti/MMO/ZnO electrode could be a cheap and simple alternative to be applied in the efficient photodegradation of organic pollutants, presenting the great advantage of having a facile synthesis and high capacity to work at relatively low potentials.
Collapse
Affiliation(s)
- Lorena A Goulart
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil; Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Géssica O S Santos
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Katlin I B Eguiluz
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute (ITP), Aracaju, SE, Brazil
| | - Giancarlo R Salazar-Banda
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute (ITP), Aracaju, SE, Brazil
| | - Marcos R V Lanza
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil.
| | - Cristina Saez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
5
|
Yang X, Ding X, Zhou L, Fan HH, Wang X, Ferronato C, Chovelon JM, Xiu G. New insights into clopyralid degradation by sulfate radical: Pyridine ring cleavage pathways. WATER RESEARCH 2020; 171:115378. [PMID: 31846821 DOI: 10.1016/j.watres.2019.115378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Contamination by herbicides such as clopyralid (CLP) poses a significant threat to human health and ecological systems. In the present study, efficient removal of CLP was achieved by thermo activated persulfate, among which sulfate radical was identified as the predominant oxidizing species responsible for the decontamination. Based on high resolution LC-MS, derivatization method and density functional theory (DFT) computation, the detailed oxidation pathways and mechanisms were proposed. The primary oxidation pathways included dechlorination-hydroxylation, decarboxylation and the formation of quinone-like moieties. Afterwards, numerous intermediate byproducts ranging from high molecular to very small ones were identified, suggesting the pyridine ring was damaged during the thermo activated persulfate process. The detected products containing six and five carbons indicated the pyridine ring cleavage would take place on the quinone-structure intermediate. Further oxidation could continue by breaking each bond on the ring-cleavage product, yielding a series of short-chain carbonyl chemicals, carboxylic acids and inorganic ions. In addition, the presence of dissolved oxygen (DO) was favorable to CLP degradation, indicating DO played an important role in applying such technology. The degradation rate constants of CLP increased appreciably with increasing temperature, and acidic pH facilitated the CLP degradation. The results obtained in this work would increase our understanding on the environmental fates of nitrogen heterocyclic compounds during sulfate radical (SO4•-)-based advanced oxidation processes (SR-AOPs).
Collapse
Affiliation(s)
- Xuerui Yang
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xi Ding
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Zhou
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Huan-Huan Fan
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xingbao Wang
- Training Base of State Key Laboratory of Coal Science and Technology Jointly Constructed by Shanxi Province and Ministry of Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Corinne Ferronato
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5256, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5256, IRCELYON, F-69626, 2 Avenue Albert Einstein, Villeurbanne, France
| | - Guangli Xiu
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
6
|
Solís RR, Medina S, Gimeno O, Beltrán FJ. Solar photolytic ozonation for the removal of recalcitrant herbicides in river water. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Qiu W, Zheng M, Sun J, Tian Y, Fang M, Zheng Y, Zhang T, Zheng C. Photolysis of enrofloxacin, pefloxacin and sulfaquinoxaline in aqueous solution by UV/H 2O 2, UV/Fe(II), and UV/H 2O 2/Fe(II) and the toxicity of the final reaction solutions on zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1457-1468. [PMID: 30360275 DOI: 10.1016/j.scitotenv.2018.09.315] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
In this work, the photolysis of enrofloxacin (ENR), pefloxacin (PEF), and sulfaquinoxaline (SQX) in aqueous solution by UV combined with H2O2 or ferrous ions (Fe(II)), as well as Fenton (Fe(II)/H2O2) processes, was investigated. In addition, the toxicity of the final reaction solution after UV/H2O2/Fe(II) treatment toward zebrafish embryos was determined. The degradation of the test compounds followed pseudo-first-order reaction kinetics. The optimum concentrations of H2O2 for ENR, PEF and SQX removal under UV/H2O2 treatment were 20, 20 and 5 mM, respectively. The optimum concentrations of Fe(II) for ENR, PEF and SQX removal in the UV/Fe(II) system were 0.25, 10, and 1 mM, respectively. For the UV/H2O2/Fe(II) system, pH = 3 is the best initial pH for the degradation of ENR, PEF and SQX with the degradation efficiencies at 100%, 79.1% and 100% after 180 min, respectively. Considering the degradation rate and electrical energy per order of the test compounds, the UV/H2O2/Fe(II) process was better than the UV/H2O2 and UV/Fe(II) processes because of the greater OH generation. Based on major transformation products of ENR, PEF, and SQX detected during UV/H2O2/Fe(II) treatment, the probable degradation pathway of each compound is proposed. The fluorine atom of ENR and PEF was transformed into fluorine ion, and the sulfur atom was transformed into SO2/SO42-. The nitrogen atom was mainly transformed into NH3/NH4+. Formic acid, acetic acid, oxalic acid, and fumaric acid were identified in the irradiated solutions and all the test compounds and their intermediates can be finally mineralized. In addition, after the UV/H2O2/Fe(II) process, the acute toxicity of the final reaction solutions on zebrafish embryos was lower than that of the initial solution without any treatment. In summary, UV/H2O2/Fe(II) is a safe and efficient technology for antibiotic degradation.
Collapse
Affiliation(s)
- Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Ming Zheng
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiqun Tian
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meijuan Fang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
8
|
Capodaglio AG, Bojanowska-Czajka A, Trojanowicz M. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27704-27723. [PMID: 29667062 DOI: 10.1007/s11356-018-1913-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Carbamazepine and diclofenac are two examples of drugs with widespread geographical and environmental media proliferation that are poorly removed by traditional wastewater treatment processes. Advanced oxidation processes (AOPs) have been proposed as alternative methods to remove these compounds in solution. AOPs are based on a wide class of powerful technologies, including UV radiation, ozone, hydrogen peroxide, Fenton process, catalytic wet peroxide oxidation, heterogeneous photocatalysis, electrochemical oxidation and their combinations, sonolysis, and microwaves applicable to both water and wastewater. Moreover, processes rely on the production of oxidizing radicals (•OH and others) in a solution to decompose present pollutants. Water radiolysis-based processes, which are an alternative to the former, involve the use of concentrated energy (beams of accelerated electrons or γ-rays) to split water molecules, generating strong oxidants and reductants (radicals) at the same time. In this paper, the degradation of carbamazepine and diclofenac by means of all these processes is discussed and compared. Energy and byproduct generation issues are also addressed.
Collapse
Affiliation(s)
- Andrea G Capodaglio
- Department of Civil Engineering and Architecture, Via Ferrata 3, 27100, Pavia, Italy.
| | | | - Marek Trojanowicz
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| |
Collapse
|
9
|
Esmaili Z, Cheshmberah F, Solaimany Nazar AR, Farhadian M. Treatment of florfenicol of synthetic trout fish farm wastewater through nanofiltration and photocatalyst oxidation. ENVIRONMENTAL TECHNOLOGY 2017; 38:2040-2047. [PMID: 27776445 DOI: 10.1080/09593330.2016.1245359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
The aquaculture system is a potential significant source of antibacterial agents. The removal of florfenicol (Flo) antibiotic from synthetic aqueous wastewater is performed by applying a commercial thin film composite polyamide nanofilter (NF). For concentrated wastewater treatment, the advanced oxidation process (AOP) is applied. The effects of pH, pressure and Flo concentration on removal efficiency of NF and the effects of pH, Flo concentration and dosage of hydrogen peroxide and contact time on the AOP are assessed. In the nanofiltration system, it is found that an increase in pH enhances the removal efficiency up to 99%. In this membrane, an increase of pressure between 4 and 7 bar would increase the removal percentage, followed by a decrease from 7 to 10 bar. In AOP, it is observed that the degradation efficiency of Flo increases by both an increase in its initial concentration up to values above 50 ppm and contact time. The degradation efficiency of Flo is at its highest in the pH range of 7-10. With increasing H2O2 dosage, from 0 to 500 ppm, the removal efficiency increases. The results of this study indicate that a combination of a polyamide nanofilteration together with an AOP introduces an effective manner of removing Flo antibiotic from synthetic trout fish farm wastewater.
Collapse
Affiliation(s)
- Zakie Esmaili
- a Department of Chemical Engineering, Faculty of Engineering , University of Isfahan , Isfahan , Iran
| | - Fatemeh Cheshmberah
- a Department of Chemical Engineering, Faculty of Engineering , University of Isfahan , Isfahan , Iran
| | - Ali R Solaimany Nazar
- a Department of Chemical Engineering, Faculty of Engineering , University of Isfahan , Isfahan , Iran
| | - Mehrdad Farhadian
- a Department of Chemical Engineering, Faculty of Engineering , University of Isfahan , Isfahan , Iran
| |
Collapse
|
10
|
Semitsoglou-Tsiapou S, Templeton MR, Graham NJD, Hernández Leal L, Martijn BJ, Royce A, Kruithof JC. Low pressure UV/H2O2 treatment for the degradation of the pesticides metaldehyde, clopyralid and mecoprop - Kinetics and reaction product formation. WATER RESEARCH 2016; 91:285-94. [PMID: 26803264 DOI: 10.1016/j.watres.2016.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 12/19/2015] [Accepted: 01/09/2016] [Indexed: 05/23/2023]
Abstract
The degradation kinetics of three pesticides - metaldehyde, clopyralid and mecoprop - by ultraviolet photolysis and hydroxyl radical oxidation by low pressure ultraviolet hydrogen peroxide (LP-UV/H2O2) advanced oxidation was determined. Mecoprop was susceptible to both LP-UV photolysis and hydroxyl radical oxidation, and exhibited the fastest degradation kinetics, achieving 99.6% (2.4-log) degradation with a UV fluence of 800 mJ/cm(2) and 5 mg/L hydrogen peroxide. Metaldehyde was poorly degraded by LP-UV photolysis while 97.7% (1.6-log) degradation was achieved with LP-UV/H2O2 treatment at the maximum tested UV fluence of 1000 mJ/cm(2) and 15 mg/L hydrogen peroxide. Clopyralid was hardly susceptible to LP-UV photolysis and exhibited the lowest degradation by LP-UV/H2O2 among the three pesticides. The second-order reaction rate constants for the reactions between the pesticides and OH-radicals were calculated applying a kinetic model for LP-UV/H2O2 treatment to be 3.6 × 10(8), 2.0 × 10(8) and 1.1 × 10(9) M(-1) s(-1) for metaldehyde, clopyralid and mecoprop, respectively. The main LP-UV photolysis reaction product from mecoprop was 2-(4-hydroxy-2-methylphenoxy) propanoic acid, while photo-oxidation by LP-UV/H2O2 treatment formed several oxidation products. The photo-oxidation of clopyralid involved either hydroxylation or dechlorination of the ring, while metaldehyde underwent hydroxylation and produced acetic acid as a major end product. Based on the findings, degradation pathways for the three pesticides by LP-UV/H2O2 treatment were proposed.
Collapse
Affiliation(s)
- Sofia Semitsoglou-Tsiapou
- Department of Civil and Environmental Engineering, Imperial College London, London, UK; Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, London, UK
| | - Lucía Hernández Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | | | - Alan Royce
- Trojan Technologies, London, Ontario, Canada
| | - Joop C Kruithof
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| |
Collapse
|
11
|
Aquatic photolysis of carbamazepine by UV/H2O2 and UV/Fe(II) processes. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1795-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li K, Zhang P, Ge L, Ren H, Yu C, Chen X, Zhao Y. Concentration-dependent photodegradation kinetics and hydroxyl-radical oxidation of phenicol antibiotics. CHEMOSPHERE 2014; 111:278-282. [PMID: 24997929 DOI: 10.1016/j.chemosphere.2014.04.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 06/03/2023]
Abstract
Thiamphenicol and florfenicol are two phenicol antibiotics widely used in aquaculture and are ubiquitous as micropollutants in surface waters. The present study investigated their photodegradation kinetics, hydroxyl-radical (OH) oxidation reactivities and products. Firstly, the photolytic kinetics of the phenicols in pure water was studied as a function of initial concentrations (C0) under UV-vis irradiation (λ>200nm). It was found that the kinetics was influenced by C0. A linear plot of the pseudo-first-order rate constant vs C0 was observed with a negative slope. Secondly, the reaction between the phenicol antibiotics and OH was examined with a competition kinetic method under simulated solar irradiation (λ>290nm), which quantified their bimolecular reaction rate constants of (2.13±0.02)×10(9)M(-1)s(-1) and (1.82±0.10)×10(9)M(-1)s(-1) for thiamphenicol and florfenicol, respectively. Then the corresponding OH oxidated half-lives in sunlit surface waters were calculated to be 90.5-106.1h. Some main intermediates were formed from the reaction, which suggested that the two phenicols underwent hydroxylation, oxygenation and dehydrogenation when OH existed. These results are of importance to assess the phenicol persistence in wastewater treatment and sunlit surface waters.
Collapse
Affiliation(s)
- Kai Li
- College of Ocean Technology and Environment, Dalian Ocean University, Dalian 116023, China; Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Peng Zhang
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Linke Ge
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Honglei Ren
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Chunyan Yu
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Xiaoyang Chen
- Institute of Environmental Resource & Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuanfeng Zhao
- College of Ocean Technology and Environment, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
13
|
Zheng M, Xu G, Pei J, He X, Xu P, Liu N, Wu M. EB-radiolysis of carbamazepine: in pure-water with different ions and in surface water. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3322-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Remucal CK. The role of indirect photochemical degradation in the environmental fate of pesticides: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:628-53. [PMID: 24419250 DOI: 10.1039/c3em00549f] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photochemical degradation contributes to the environmental fate of many pesticides in surface waters. A better understanding of the role of direct and indirect photochemical degradation of pesticides is necessary in order to predict their environmental fate and persistence. This review includes all major pesticide classes and focuses on the importance of dissolved organic matter (DOM) as a sensitizer in indirect photodegradation within aquatic systems. Photochemical studies conducted under environmentally relevant conditions (i.e., aqueous solutions with irradiation wavelengths >290 nm) are included. Comparisons are made between observed photodegradation rates in pure or buffered water and in water containing DOM to assess the extent of pesticide susceptibility to DOM-sensitized indirect photolysis. When data is available, the role of specific reactive species in indirect photodegradation is described. While it is possible to assess the relative importance of direct and indirect photodegradation on a pesticide-by-pesticide basis in many cases, it is often difficult to make generalizations based on compound class. Knowledge gaps and inconstancies in the current body of literature are discussed and areas that require additional research are described.
Collapse
Affiliation(s)
- Christina K Remucal
- University of Wisconsin-Madison, Department of Civil and Environmental Engineering, 660 N. Park St., Madison, WI, USA.
| |
Collapse
|