1
|
Cai J, Mu X, Xue J, Chen J, Liu Z, Guo F. Mathematical Modeling of NaCl Scaling Development in Long-Distance Membrane Distillation for Improved Scaling Control. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3629. [PMID: 39124294 PMCID: PMC11313132 DOI: 10.3390/ma17153629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
Membrane distillation is a novel membrane-based separation technology with the potential to produce pure water from high-salinity brine. It couples transport behaviors along the membrane and across the membrane. The brine in the feed is gradually concentrated due to the permeate flux across the membrane, which is a significant factor in initiating the scaling behavior on the membrane surface along the feed flow direction. It is of great interest to investigate and estimate the development of scaling on the membrane surface. This work specifically focuses on a long-distance membrane distillation process with a sodium chloride solution as the feed. A modeling approach has been developed to estimate the sodium chloride scaling development on the membrane surface along the flow direction. A set of experiments was conducted to validate the results. Based on mathematical simplification and analytical fitting, a simplified model was summarized to predict the initiating position of sodium chloride scaling on the membrane, which is meaningful for scaling control in industrial-scale applications of membrane distillation.
Collapse
Affiliation(s)
- Jingcheng Cai
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Xingsen Mu
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Jian Xue
- Guangdong Provincial Key Laboratory of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China;
| | - Jiaming Chen
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Zeman Liu
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| | - Fei Guo
- School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China; (J.C.); (X.M.); (J.C.); (Z.L.)
| |
Collapse
|
2
|
Lee Y, Jeong S, Kim JH, Jeong S. Mechanism of Silica Nanoparticle-Induced Particulate Fouling in Vacuum Membrane Distillation. MEMBRANES 2024; 14:76. [PMID: 38668104 PMCID: PMC11051741 DOI: 10.3390/membranes14040076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Membrane distillation (MD) is a process driven by the vapor pressure difference dependent on temperature variation, utilizing a hydrophobic porous membrane. MD operates at low pressure and temperature, exhibiting resilience to osmotic pressure. However, a challenge arises as the membrane performance diminishes due to temperature polarization (TP) occurring on the membrane surface. The vacuum MD process leverages the application of a vacuum to generate a higher vapor pressure difference, enhancing the flux and mitigating TP issues. Nevertheless, membrane fouling leads to decreased performance, causing membrane wetting and reducing the ion removal efficiency. This study investigates membrane fouling phenomena induced by various silica nanoparticle sizes (400, 900, and 1300 nm). The patterns of membrane fouling, as indicated by the flux reduction, vary depending on the particle size. Distinct MD performances are observed with changes in the feed water temperature and flow rate. When examining the membrane fouling mechanism for particles with a porosity resembling actual particulate materials, a fouling form similar to the solid type is noted. Therefore, this study elucidates the impact of particulate matter on membrane fouling under diverse conditions.
Collapse
Affiliation(s)
| | | | | | - Sanghyun Jeong
- School of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; (Y.L.); (J.-H.K.)
| |
Collapse
|
3
|
Chang H, Zhu Y, Huang L, Yan Z, Qu F, Liang H. Mineral scaling induced membrane wetting in membrane distillation for water treatment: Fundamental mechanism and mitigation strategies. WATER RESEARCH 2023; 247:120807. [PMID: 37924685 DOI: 10.1016/j.watres.2023.120807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
The scaling-induced wetting phenomenon seriously affects the application of membrane distillation (MD) technology in hypersaline wastewater treatment. Unlike the large amount of researches on membrane scaling and membrane wetting, scaling-induced wetting is not sufficiently studied. In this work, the current research evolvement of scaling-induced wetting in MD was systematically summarized. Firstly, the theories involving scaling-induced wetting were discussed, including evaluation of scaling potential of specific solutions, classical and non-classical crystal nucleation and growth theories, observation and evolution of scaling-induced processes. Secondly, the primary pretreatment methods for alleviating scaling-induced wetting were discussed in detail, focusing on adding agents composed of coagulation, precipitation, oxidation, adsorption and scale inhibitors, filtration including granular filtration, membrane filtration and mesh filtration and application of external fields including sound, light, heat, electromagnetism, magnetism and aeration. Then, the roles of operation conditions and cleaning conditions in alleviating scaling-induced wetting were evaluated. The main operation parameters included temperature, flow rate, pressure, ultrasound, vibration and aeration, while different types of cleaning reagents, cleaning frequency and a series of assisted cleaning measures were summarized. Finally, the challenges and future needs in the application of nucleation theory to scaling-induced wetting, the speculation, monitoring and mitigation of scaling-induced wetting were proposed.
Collapse
Affiliation(s)
- Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China.
| | - Yingyuan Zhu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Lin Huang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
4
|
|
5
|
Rolf J, Cao T, Huang X, Boo C, Li Q, Elimelech M. Inorganic Scaling in Membrane Desalination: Models, Mechanisms, and Characterization Methods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7484-7511. [PMID: 35666637 DOI: 10.1021/acs.est.2c01858] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inorganic scaling caused by precipitation of sparingly soluble salts at supersaturation is a common but critical issue, limiting the efficiency of membrane-based desalination and brine management technologies as well as other engineered systems. A wide range of minerals including calcium carbonate, calcium sulfate, and silica precipitate during membrane-based desalination, limiting water recovery and reducing process efficiency. The economic impact of scaling on desalination processes requires understanding of its sources, causes, effects, and control methods. In this Critical Review, we first describe nucleation mechanisms and crystal growth theories, which are fundamental to understanding inorganic scale formation during membrane desalination. We, then, discuss the key mechanisms and factors that govern membrane scaling, including membrane properties, such as surface roughness, charge, and functionality, as well as feedwater characteristics, such as pH, temperature, and ionic strength. We follow with a critical review of current characterization techniques for both homogeneous and heterogeneous nucleation, focusing on the strengths and limitations of each technique to elucidate scale-inducing mechanisms, observe actual crystal growth, and analyze the outcome of scaling behaviors of desalination membranes. We conclude with an outlook on research needs and future research directions to provide guidelines for scale mitigation in water treatment and desalination.
Collapse
Affiliation(s)
- Julianne Rolf
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06520-8286, United States
| | - Tianchi Cao
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Xiaochuan Huang
- Department of Civil and Environmental Engineering, Rice University, MS-519, 6100 Main Street, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, MS 6398, 6100 Main Street, Houston 77005, United States
| | - Chanhee Boo
- Water Cycle Research Center, National Agenda Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS-519, 6100 Main Street, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, MS 6398, 6100 Main Street, Houston 77005, United States
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
6
|
Jiao L, Meng L, Yan K, Wang J, Li G, Yao Z, Sun Z, Zhang L. Micromechanism Underlying Wetting Behavior of the Vacuum Membrane Distillation during Desalination. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Jiao
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Lida Meng
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Kangkang Yan
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Jing Wang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Ge Li
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Zhikan Yao
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| | - Zhilin Sun
- Ocean College, Zhejiang University, Zhoushan 316021, PR China
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
- Research Institute of Ningbo, Zhejiang University, Ningbo 315100, PR China
| |
Collapse
|
7
|
Abstract
Water serves as an indispensable part of human life and production. On account of the overexploitation of traditional water sources, the demand for wastewater recycling is expanding rapidly. As a promising water treatment process, membrane distillation (MD) has been utilized in various wastewater treatments, such as desalination brine, textile wastewater, radioactive wastewater, and oily wastewater. This review summarized the investigation work applying MD in wastewater treatment, and the performance was comprehensively introduced. Moreover, the obstructions of industrialization, such as membrane fouling, membrane wetting, and high energy consumption, were discussed with the practical investigation. To cope with these problems, various strategies have been adopted to enhance MD performance, including coupling membrane processes and developing membranes with specific surface characteristics. In addition, the significance of nutrient recovery and waste heat utilization was indicated.
Collapse
|
8
|
Son HS, Soukane S, Lee J, Kim Y, Kim YD, Ghaffour N. Towards sustainable circular brine reclamation using seawater reverse osmosis, membrane distillation and forward osmosis hybrids: An experimental investigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112836. [PMID: 34052611 DOI: 10.1016/j.jenvman.2021.112836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Desalination and wastewater treatment technologies require an effective solution for brine management to ensure environmental sustainability, which is closely linked with efficient process operations, reduction of chemical dosages, and valorization of brines. Within the scope of desalination brine reclamation, a circular system consisting of seawater reverse osmosis (SWRO), membrane distillation (MD), and forward osmosis (FO) three-process hybrid is investigated. The proposed design increases water recovery from SWRO brine (by MD) and dilutes concentrated brine to seawater level (by FO) for SWRO feed. It ultimately reduces SWRO process brine disposal and improves crystallization efficiency for a zero-liquid discharge application. The operating range of the hybrid system is indicated by a seawater volumetric concentration factor (VCF) ranging from 1.0 to 2.2, which covers practical and sustainable operation in full-scale applications. Within the proposed VCF range, different operating conditions of the MD and FO processes were evaluated in series with concentrated seawater as well as real SWRO brine from a full-scale desalination plant. Water quality and membrane surface were analyzed before and after experiments to assess the impact of the SWRO brine. Despite their low concentration (0.13 mg/L as phosphorous), antiscalants present in SWRO brine alleviated the flux decline in MD operations by 68.3% compared to operations using seawater concentrate, while no significant influence was observed on the FO process. A full spectrum of water quality analysis of real SWRO brine and Red Sea water is made available for future SWRO brine reclamation studies. The operating conditions and experimental results have shown the potential of the SWRO-MD-FO hybrid system for a circular brine reclamation.
Collapse
Affiliation(s)
- Hyuk Soo Son
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sofiane Soukane
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Junggil Lee
- Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan, 331-822, Republic of Korea
| | - Youngjin Kim
- Department of Environmental Engineering, Korea University, 2511, Sejong-ro, Sejong-si, Republic of Korea
| | - Young-Deuk Kim
- Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, Republic of Korea; BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Viader G, Casal O, Lefèvre B, de Arespacochaga N, Echevarría C, López J, Valderrama C, Cortina JL. Integration of membrane distillation as volume reduction technology for in-land desalination brines management: Pre-treatments and scaling limitations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112549. [PMID: 33872872 DOI: 10.1016/j.jenvman.2021.112549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Management of in-land reverse osmosis (RO) desalination brines generated from surface brackish waters is a current challenge. Among the different near-Zero and Zero Liquid Discharge (ZLD) alternatives, Membrane Distillation (MD), in which the transport of water is thermally driven, appears as an attractive technology if a residual heat source is available. The aim of this study was to identify the limits of Direct Contact MD (DCMD) pre-treatments such as acidification and aeration, or the combination of both to quantify the scaling reduction potential when treating a RO brine from surface brackish water. Experimental data were used to evaluate the effectiveness of DCMD to achieve the highest concentration factors, depending on the chosen pre-treatment. Additionally, an economic analysis of the operational cost, taking as case study a site where the current management of the brine is the discharge to the sea, was also carried out. Results showed that pre-treatments enhanced MD performance by increasing the concentration factor achieved and highest volume reductions (about 3 times) were reached with the combination of acidification and aeration pre-treatments. Both processes reduced the precipitation potential of CaCO3(s) by reducing the total inorganic carbon (>90%); however, CaSO4·2H2O(s) precipitated. Results also indicated that even if a waste heat source is available, brine disposal into the sea is the cheapest option, while ZLD alternatives were not attractive in the current regulatory framework since their cost was higher than the discharge to the sea. Other options related to the Minimal Liquid Discharge may be more economically attractive.
Collapse
Affiliation(s)
- G Viader
- Water Technology Center CETaqua, Carretera d'Esplugues 75, E-08940, Cornellà de Llobregat, Spain
| | - O Casal
- Chemical Engineering Department, Universitat Politècnica de Catalunya UPC·BarcelonaTECH, C/ Eduard Maristany, 10-14 (Campus Diagonal-Besòs), E-08930 Barcelona, Spain; Barcelona Multi Scale Science and Engineering Research Center, Universitat Politècnica de Catalunya UPC·BarcelonaTECH, C/ Eduard Maristany, 10-14 (Campus Diagonal-Besòs), E-08930 Barcelona, Spain
| | - B Lefèvre
- Water Technology Center CETaqua, Carretera d'Esplugues 75, E-08940, Cornellà de Llobregat, Spain
| | - N de Arespacochaga
- Water Technology Center CETaqua, Carretera d'Esplugues 75, E-08940, Cornellà de Llobregat, Spain
| | - C Echevarría
- Water Technology Center CETaqua, Carretera d'Esplugues 75, E-08940, Cornellà de Llobregat, Spain
| | - J López
- Chemical Engineering Department, Universitat Politècnica de Catalunya UPC·BarcelonaTECH, C/ Eduard Maristany, 10-14 (Campus Diagonal-Besòs), E-08930 Barcelona, Spain; Barcelona Multi Scale Science and Engineering Research Center, Universitat Politècnica de Catalunya UPC·BarcelonaTECH, C/ Eduard Maristany, 10-14 (Campus Diagonal-Besòs), E-08930 Barcelona, Spain.
| | - C Valderrama
- Chemical Engineering Department, Universitat Politècnica de Catalunya UPC·BarcelonaTECH, C/ Eduard Maristany, 10-14 (Campus Diagonal-Besòs), E-08930 Barcelona, Spain; Barcelona Multi Scale Science and Engineering Research Center, Universitat Politècnica de Catalunya UPC·BarcelonaTECH, C/ Eduard Maristany, 10-14 (Campus Diagonal-Besòs), E-08930 Barcelona, Spain
| | - J L Cortina
- Water Technology Center CETaqua, Carretera d'Esplugues 75, E-08940, Cornellà de Llobregat, Spain; Chemical Engineering Department, Universitat Politècnica de Catalunya UPC·BarcelonaTECH, C/ Eduard Maristany, 10-14 (Campus Diagonal-Besòs), E-08930 Barcelona, Spain; Barcelona Multi Scale Science and Engineering Research Center, Universitat Politècnica de Catalunya UPC·BarcelonaTECH, C/ Eduard Maristany, 10-14 (Campus Diagonal-Besòs), E-08930 Barcelona, Spain
| |
Collapse
|
10
|
Liu L, He H, Wang Y, Tong T, Li X, Zhang Y, He T. Mitigation of gypsum and silica scaling in membrane distillation by pulse flow operation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Liu J, Li Z, Wang Y, Liu X, Tu G, Li W. Analyzing scaling behavior of calcium sulfate in membrane distillation via optical coherence tomography. WATER RESEARCH 2021; 191:116809. [PMID: 33454650 DOI: 10.1016/j.watres.2021.116809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Deepening the understanding of scaling processes would facilitate the improvement of membrane distillation (MD) as a promising technique for sustainable development. This study investigated the scaling of calcium sulfate in MD via an approach based on optical coherence tomography (OCT). The OCT-based characterization enabled an analysis that correlated the flux decline with the morphological evolution of the scaling layer. It was revealed by this analysis that the reduction in the evaporation rate could be dominated by different mechanisms as the crystalline particles grew and deposited on the membrane surface; the striping phenomenon visualized by mapping the local growth rates provided evidence for the hydrodynamic instability induced by the coupled mass and heat transfer in MD. Moreover, the OCT-based characterization was exploited to unravel the interplay between the crystallization and the porous structure by quantifying the membrane deformation as a function of time; the varied precipitation kinetics in the boundary layer was confirmed by comparing the temporal variations in the OCT signals at different depths. All these results shed light on mechanisms underlying complex scaling processes, which are the basis for optimizing the design of MD.
Collapse
Affiliation(s)
- Jie Liu
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Zhuo Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Yewei Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Xin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Guoquan Tu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China
| | - Weiyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuan Road, Nanshan District, Shenzhen, Guangdong, PR China.
| |
Collapse
|
12
|
Long-Running Comparison of Feed-Water Scaling in Membrane Distillation. MEMBRANES 2020; 10:membranes10080173. [PMID: 32751820 PMCID: PMC7463528 DOI: 10.3390/membranes10080173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/20/2022]
Abstract
Membrane distillation (MD) has shown promise for concentrating a wide variety of brines, but the knowledge is limited on how different brines impact salt scaling, flux decline, and subsequent wetting. Furthermore, past studies have lacked critical details and analysis to enable a physical understanding, including the length of experiments, the inclusion of salt kinetics, impact of antiscalants, and variability between feed-water types. To address this gap, we examined the system performance, water recovery, scale formation, and saturation index of a lab-scale vacuum membrane distillation (VMD) in long-running test runs approaching 200 h. The tests provided a comparison of a variety of relevant feed solutions, including a synthetic seawater reverse osmosis brine with a salinity of 8.0 g/L, tap water, and NaCl, and included an antiscalant. Saturation modeling indicated that calcite and aragonite were the main foulants contributing to permeate flux reduction. The longer operation times than typical studies revealed several insights. First, scaling could reduce permeate flux dramatically, seen here as 49% for the synthetic brine, when reaching a high recovery ratio of 91%. Second, salt crystallization on the membrane surface could have a long-delayed but subsequently significant impact, as the permeate flux experienced a precipitous decline only after 72 h of continuous operation. Several scaling-resistant impacts were observed as well. Although use of an antiscalant did not reduce the decrease in flux, it extended membrane operational time before surface foulants caused membrane wetting. Additionally, numerous calcium, magnesium, and carbonate salts, as well as silica, reached very high saturation indices (>1). Despite this, scaling without wetting was often observed, and scaling was consistently reversible and easily washed. Under heavy scaling conditions, many areas lacked deposits, which enabled continued operation; existing MD performance models lack this effect by assuming uniform layers. This work implies that longer times are needed for MD fouling experiments, and provides further scaling-resistant evidence for MD.
Collapse
|
13
|
Rabizadeh T, Peacock CL, Benning LG. Investigating the Effectiveness of Phosphonate Additives in Hindering the Calcium Sulfate Dihydrate Scale Formation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Taher Rabizadeh
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Caroline L. Peacock
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Liane G. Benning
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| |
Collapse
|
14
|
Naji O, Al-Juboori RA, Bowtell L, Alpatova A, Ghaffour N. Direct contact ultrasound for fouling control and flux enhancement in air-gap membrane distillation. ULTRASONICS SONOCHEMISTRY 2020; 61:104816. [PMID: 31669841 DOI: 10.1016/j.ultsonch.2019.104816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/07/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Air Gap Membrane distillation (AGMD) is a thermally driven separation process capable of treating challenging water types, but its low productivity is a major drawback. Membrane fouling is a common problem in many membrane treatment systems, which exacerbates AGMD's low overall productivity. In this study, we investigated the direct application of low-power ultrasound (8-23 W), as an in-line cleaning and performance boosting technique for AGMD. Two different highly saline feedwaters, namely natural groundwater (3970 μS/cm) and RO reject stream water (12760 μS/cm) were treated using Polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) membranes. Theoretical calculations and experimental investigations are presented, showing that the applied ultrasonic power range only produced acoustic streaming effects that enhanced cleaning and mass transfer. Attenuated Total Reflection Fourier-Transform Infrared Spectroscopy (ATR FT-IR) analysis showed that ultrasound was capable of effectively removing silica and calcium scaling. Ultrasound application on a fouled membrane resulted in a 100% increase in the permeate flux. Cleaning effects accounted for around 30-50% of this increase and the remainder was attributed to mass transfer improvements. Contaminant rejection percentages were consistently high for all treatments (>99%), indicating that ultrasound did not deteriorate the membrane structure. Scanning Electron Microscopy (SEM) analysis of the membrane surface was used to confirm this observation. The images of the membrane surface demonstrated that ultrasound successfully cleaned the previously fouled membrane, with no signs of structural damage. The results of this study highlight the efficient and effective application of direct low power ultrasound for improving AGMD performance.
Collapse
Affiliation(s)
- Osamah Naji
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia; University of Technology Sydney (UTS), Centre for Technology in Water and Wastewater Treatment, Sydney, NSW 2007, Australia
| | - Raed A Al-Juboori
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia; School of Science, Engineering and Information Technology, Federation University Australia, University Drive, Mt Helen, VIC 3350, Australia.
| | - Les Bowtell
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba 4350, Australia
| | - Alla Alpatova
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Centre (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Centre (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
15
|
Christie KSS, Yin Y, Lin S, Tong T. Distinct Behaviors between Gypsum and Silica Scaling in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:568-576. [PMID: 31830785 DOI: 10.1021/acs.est.9b06023] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mineral scaling constrains membrane distillation (MD) and limits its application in treating hypersaline wastewater. Addressing this challenge requires enhanced fundamental understanding of the scaling phenomenon. However, MD scaling with different types of scalants may have distinctive mechanisms and consequences which have not been systematically investigated in the literature. In this work, we compared gypsum and silica scaling in MD and demonstrated that gypsum scaling caused earlier water flux decline and induced membrane wetting that was not observed in silica scaling. Microscopic imaging and elemental mapping revealed contrasting scale morphology and distribution for gypsum and silica, respectively. Notably, while gypsum crystals grew both on the membrane surface and deep in the membrane matrix, silica only formed on the membrane surface in the form of a relatively thin film composed of connected submicrometer silica particles. We attribute the intrusion of gypsum into membrane pores to the crystallization pressure as a result of rapid, oriented crystal growth, which leads to pore deformation and the subsequent membrane wetting. In contrast, the silica scale layer was formed via polymerization of silicic acid and gelation of silica particles, which were less intrusive and had a milder effect on membrane pore structure. This hypothesis was supported by the result of tensile testing, which showed that the MD membrane was significantly weakened by gypsum scaling. The fact that different scaling mechanisms could yield different consequences on membrane performance provides valuable insights for the future development of cost-effective strategies for scaling control.
Collapse
Affiliation(s)
- Kofi S S Christie
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Yiming Yin
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
16
|
Ray SS, Lee HK, Kwon YN. Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers (Basel) 2019; 12:E23. [PMID: 31877628 PMCID: PMC7023606 DOI: 10.3390/polym12010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyung-Kae Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Young-Nam Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
17
|
Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.049] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
|
19
|
Bush JA, Vanneste J, Cath TY. Comparison of membrane distillation and high-temperature nanofiltration processes for treatment of silica-saturated water. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Membrane fouling and reusability in membrane distillation of shale oil and gas produced water: Effects of membrane surface wettability. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Rezaei M, Warsinger DM, Lienhard V JH, Duke MC, Matsuura T, Samhaber WM. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. WATER RESEARCH 2018; 139:329-352. [PMID: 29660622 DOI: 10.1016/j.watres.2018.03.058] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Membrane distillation (MD) is a rapidly emerging water treatment technology; however, membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are exceedance of liquid entry pressure and membrane fouling. Developments in membrane design and the use of pretreatment have provided significant advancement toward wetting prevention in membrane distillation, but further progress is needed. In this study, a broad review is carried out on wetting incidence in membrane distillation processes. Based on this perspective, the study describes the wetting mechanisms, wetting causes, and wetting detection methods, as well as hydrophobicity measurements of MD membranes. This review discusses current understanding and areas for future investigation on the influence of operating conditions, MD configuration, and membrane non-wettability characteristics on wetting phenomena. Additionally, the review highlights mathematical wetting models and several approaches to wetting control, such as membrane fabrication and modification, as well as techniques for membrane restoration in MD. The literature shows that inorganic scaling and organic fouling are the main causes of membrane wetting. The regeneration of wetting MD membranes is found to be challenging and the obtained results are usually not favorable. Several pretreatment processes are found to inhibit membrane wetting by removing the wetting agents from the feed solution. Various advanced membrane designs are considered to bring membrane surface non-wettability to the states of superhydrophobicity and superomniphobicity; however, these methods commonly demand complex fabrication processes or high-specialized equipment. Recharging air in the feed to maintain protective air layers on the membrane surface has proven to be very effective to prevent wetting, but such techniques are immature and in need of significant research on design, optimization, and pilot-scale studies.
Collapse
Affiliation(s)
- Mohammad Rezaei
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
| | - David M Warsinger
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA; Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - John H Lienhard V
- Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - Mikel C Duke
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, Victoria 8001, Australia
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Wolfgang M Samhaber
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| |
Collapse
|
22
|
|
23
|
Eykens L, De Sitter K, Paulussen S, Dubreuil M, Dotremont C, Pinoy L, Van der Bruggen B. Atmospheric plasma coatings for membrane distillation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
McGaughey A, Gustafson R, Childress A. Effect of long-term operation on membrane surface characteristics and performance in membrane distillation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.08.040] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Tang L, Iddya A, Zhu X, Dudchenko AV, Duan W, Turchi C, Vanneste J, Cath TY, Jassby D. Enhanced Flux and Electrochemical Cleaning of Silicate Scaling on Carbon Nanotube-Coated Membrane Distillation Membranes Treating Geothermal Brines. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38594-38605. [PMID: 29028296 DOI: 10.1021/acsami.7b12615] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water. Porous polypropylene membranes were coated with a carbon nanotube (CNT)/poly(vinyl alcohol) layer, resulting in composite membranes having a binary structure that combines the hydrophobic properties critical for MD with the hydrophilic and conductive properties of the CNTs. We demonstrate that the addition of the CNT layer increases membrane flux due to enhanced heat transport from the bulk feed to the membrane surface, a result of CNT's high thermal transport properties. Furthermore, we show how hydroxide ion generation, driven by water electrolysis on the electrically conducting membrane surface, can be used to efficiently dissolve silicate scaling that developed during the process of desalinating the geothermal brine, negating the need for chemical cleaning.
Collapse
Affiliation(s)
- Li Tang
- Department of Chemical and Environmental Engineering, University of California, Riverside , Riverside, California 92521, United States
| | - Arpita Iddya
- Department of Chemical and Environmental Engineering, University of California, Riverside , Riverside, California 92521, United States
| | - Xiaobo Zhu
- Department of Chemical and Environmental Engineering, University of California, Riverside , Riverside, California 92521, United States
| | - Alexander V Dudchenko
- Department of Chemical and Environmental Engineering, University of California, Riverside , Riverside, California 92521, United States
| | - Wenyan Duan
- Department of Chemical and Environmental Engineering, University of California, Riverside , Riverside, California 92521, United States
| | - Craig Turchi
- Department of Energy, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Johann Vanneste
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Tzahi Y Cath
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - David Jassby
- Department of Chemical and Environmental Engineering, University of California, Riverside , Riverside, California 92521, United States
| |
Collapse
|
26
|
Han L, Tan YZ, Netke T, Fane AG, Chew JW. Understanding oily wastewater treatment via membrane distillation. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.06.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Functionalization of a Hydrophilic Commercial Membrane Using Inorganic-Organic Polymers Coatings for Membrane Distillation. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7060637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Xie M, Luo W, Gray SR. Synchrotron Fourier transform infrared mapping: A novel approach for membrane fouling characterization. WATER RESEARCH 2017; 111:375-381. [PMID: 28110141 DOI: 10.1016/j.watres.2017.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
We described a synchrotron-based infrared (IR) microscopic method to characterize fouling layer induced by organic foulants and colloidal silica in membrane distillation (MD). This technique, utilizing the ultrahigh brightness of synchrotron infrared source, enables spectra with high signal-to-noise ratio that was obtained from micrometer-sized samples. Our results showed that synchrotron IR mapping was able to resolve the foulant spatial distribution in combined fouling in MD. Synchrotron IR mapping showed the spatial distribution of binary foulant (i.e., colloidal silica with alginate, bovine serum albumin (BSA) or humic acid, respectively) of the cross-section of MD membrane fouling layer. The well-resolved synchrotron IR mapping is also able to quantify the foulant distribution along the cross-section of the fouled MD membrane, providing detailed information regarding the transport and accumulation of specific foulant, which is of paramount importance to elucidate fouling mechanisms. Our results demonstrated that the synchrotron IR mapping method was a powerful method and had significant potential for both qualitative and quantitative characterization of membrane fouling layer.
Collapse
Affiliation(s)
- Ming Xie
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia.
| | - Wenhai Luo
- College of Resource and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Stephen R Gray
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, Victoria, 8001, Australia
| |
Collapse
|
29
|
Julian H, Meng S, Li H, Ye Y, Chen V. Effect of operation parameters on the mass transfer and fouling in submerged vacuum membrane distillation crystallization (VMDC) for inland brine water treatment. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.08.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Bush JA, Vanneste J, Cath TY. Membrane distillation for concentration of hypersaline brines from the Great Salt Lake: Effects of scaling and fouling on performance, efficiency, and salt rejection. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Duong HC, Gray S, Duke M, Cath TY, Nghiem LD. Scaling control during membrane distillation of coal seam gas reverse osmosis brine. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.07.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Peng Y, Ge J, Li Z, Wang S. Effects of anti-scaling and cleaning chemicals on membrane scale in direct contact membrane distillation process for RO brine concentrate. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Hitsov I, Maere T, De Sitter K, Dotremont C, Nopens I. Modelling approaches in membrane distillation: A critical review. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.12.026] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
|