1
|
Kandhasamy S, Wu B, Wang J, Zhang X, Gao H, Yang DP, Zeng Y. Tracheal regeneration and mesenchymal stem cell augmenting potential of natural polyphenol-loaded gelatinmethacryloyl bioadhesive. Int J Biol Macromol 2024; 271:132506. [PMID: 38772466 DOI: 10.1016/j.ijbiomac.2024.132506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Hydrogels incorporating natural biopolymer and adhesive substances have extensively been used to develop bioactive drugs and to design cells encapsulating sturdy structure for biomedical applications. However, the conjugation of the adhesive in most hydrogels is insufficient to maintain long-lasting biocompatibility inadequate to accelerate internal organ tissue repair in the essential native cellular microenvironment. The current work elaborates the synthesis of charged choline-catechol ionic liquid (BIL) adhesive and a hydrogel with an electronegative atom rich polyphenol (PU)-laden gelatinmethacryloyl (GelMA) to improve the structural bioactivities for in vivo tracheal repair by inducing swift crosslinking along with durable mechanical and tissue adhesive properties. It was observed that bioactive BIL and PU exhibited potent antioxidant (IC 50 % of 7.91 μg/mL and 24.55 μg/mL) and antibacterial activity against E. coli, P. aeruginosa and S. aureus. The novel integration of photocurable GelMA-BIL-PU revealed outstanding mechanical strength, biodegradability and sustained drug release. The in vitro study showed exceptional cell migration and proliferation in HBECs, while in vivo investigation of the GelMA-BIL-PU hydrogel on a rat's tracheal model revealed remarkable tracheal reconstruction, concurrently reducing tissue inflammation. Furthermore, the optimized GelMA-BIL-PU injectable adhesive bioink blend demonstrated superior MSCs migration and proliferation, which could be a strong candidate for developing stem cell-rich biomaterials to address multiple organ defects.
Collapse
Affiliation(s)
- Subramani Kandhasamy
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| | - Baofang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jiayin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaojing Zhang
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China..
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Fujian Provincial Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province 362000, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Juszkiewicz A, Maciejewska M. Tea Grounds as a Waste Biofiller for Natural Rubber. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1516. [PMID: 38612031 PMCID: PMC11012830 DOI: 10.3390/ma17071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
The aim of this study was the utilization of ground tea waste (GT) left after brewing black tea as a biofiller in natural rubber (NR) composites. Ionic liquids (ILs), i.e., 1-ethyl-3-methylimidazolium lactate and 1-benzyl-3-methylimidazolium chloride, often used to extract phytochemicals from tea, were applied to improve the dispersibility of GT particles in the elastomeric matrix. The influence of GT loading and ILs on curing characteristics, crosslink density, mechanical properties, thermal stability and resistance of NR composites to thermo-oxidative aging was investigated. The amount of GT did not significantly affect curing characteristics and crosslink density of NR composites, but had serious impact on tensile properties. Applying 10 phr of GT improved the tensile strength by 40% compared to unfilled NR. Further increasing GT content worsened the tensile strength due to the agglomeration of biofiller in the elastomer matrix. ILs significantly improved the dispersion of GT particles in the elastomer and increased the crosslink density by 20% compared to the benchmark. Owing to the poor thermal stability of pure GT, it reduced the thermal stability of vulcanizates compared to unfilled NR. Above all, GT-filled NR exhibited enhanced resistance to thermo-oxidation since the aging factor increased by 25% compared to the unfilled vulcanizate.
Collapse
Affiliation(s)
| | - Magdalena Maciejewska
- Department of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego Street 16, 90-537 Lodz, Poland;
| |
Collapse
|
3
|
Toledo Hijo AA, Alves C, Farias FO, Peixoto VS, Meirelles AJ, Santos GH, Maximo GJ. Ionic liquids and deep eutectic solvents as sustainable alternatives for efficient extraction of phenolic compounds from mate leaves. Food Res Int 2022; 157:111194. [DOI: 10.1016/j.foodres.2022.111194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
|
4
|
Dinis TBV, e Silva FA, Sousa F, Freire MG. Advances Brought by Hydrophilic Ionic Liquids in Fields Involving Pharmaceuticals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6231. [PMID: 34771756 PMCID: PMC8585031 DOI: 10.3390/ma14216231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
The negligible volatility and high tunable nature of ionic liquids (ILs) have been the main drivers of their investigation in a wide diversity of fields, among which is their application in areas involving pharmaceuticals. Although most literature dealing with ILs is still majorly devoted to hydrophobic ILs, evidence on the potential of hydrophilic ILs have been increasingly provided in the past decade, viz., ILs with improved therapeutic efficiency and bioavailability, ILs with the ability to increase drugs' aqueous solubility, ILs with enhanced extraction performance for pharmaceuticals when employed in biphasic systems and other techniques, and ILs displaying low eco/cyto/toxicity and beneficial biological activities. Given their relevance, it is here overviewed the applications of hydrophilic ILs in fields involving pharmaceuticals, particularly focusing on achievements and advances witnessed during the last decade. The application of hydrophilic ILs within fields involving pharmaceuticals is here critically discussed according to four categories: (i) to improve pharmaceuticals solubility, envisioning improved bioavailability; (ii) as IL-based drug delivery systems; (iii) as pretreatment techniques to improve analytical methods performance dealing with pharmaceuticals, and (iv) in the recovery and purification of pharmaceuticals using IL-based systems. Key factors in the selection of appropriate ILs are identified. Insights and perspectives to bring renewed and effective solutions involving ILs able to compete with current commercial technologies are finally provided.
Collapse
Affiliation(s)
- Teresa B. V. Dinis
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| | - Francisca A. e Silva
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| | - Fani Sousa
- CICS-UBI—Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Mara G. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (T.B.V.D.); (F.A.eS.)
| |
Collapse
|
5
|
Roman B, Muzykiewicz-Szymańska A, Ossowicz-Rupniewska P, Klimowicz A, Janus E. The application of amino acid ionic liquids as additives in the ultrasound-assisted extraction of plant material. RSC Adv 2021; 11:25983-25994. [PMID: 35479433 PMCID: PMC9039413 DOI: 10.1039/d1ra03840k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to determine the antioxidant activity of the aqueous extracts from Lycopodium clavatum, Cetraria islandica and Dipsacus fullonum obtained using aqueous solutions of ionic liquids by the ultrasound-assisted extraction (IL-UAE) method. Triethanolammonium salts [TEAH]+[AA]− of four amino acids of different hydrophobicity – isoleucine – Ile, methionine – Met, threonine – Thr and arginine – Arg, were chosen as ionic liquids, because they are based on natural, bio-renewable raw materials, such as amino acids and contain a pharmaceutically and cosmetically acceptable counterion of triethanolamine. Triethanolammonium salts were synthesized, identified by spectroscopic methods (NMR and FT-IR) and characterized by thermal methods (DSC and TGA). The 2.5% w/v aqueous solutions of triethanolammonium amino acid salts were used as the solvents in combination with ultrasound assisted extraction (UAE). The estimation of antioxidant properties was carried out using the DPPH, FRAP and CUPRAC assays. Total polyphenol content was measured using the reagent Folin–Ciocalteu. The results showed that the use of [TEAH]+[Thr]− or [TEAH]+[Met]− aqueous solutions increased the antioxidant activity of extracts in comparison to that achieved for extracts with pure water. The use of [TEAH]+[Thr]− as an additive for ultrasound-assisted extraction was characterized by obtaining plant extracts with the highest antioxidant potential, even 2.4-fold. The use of the AAIL-UAE method allowed obtaining higher amounts of polyphenols compared to pure water extracts, even 5.5-fold. The used method allowed the extraction of thermosensitive natural compounds, shortened the extraction time and lowered energy consumption. The antioxidant activity of the aqueous extracts from Lycopodium clavatum, Cetraria islandica and Dipsacus fullonum obtained by ionic liquids and ultrasound-assisted extraction (IL-UAE) method was determined.![]()
Collapse
Affiliation(s)
- Barbara Roman
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials Piastów Ave. 42 71-065 Szczecin Poland
| | - Anna Muzykiewicz-Szymańska
- Pomeranian Medical University in Szczecin, Department of Cosmetic and Pharmaceutical Chemistry Powstańców Wielkopolskich Ave. 72 70-111 Szczecin Poland
| | - Paula Ossowicz-Rupniewska
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials Piastów Ave. 42 71-065 Szczecin Poland
| | - Adam Klimowicz
- Pomeranian Medical University in Szczecin, Department of Cosmetic and Pharmaceutical Chemistry Powstańców Wielkopolskich Ave. 72 70-111 Szczecin Poland
| | - Ewa Janus
- West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Materials Piastów Ave. 42 71-065 Szczecin Poland
| |
Collapse
|
6
|
Valorization of Spent Coffee by Caffeine Extraction Using Aqueous Solutions of Cholinium-Based Ionic Liquids. SUSTAINABILITY 2021. [DOI: 10.3390/su13137509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spent coffee grounds (SCGs) are a waste product with no relevant commercial value. However, SCGs are rich in extractable compounds with biological activity. To add value to this coffee byproduct, water and aqueous solutions of cholinium-based ionic liquids (ILs) were studied to extract caffeine from SCGs. In general, all IL aqueous solutions lead to higher extraction efficiencies of caffeine than pure water, with aqueous solutions of cholinium bicarbonate being the most efficient. A factorial planning was applied to optimize operational conditions. Aqueous solutions of cholinium bicarbonate, at a temperature of 80 °C for 30 min of extraction, a biomass–solvent weight ratio of 0.05 and at an IL concentration of 1.5 M, made it possible to extract 3.29 wt% of caffeine (against 1.50 wt% obtained at the best conditions obtained with pure water). Furthermore, to improve the sustainability of the process, the same IL aqueous solution was consecutively applied to extract caffeine from six samples of fresh biomass, where an increase in the extraction yield from 3.29 to 13.10 wt% was achieved. Finally, the cholinium bicarbonate was converted to cholinium chloride by titration with hydrochloric acid envisioning the direct application of the IL-caffeine extract in food, cosmetic and nutraceutical products. The results obtained prove that aqueous solutions of cholinium-based ILs are improved solvents for the extraction of caffeine from SCGs, paving the way for their use in the valorization of other waste rich in high-value compounds.
Collapse
|
7
|
Liu C, Xi X, Liu Y, Lu Y, Che F, Gu Y, Yu Y, Li H, Liu J, Wei Y. Isolation of Four Major Compounds of γ-Oryzanol from Rice Bran Oil by Ionic Liquids Modified High-Speed Countercurrent Chromatography and Antimicrobial Activity and Neuroprotective Effect of Cycloartenyl Ferulate In Vitro. Chromatographia 2021. [DOI: 10.1007/s10337-021-04044-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Enzyme-assisted extraction of carotenoids and phenolic compounds from sunflower wastes using green solvents. 3 Biotech 2020; 10:405. [PMID: 32904061 DOI: 10.1007/s13205-020-02393-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of this work is to develop an optimized enzymatic assisted extraction methodology to extract carotenoids and phenolic compounds from sunflower wastes (petals and florets) using natural hydrophobic green solvents. Several natural green hydrophobic solvents were used as well as natural hydrophobic eutectic solvents composed of d,l-menthol and different acids, with different hydrophobicity. The multi-enzyme complex Viscozyme® was used to disrupt the cell wall of petals and disc florets. The extracted carotenoids content into the hydrophobic phase was quantified using UV-Vis spectrophotometry and the carotenoids profile was studied using high-performance liquid and thin layer chromatography. The amount of total sugars in the aqueous phase was also analyzed using the dinitrosalicylic acid (DNS) method to infer about the enzymatic action in cell wall. Phenolic compounds also in the aqueous phase were analyzed by Folin Denis method. The eutectic solvent d,l-menthol:d,l-lactic acid (M:HLac) (1:2) was the best solvent for extraction of carotenoids from sunflower wastes, with 147 ppm of carotenoids extracted, in comparison to 115 ppm obtained with the standard solvent, n-hexane. In what concerns phenolic compounds, M:HLac was again better than the standard solvent. The use of the multi-enzyme complex Viscozyme® had different responses, depending on the solvent tested. For the green solvent M:HLac, the enzyme improved the carotenoids extraction, achieving 335 ppm of carotenoids in the extract. The role of enzyme, solvent, water and sunflower quantity in the carotenoid extraction was evaluated and optimized through a central composite rotatable design (CCRD), using the M:HLac as solvent. According to the analysis of CCRD, the most efficient extractions were carried out using more solvent and less raw material, whose best result reached 1449 mg carotenoids/100 g biomass ppm of carotenoids. This work emphasizes the possibility of developing more sustainable enzyme-assisted separation processes, through the substitution of toxic solvents with natural, environmentally friendly, solvents.
Collapse
|
9
|
Barrulas RV, Paiva TG, Corvo MC. NMR methodology for a rational selection of ionic liquids: extracting polyphenols. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.03.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Asrami MR, Saien J. Salting-out effect on extraction of phenol from aqueous solutions by [Hmim][NTf2] ionic liquid: Experimental investigations and modeling. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Yu X, He Y. Optimization of tea-leaf saponins water extraction and relationships between their contents and tea ( Camellia sinensis) tree varieties. Food Sci Nutr 2018; 6:1734-1740. [PMID: 30258618 PMCID: PMC6145268 DOI: 10.1002/fsn3.724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022] Open
Abstract
Resulting from the year-on-year increase in tea plantations and the saturated consumption of tea leaves, the relative overcapacity in China's tea-leaf production appears. Discovering the new utilization of tea leaves is helpful to alleviate this phenomenon. The feasibility of extracting saponins from aged tea leaves was investigated and confirmed; three major variables in water extraction were optimized by Box-Behnken designs. The significant variable found in Box-Behnken designs, liquid-solid ratio, was went through single-variable experiments for a more accurate optimization. Seventy-five ml/g, 1 hr, and 80°C were optimal values and tea-leaf saponins yield of tea tree variety Longjing 43 reached 12.19% ± 0.0030% after optimizations, higher than the yield of tea-seed saponins from Camellia oleifera seed meals using the same extraction method (water extraction based on optimizations). According to correlation analyses, tea tree's leaf type and germination stage affected tea-leaf saponins contents positively, indicating tea trees with larger leaves and later germination stage would have a higher content of tea-leaf saponins with a higher yield of tea-leaf saponins under the same extraction method.
Collapse
Affiliation(s)
- Xiao‐Lan Yu
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| | - Yong He
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| |
Collapse
|
12
|
Ullah H, Wilfred CD, Shaharun MS. Ionic liquid-based extraction and separation trends of bioactive compounds from plant biomass. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1505913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Habib Ullah
- Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia
| | - Cecilia Devi Wilfred
- Fundamental and Applied Science Department, Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia
| | | |
Collapse
|
13
|
Yu XL, He Y. Development of a Rapid and Simple Method for Preparing Tea-Leaf Saponins and Investigation on Their Surface Tension Differences Compared with Tea-Seed Saponins. Molecules 2018; 23:E1796. [PMID: 30037015 PMCID: PMC6099727 DOI: 10.3390/molecules23071796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/14/2018] [Accepted: 07/19/2018] [Indexed: 11/30/2022] Open
Abstract
The relative overcapacity in China's tea-leaf production and the potential application of tea-leaf saponins in soil remediation encouraged in-depth developments and comprehensive utilizations of tea-leaf resources. Through variables optimizations using Box⁻Behnken designs for ultrasonic power, temperature as well as ultrasonic treatment time in ultrasonic-assisted water extraction and single-variable experiments for acetone-extraction solution ratio in acetone precipitation, a rapid and simple method was developed for preparing tea-leaf saponins. Tea-leaf saponins with the concentration of 3.832 ± 0.055 mg/mL and the purity of 76.5% ± 1.13% were acquired under the optimal values of 78 w, 60 °C, 20 min and 0.1 ratio of acetone-extraction solution. Both Fourier transform-infrared (FT-IR) spectra and ultraviolet (UV) spectra revealed slight composition differences between tea-leaf saponins and tea-seed saponins, while these differences were not reflected in the critical micelle concentration (CMC) and the surface tension of tea-leaf saponins and tea-seed saponins, indicating there was no need to distinguish them at the CMC. Further research attention on where tea-leaf saponins were in low concentrations is deserved to discover whether they had differences in comparison with tea-seed saponins, which was beneficial to apply them in the phytoremediation of contaminated soils.
Collapse
Affiliation(s)
- Xiao-Lan Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Yu XL, He Y. Tea saponins: effective natural surfactants beneficial for soil remediation, from preparation to application. RSC Adv 2018; 8:24312-24321. [PMID: 35539187 PMCID: PMC9082184 DOI: 10.1039/c8ra02859a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/12/2018] [Indexed: 11/23/2022] Open
Abstract
Tea saponins, found in Camellia plants, are natural non-ionic surfactants that offer obvious beneficial effects in soil remediation. Most tea saponins are extracted from the Camellia oleifera seed meal, with the leaves and flowers of Camellia sinensis as potential sources. Water extraction and ultrasound-assisted water extraction combined with acetone precipitation are recommended for the industrial extraction and purification of tea saponins, considering multiple factors. The detailed physical, chemical and biochemical properties of tea saponins need to be clarified, especially whether tea saponins with slightly different structures from distinct sources have different soil remediation properties. Applied in leaching remediation, phytoremediation and microbial remediation, tea saponins desorb heavy metals from contaminated soil as well as enhancing their bioavailability. Tea saponins improve the accumulation of pollutants by hyperaccumulators as well as the degradation of organic pollutants by microorganisms. Currently the mechanisms of tea saponins are not clear, although they are proven to be effective natural surfactants for the remediation of contaminated soils. This review enriches our understanding of tea saponins from various aspects and encourages further studies of industrial extraction and purification, and the field remediation mechanisms of tea saponins, making better use of Camellia plants and contributing to environmental protection.
Collapse
Affiliation(s)
- Xiao-Lan Yu
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou P. R. China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou P. R. China
| |
Collapse
|
15
|
Extraction of bioactive ginseng saponins using aqueous two-phase systems of ionic liquids and salts. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.05.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Ventura SM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chem Rev 2017; 117:6984-7052. [PMID: 28151648 PMCID: PMC5447362 DOI: 10.1021/acs.chemrev.6b00550] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/22/2022]
Abstract
Ionic liquids (ILs) have been proposed as promising media for the extraction and separation of bioactive compounds from the most diverse origins. This critical review offers a compilation on the main results achieved by the use of ionic-liquid-based processes in the extraction and separation/purification of a large range of bioactive compounds (including small organic extractable compounds from biomass, lipids, and other hydrophobic compounds, proteins, amino acids, nucleic acids, and pharmaceuticals). ILs have been studied as solvents, cosolvents, cosurfactants, electrolytes, and adjuvants, as well as used in the creation of IL-supported materials for separation purposes. The IL-based processes hitherto reported, such as IL-based solid-liquid extractions, IL-based liquid-liquid extractions, IL-modified materials, and IL-based crystallization approaches, are here reviewed and compared in terms of extraction and separation performance. The key accomplishments and future challenges to the field are discussed, with particular emphasis on the major lacunas found within the IL community dedicated to separation processes and by suggesting some steps to overcome the current limitations.
Collapse
Affiliation(s)
- Sónia
P. M. Ventura
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Francisca A. e Silva
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria V. Quental
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Dibyendu Mondal
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- CICECO−Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Ma W, Row KH. Optimized extraction of bioactive compounds from Herba Artemisiae Scopariae with ionic liquids and deep eutectic solvents. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1322522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wanwan Ma
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|
18
|
van Osch DJGP, Kollau LJBM, van den Bruinhorst A, Asikainen S, Rocha MAA, Kroon MC. Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 2017; 19:2636-2665. [DOI: 10.1039/c6cp07499e] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
State of the art overview of the fractionation of lignocellulosic biomass with ionic liquids and deep eutectic solvents.
Collapse
Affiliation(s)
- Dannie J. G. P. van Osch
- Laboratory of Physical Chemistry
- Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Laura J. B. M. Kollau
- Laboratory of Physical Chemistry
- Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Adriaan van den Bruinhorst
- Laboratory of Physical Chemistry
- Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | | | - Marisa A. A. Rocha
- Separation Technology Group
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Maaike C. Kroon
- Separation Technology Group
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| |
Collapse
|
19
|
|
20
|
Atanassova M, Kurteva V, Dukov I. The interaction of extractants during synergistic solvent extraction of metals. Is it an important reaction? RSC Adv 2016. [DOI: 10.1039/c6ra18478b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The target of the review is to provide an overview on the possible interaction between the two ligands during synergistic solvent extraction of metallic species.
Collapse
Affiliation(s)
- Maria Atanassova
- University of Chemical Technology and Metallurgy
- Department of General and Inorganic Chemistry
- 1756 Sofia
- Bulgaria
| | - Vanya Kurteva
- Institute of Organic Chemistry with Centre of Phytochemistry
- Bulgarian Academy of Sciences
- Sofia
- Bulgaria
| | - Ivan Dukov
- University of Chemical Technology and Metallurgy
- Department of General and Inorganic Chemistry
- 1756 Sofia
- Bulgaria
| |
Collapse
|
21
|
Vasanthakumar A, Bahadur I, Redhi G, Gengan RM. Synthesis and characterization of 2′,3′-epoxy propyl-N-methyl-2-oxopyrrolidinium salicylate ionic liquid and study of its interaction with water or methanol. RSC Adv 2016. [DOI: 10.1039/c6ra11327c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Important physico-chemical properties of ionic liquids (ILs) can be manipulated by adjusting the nature of the cation or anion.
Collapse
Affiliation(s)
- A. Vasanthakumar
- Department of Chemistry
- Durban University of Technology
- Durban
- South Africa
| | - I. Bahadur
- Department of Chemistry
- School of Mathematical and Physical Sciences
- Faculty of Agriculture, Science and Technology
- North-West University (Mafikeng Campus)
- Mmabatho 2735
| | - G. Redhi
- Department of Chemistry
- Durban University of Technology
- Durban
- South Africa
| | - R. M. Gengan
- Department of Chemistry
- Durban University of Technology
- Durban
- South Africa
| |
Collapse
|
22
|
Introduction to Ionic-Liquid-Based Aqueous Biphasic Systems (ABS). GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2016. [DOI: 10.1007/978-3-662-52875-4_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Aqueous Biphasic Systems Based on Ionic Liquids for Extraction, Concentration and Purification Approaches. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2016. [DOI: 10.1007/978-3-662-48520-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
NMR Study on the Possible Interactions Between Imidazolium Based Ionic Liquids and Extractants Widely Applied in Solvent Extraction and Separation of f-Ions. J SOLUTION CHEM 2015. [DOI: 10.1007/s10953-015-0420-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Tan ZJ, Wang CY, Yang ZZ, Yi YJ, Wang HY, Zhou WL, Li FF. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L.) with Further Purification by an Aqueous Two-Phase System. Molecules 2015; 20:17929-43. [PMID: 26437389 PMCID: PMC6332368 DOI: 10.3390/molecules201017929] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/16/2022] Open
Abstract
In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE) and ionic liquid-based aqueous two-phase system (IL-ATPS) was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG) from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid–solid ratio were optimized using response surface methodology (RSM). In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH) were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w) IL and 8.27% (w/w) Na2SO4 at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.
Collapse
Affiliation(s)
- Zhi-Jian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Chao-Yun Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zi-Zhen Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yong-Jian Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Hong-Ying Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Wan-Lai Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Fen-Fang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
26
|
Smiglak M, Pringle JM, Lu X, Han L, Zhang S, Gao H, MacFarlane DR, Rogers RD. Ionic liquids for energy, materials, and medicine. Chem Commun (Camb) 2015; 50:9228-50. [PMID: 24830849 DOI: 10.1039/c4cc02021a] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As highlighted by the recent ChemComm web themed issue on ionic liquids, this field continues to develop beyond the concept of interesting new solvents for application in the greening of the chemical industry. Here some current research trends in the field will be discussed which show that ionic liquids research is still aimed squarely at solving major societal issues by taking advantage of new fundamental understanding of the nature of these salts in their low temperature liquid state. This article discusses current research trends in applications of ionic liquids to energy, materials, and medicines to provide some insight into the directions, motivations, challenges, and successes being achieved with ionic liquids today.
Collapse
Affiliation(s)
- M Smiglak
- Poznan Science and Technology Park, Adam Mickiewicz University Foundation, 61-612 Poznan, Poland
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wu JY, Chen YP, Su CS. Density and Viscosity of Ionic Liquid Binary Mixtures of 1-n-Butyl-3-methylimidazolium Tetrafluoroborate with Acetonitrile, N,N-Dimethylacetamide, Methanol, and N-Methyl-2-pyrrolidone. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0273-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Passos H, Freire MG, Coutinho JAP. Ionic liquid solutions as extractive solvents for value-added compounds from biomass. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2014; 16:4786-4815. [PMID: 25516718 PMCID: PMC4265387 DOI: 10.1039/c4gc00236a] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In the past few years, the number of studies regarding the application of ionic liquids (ILs) as alternative solvents to extract value-added compounds from biomass has been growing. Based on an extended compilation and analysis of the data hitherto reported, the main objective of this review is to provide an overview on the use of ILs and their mixtures with molecular solvents for the extraction of value-added compounds present in natural sources. The ILs (or IL solutions) investigated as solvents for the extraction of natural compounds, such as alkaloids, flavonoids, terpenoids, lipids, among others, are outlined. The extraction techniques employed, namely solid-liquid extraction, and microwave-assisted and ultrasound-assisted extractions, are emphasized and discussed in terms of extraction yields and purification factors. Furthermore, the evaluation of the IL chemical structure and the optimization of the process conditions (IL concentration, temperature, biomass-solvent ratio, etc.) are critically addressed. Major conclusions on the role of the ILs towards the extraction mechanisms and improved extraction yields are additionally provided. The isolation and recovery procedures of the value-added compounds are ascertained as well as some scattered strategies already reported for the IL solvent recovery and reusability. Finally, a critical analysis on the economic impact versus the extraction performance of IL-based methodologies was also carried out and is here presented and discussed.
Collapse
Affiliation(s)
- Helena Passos
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Mara G. Freire
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- Departamento de Química, CICECO, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Bogdanov MG. Ionic Liquids as Alternative Solvents for Extraction of Natural Products. ALTERNATIVE SOLVENTS FOR NATURAL PRODUCTS EXTRACTION 2014. [DOI: 10.1007/978-3-662-43628-8_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|