1
|
Karandagaspitiya CO, Mahendra CK, Lim HP, Chan DKH, Tey YS, Kam CF, Singh CKS, Song CP, Chan ES. Tripolyphosphate-chitosan-pea protein interactions confers long-term stability to 3D printed high internal phase Pickering emulsions. Food Chem 2025; 466:142228. [PMID: 39608119 DOI: 10.1016/j.foodchem.2024.142228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/29/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
This research explores the interactions of tripolyphosphate-chitosan-pea protein (TPP-CS-PP) in improving the stability and storage of 3D printing food inks. Chitosan (CS) and pea protein (PP) were complexed at various concentrations with 80 % palm olein to produce high internal phase Pickering emulsions (HIPPEs) 3D printing food inks. The resulting CSPP HIPPEs exhibited shear-thinning behaviour and the flexibility to switch between solid and liquid states, ideal for 3D printing. CSPP1:150 achieved the best 3D printing resolution and shape fidelity due to electrostatic attraction of CS-PP and excess PP enhancing adhesion at the oil/water interface. After spraying tripolyphosphate (TPP), crosslinking with CS and phosphorylation of PP further improved HIPPE resistance to deformation and oiling off for 2 days post-printing. This is a significant improvement over the control. Thus, further investigation on the interaction of TPP with CS and PP is warranted to further improve the storage stability of 3D printed food inks.
Collapse
Affiliation(s)
- Chani Oshadi Karandagaspitiya
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Camille Keisha Mahendra
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Hui-Peng Lim
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Derek Kwan-Hoe Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yi Shen Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chui Fong Kam
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Charanjit Kaur Surjit Singh
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Boček Ž, Petkovšek M, Clark SJ, Fezzaa K, Dular M. Kelvin-Helmholtz instability as one of the key features for fast and efficient emulsification by hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2024; 108:106970. [PMID: 38943847 PMCID: PMC11261489 DOI: 10.1016/j.ultsonch.2024.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The paper investigates the oil-water emulsification process inside a micro-venturi channel. More specifically, the possible influence of Kelvin-Helmholtz instability on the emulsification process. High-speed visualizations were conducted inside a square venturi constriction with throat dimensions of 450 µm by 450 µm, both under visible light and X-Rays. We show that cavity shedding caused by the instability results in the formation of several cavity vortices. Their rotation causes the deformation of the oil stream into a distinct wave-like shape, combined with fragmentation into larger drops due to cavitation bubble collapse. Later on, the cavity collapse further disperses the larger drops into a finer emulsion. Thus, it turns out that the Kelvin-Helmholtz instability is similarly characteristic for hydrodynamic cavitation emulsification inside a microchannel as is the Rayleigh-Taylor instability for acoustically driven emulsion formation.
Collapse
Affiliation(s)
- Žan Boček
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia
| | - Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia
| | - Samuel J Clark
- Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 6043, USA
| | - Kamel Fezzaa
- Advanced Photon Source, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL 6043, USA
| | - Matevž Dular
- Faculty of Mechanical Engineering, University of Ljubljana, Askerceva 6, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Upadhyay M, Ravi A, Ranade VV. Dense Oil in Water Emulsions using Vortex-Based Hydrodynamic Cavitation: Effective Viscosity, Sauter Mean Diameter, and Droplet Size Distribution. Ind Eng Chem Res 2024; 63:4977-4990. [PMID: 38525289 PMCID: PMC10958511 DOI: 10.1021/acs.iecr.3c04555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
Vortex-based hydrodynamic cavitation offers an effective platform for producing emulsions. In this work, we have investigated characteristics of dense oil in water emulsions with oil volume fractions up to 60% produced using a vortex-based cavitation device. Emulsions were prepared using rapeseed oil with oil volume fractions of 0.15, 0.3, 0.45, and 0.6. For each of these volume fractions, the pressure drop as a function of the flow rate of emulsions through the cavitation device was measured. These data were used for estimating the effective viscosity of the emulsions. The droplet size distribution of the emulsions was measured using the laser diffraction technique. The influence of the number of passes through the cavitation device on droplet size distributions and the Sauter mean diameter was quantified. It was found that the Sauter mean diameter (d32) decreases with an increase in the number of passes as n-0.2. The Sauter mean diameter was found to be almost independent of oil volume fraction (αo) up to a certain critical volume fraction (αoc). Beyond αoc, d32 was found to be linearly proportional to a further increase in oil volume fraction. As expected, the turbidity of the produced emulsions was found to be linearly proportional to the oil volume fraction. The slope of turbidity versus oil volume fraction can be used to estimate the Sauter mean diameter. A suitable correlation was developed to relate turbidity, volume fraction, and Sauter mean diameter. The droplet breakage efficiency of the vortex-based cavitation device for dense oil in water emulsions was quantified and reported. The breakage efficiency was found to increase linearly with an increase in oil volume fraction up to αoc and then plateau with a further increase in the oil volume fraction. The breakage efficiency was found to decrease with an increase in energy consumption per unit mass (E) as E-0.8. The presented results demonstrate the effectiveness of a vortex-based cavitation device for producing dense oil in water emulsions and will be useful for extending its applications to other dense emulsions.
Collapse
Affiliation(s)
| | | | - Vivek V. Ranade
- Multiphase Reactors and Intensification
Group Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
4
|
Thaker A, Ranade VV. Emulsions Using a Vortex-Based Cavitation Device: Influence of Number of Passes, Pressure Drop, and Device Scale on Droplet Size Distributions. Ind Eng Chem Res 2023; 62:18837-18851. [PMID: 38020792 PMCID: PMC10655102 DOI: 10.1021/acs.iecr.2c03714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Liquid-liquid emulsions are used in a variety of industry sectors, including personal care, home care, food, and nutrition. The development of compact and modular systems and devices for creating emulsions with desired droplet size distribution (DSD) is becoming increasingly important. In this work, we have shown use of vortex-based cavitation devices for producing emulsions at nominal flow rate of 1 LPM and 20 LPM. We present new experimental results providing quantitative information on influence of multiple passes through the vortex based hydrodynamic cavitation (HC) device, type of oil and device scale on the breakage process and resulting DSDs. Multiple pass experiments were performed for generating oil-in-water emulsions containing 5 and 15% of oil. Rapeseed oil (RO) and tetrachloroethylene (TCE) were used as oil phases with densities of 915 and 1620 kg/m3, respectively. The effect of pressure drop across the HC device in the range of 50-250 kPa on DSD was examined. The HC device was shown to exhibit significant higher efficiency compared to alternative emulsion making devices (i.e., homogenizers, venturi, and orifice-based HC devices), and the Sauter mean drop size was found to reduce from 66 μm to less than 2 μm after about 50 passes in all the device scales. The DSD of the RO-water system showed a bimodal nature, whereas monomodal DSD was found for TCE-water system. Preliminary simulations using the computational fluid dynamics-population balance model (CFD-PBM) models developed in the previous work indicated the inadequacy of developed models to capture the influence of cavitation on DSDs. By carrying out Hinze scale analysis of bimodal DSD, we for the first time showed the existence of two different mechanisms (one based on conventional turbulent shear and the other based on collapsing cavities) of droplet breakage in HC devices. The order of magnitude of turbulence energy dissipation rates generated due to collapsing cavity estimated using Hinze scale analysis showed good agreement with the values reported from cavity dynamics models. The presented experimental results and analysis will be useful for researchers and engineers interested in developing computational models and compact devices for producing emulsions of the desired DSD.
Collapse
Affiliation(s)
- Abhijeet
H. Thaker
- Multiphase Reactors and Intensification
Group Bernal Institute, University of Limerick, LimerickV94T9PX, Ireland
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification
Group Bernal Institute, University of Limerick, LimerickV94T9PX, Ireland
| |
Collapse
|
5
|
Carpenter J, Pinjari DV, Kumar Saharan V, Pandit AB. Critical Review on Hydrodynamic Cavitation as an Intensifying Homogenizing Technique for Oil-in-Water Emulsification: Theoretical Insight, Current Status, and Future Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jitendra Carpenter
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Dipak V. Pinjari
- Department of Fibers and Textile Processing Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
- Department of Polymer and Surface Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| | - Virendra Kumar Saharan
- Department of Chemical Engineering, Malaviya National Institute of Technology, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Aniruddha B. Pandit
- Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019, Maharashtra, India
| |
Collapse
|
6
|
Wang B, Liu Y, Zhang H, Shi W, Xiong M, Gao C, Cui M. Hydrodynamic cavitation and its application in water treatment combined with ozonation: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Cako E, Wang Z, Castro-Muñoz R, Rayaroth MP, Boczkaj G. Cavitation based cleaner technologies for biodiesel production and processing of hydrocarbon streams: A perspective on key fundamentals, missing process data and economic feasibility - A review. ULTRASONICS SONOCHEMISTRY 2022; 88:106081. [PMID: 35777195 PMCID: PMC9253490 DOI: 10.1016/j.ultsonch.2022.106081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 05/19/2023]
Abstract
The present review emphasizes the role of hydrodynamic cavitation (HC) and acoustic cavitation in clean and green technologies for selected fuels (of hydrocarbon origins such as gasoline, naphtha, diesel, heavy oil, and crude oil) processing applications including biodiesel production. Herein, the role of cavitation reactors, their geometrical parameters, physicochemical properties of liquid media, liquid oxidants, catalyst loading, reactive oxygen species, and different types of emulsification and formation of radicals, formation as well as extraction of formed by-products are systematically reviewed. Among all types of HC reactors, vortex diode and single hole orifices revealed more than 95 % desulfurization yield and a 20 % viscosity reduction in heavy oil upgrading, while multi-hole orifice (100 holes) and slit Venturi allowed obtaining the best biodiesel production processes in terms of high (%) yield, low cost of treatment, and short processing time (5 min; 99 % biodiesel; 4.80 USD/m3). On the other hand, the acoustic cavitation devices are likely to be the most effective in biodiesel production based on ultrasonic bath (90 min; 95 %; 6.7 $/m3) and desulfurization treatment based on ultrasonic transducers (15 min; 98.3 % desulfurization; 10.8 $/m3). The implementation of HC-based processes reveals to be the most cost-effective method over acoustic cavitation-based devices. Finally, by reviewing the ongoing applications and development works, the limitations and challenges for further research are addressed emphasizing the cleaner production and guidelines for future scientists to assure obtaining comprehensive data useful for the research community.
Collapse
Affiliation(s)
- Elvana Cako
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), No.20 Cuiniao Road, Chen Jiazhen, Shanghai 202162, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Roberto Castro-Muñoz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; Tecnologico de Monterrey, Campus Toluca. Av. Eduardo Monroy, Cárdenas 2000 San Antonio Buenavista, 50110 Toluca de Lerdo, Mexico
| | - Manoj P Rayaroth
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, Poland; GREMI, UMR 7344, Université d'Orléans, CNRS, 45067 Orléans, France
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
8
|
Aslam S, Akhtar A, Nirmal N, Khalid N, Maqsood S. Recent Developments in Starch-Based Delivery Systems of Bioactive Compounds: Formulations and Applications. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09311-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Deggelmann M, Nöpel JA, Rüdiger F, Paustian D, Braeutigam P. Hydrodynamic cavitation for micropollutant degradation in water - Correlation of bisphenol A degradation with fluid mechanical properties. ULTRASONICS SONOCHEMISTRY 2022; 83:105950. [PMID: 35151987 PMCID: PMC8851259 DOI: 10.1016/j.ultsonch.2022.105950] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The present work addresses the correlation of bisphenol A (BPA) degradation by hydrodynamic cavitation with the fluid mechanical properties of the cavitating jet in the reactor. The effects of inlet pressure and two orifices were investigated. The fluid mechanics conditions during the reaction were evaluated by optical measurements to determine the jet length, bubble volume, number of bubbles, and bubble size distribution. In addition, chemiluminescence of luminol is used to localize chemically active bubbles due to the generation of hydroxyl radicals in the reactor chamber. The correlation between the rate constants of BPA degradation and the mechanical properties of the liquid is discussed. Here, linear dependencies between the degradation of BPA and the volume expansion of the bubble volume and chemiluminescence are found, allowing prediction of the rate constants and the hydroxyl radicals generated. BPA degradation of 50% was achieved in 30 min with the 1.7 mm nozzle at 25 bar. However, the 1 mm nozzle has been demonstrated to be more energetically efficient, achieving 10% degradation with 30% less power per 100 passes. There is a tendency for the number of small bubbles in the reactor to increase with smaller nozzle and increasing pressure difference.
Collapse
Affiliation(s)
- Manuel Deggelmann
- Institute of Technical and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Julius-Alexander Nöpel
- Institute of Fluid Mechanics, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
| | - Frank Rüdiger
- Institute of Fluid Mechanics, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
| | - Dirk Paustian
- Institute of Technical and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Patrick Braeutigam
- Institute of Technical and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Center for Energy and Environmental Chemistry (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany; Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Michael-Faraday-Straße 1, 07629 Hermsdorf, Germany.
| |
Collapse
|
10
|
Zhang M, Cheng Q, Chen T, Wei X, Meng L. Development and characterisation research on SnO2‐Al2O3‐NiO‐SO42‐ catalysed epoxidation of soybean oil under hydraulic cavitation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Meng Zhang
- School of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou China
| | - Qianwei Cheng
- School of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou China
| | - Tong Chen
- School of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou China
| | - Xiaoli Wei
- Department of mechanical engineering Liuzhou institute of technology Liuzhou China
| | - Luli Meng
- School of Biological and Chemical Engineering Guangxi University of Science and Technology Liuzhou China
| |
Collapse
|
11
|
Fan P, Ma Z, Partow AJ, Kim M, Shoemaker GM, Tan R, Tong Z, Nelson CD, Jang Y, Jeong KC. A novel combination therapy for multidrug resistant pathogens using chitosan nanoparticles loaded with β-lactam antibiotics and β-lactamase inhibitors. Int J Biol Macromol 2022; 195:506-514. [PMID: 34920071 DOI: 10.1016/j.ijbiomac.2021.12.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance is one of the greatest global threats. Particularly, multidrug resistant extended-spectrum β-lactamase (ESBL)-producing pathogens confer resistance to many commonly used medically important antibiotics, especially beta-lactam antibiotics. Here, we developed an innovative combination approach to therapy for multidrug resistant pathogens by encapsulating cephalosporin antibiotics and β-lactamase inhibitors with chitosan nanoparticles (CNAIs). The four combinations of CNAIs including two cephalosporin antibiotics (cefotaxime and ceftiofur) with two β-lactamase inhibitors (tazobactam and clavulanate) were engineered as water-oil-water emulsions. Four combinations of CNAIs showed efficient antimicrobial activity against multidrug resistant ESBL-producing Enterobacteriaceae. The CNAIs showed enhanced antimicrobial activity compared to naïve chitosan nanoparticles and to the combination of cephalosporin antibiotics and β-lactamase inhibitors. Furthermore, CNAIs attached on the bacterial surface changed the permeability to the outer membrane, resulting in cell damage that leads to cell death. Taken together, CNAIs have provided promising potential for treatment of diseases caused by critically important ESBL-producing multidrug resistant pathogens.
Collapse
Affiliation(s)
- Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Zhengxin Ma
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Arianna J Partow
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Miju Kim
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Grace M Shoemaker
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ruwen Tan
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Zhaohui Tong
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Corwin D Nelson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA; Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
12
|
Agarkoti C, Thanekar PD, Gogate PR. Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113786. [PMID: 34649311 DOI: 10.1016/j.jenvman.2021.113786] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/28/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Acoustic cavitation (AC) and hydrodynamic cavitation (HC) coupled with advanced oxidation processes (AOPs) are prominent techniques used for industrial wastewater treatment though most studies have focused on simulated effluents. The present review mainly focuses on the analysis of studies related to real industrial effluent treatment using acoustic and hydrodynamic cavitation operated individually and coupled with H2O2, ozone, ultraviolet, Fenton, persulfate and peroxymonosulfate, and other emerging AOPs. The necessity of using optimum loadings of oxidants in the various AOPs for obtaining maximum COD reduction of industrial effluent have been demonstrated. The review also presents critical analysis of designs of various HCRs that have been or can be used for the treatment of industrial effluents. The impact of operating conditions such as dilution, inlet pressure, ultrasonic power, pH, and operating temperature have been also discussed. The economic aspects of the industrial effluent treatment have been analyzed. HC can be considered as cost-efficient approach compared to AC on the basis of the lower operating costs and better transfer efficiencies. Overall, HC combined with AOPs appears to be an effective treatment strategy that can be successfully implemented at industrial-scale of operation.
Collapse
Affiliation(s)
- C Agarkoti
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - P D Thanekar
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - P R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India.
| |
Collapse
|
13
|
Thaker AH, Ranade VV. Drop breakage in a single‐pass through vortex‐based cavitation device: Experiments and modeling. AIChE J 2021. [DOI: 10.1002/aic.17512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abhijeet H. Thaker
- Multiphase Reactors and Intensification Group Bernal Institute, University of Limerick Limerick Ireland
| | - Vivek V. Ranade
- Multiphase Reactors and Intensification Group Bernal Institute, University of Limerick Limerick Ireland
| |
Collapse
|
14
|
Zhang K, Xu Y, Lu L, Shi C, Huang Y, Mao Z, Duan C, Ren X, Guo Y, Huang C. Hydrodynamic cavitation: A feasible approach to intensify the emulsion cross-linking process for chitosan nanoparticle synthesis. ULTRASONICS SONOCHEMISTRY 2021; 74:105551. [PMID: 33894557 PMCID: PMC8091060 DOI: 10.1016/j.ultsonch.2021.105551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Chitosan nanoparticles (NPs) exhibit great potential in drug-controlled release systems. A controlled hydrodynamic cavitation (HC) technique was developed to intensify the emulsion crosslinking process for the synthesis of chitosan NPs. Experiments were performed using a circular venturi and under varying operating conditions, i.e., types of oil, addition mode of glutaraldehyde (Glu) solution, inlet pressure (Pin), and rheological properties of chitosan solution. Palm oil was more appropriate for use as the oil phase for the HC-intensified process than the other oil types. The addition mode of water-in-oil (W/O) emulsion containing Glu (with Span 80) was more favorable than the other modes for obtaining a narrow distribution of chitosan NPs. The minimum size of NPs with polydispersity index of 0.342 was 286.5 nm, and the maximum production yield (Py) could reach 47.26%. A positive correlation was found between the size of NPs and the droplet size of W/O emulsion containing chitosan at increasing Pin. Particle size, size distribution, and the formation of NPs were greatly dependent on the rheological properties of the chitosan solution. Fourier transform infrared spectroscopy (FTIR) analysis indicated that the molecular structure of palm oil was unaffected by HC-induced effects. Compared with ultrasonic horn, stirring-based, and conventional drop-by-drop processes, the application of HC to intensify the emulsion crosslinking process allowed the preparation of a finer and a narrower distribution of chitosan NPs in a more energy-efficient manner. The novel route developed in this work is a viable option for chitosan NP synthesis.
Collapse
Affiliation(s)
- Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China.
| | - Yun Xu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Lijin Lu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Zhijuan Mao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Chao Duan
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Xian'e Ren
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Yan Guo
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Chengdu Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| |
Collapse
|
15
|
Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09282-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Characterization and response surface optimization driven ultrasonic nanoemulsification of oil with high phytonutrient concentration recovered from palm oil biodiesel distillation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Petkovšek M, Hočevar M, Gregorčič P. Surface functionalization by nanosecond-laser texturing for controlling hydrodynamic cavitation dynamics. ULTRASONICS SONOCHEMISTRY 2020; 67:105126. [PMID: 32311571 DOI: 10.1016/j.ultsonch.2020.105126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 05/27/2023]
Abstract
The interaction between liquid flow and solid boundary can result in cavitation formation when the local pressure drops below vaporization threshold. The cavitation dynamics does not depend only on basic geometry, but also on surface roughness, chemistry and wettability. From application point of view, controlling cavitation in fluid flows by surface functionalization is of great importance to avoid the unwanted effects of hydrodynamic cavitation (erosion, noise and vibrations). However, it could be also used for intensification of various physical and chemical processes. In this work, the surfaces of 10-mm stainless steel cylinders are laser textured in order to demonstrate how hydrodynamic cavitation behavior can be controlled by surface modification. The surface properties are modified by using a nanosecond (10-28 ns) fiber laser (wavelength of 1060 nm). In such a way, surfaces with different topographies and wettability were produced and tested in a cavitation tunnel at different cavitation numbers (1.0-2.6). Cavitation characteristics behind functionalized cylindrical surfaces were monitored simultaneously by high-speed visualization (20,000 fps) and high frequency pressure transducers. The results clearly show that cavitation characteristics differ significantly between different micro-structured surfaces. On some surfaces incipient cavitation is delayed and cavitation extent decreased in comparison with the reference - a highly polished cylinder. It is also shown that the increased surface wettability (i.e., hydrophilicity) delays the incipient cavitation.
Collapse
Affiliation(s)
- Martin Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia.
| | - Matej Hočevar
- Institute of Metals and Technology, Ljubljana, Slovenia
| | - Peter Gregorčič
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Kumar R, Uppal S, Kaur K, Mehta S. Curcumin nanoemulsion as a biocompatible medium to study the metal ion imbalance in a biological system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Influence of Fluid Properties on Intensity of Hydrodynamic Cavitation and Deactivation of Salmonella typhimurium. Processes (Basel) 2020. [DOI: 10.3390/pr8030326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study, three microfluidic devices with different geometries are fabricated on silicon and are bonded to glass to withstand high-pressure fluid flows in order to observe bacteria deactivation effects of micro cavitating flows. The general geometry of the devices was a micro orifice with macroscopic wall roughness elements. The width of the microchannel and geometry of the roughness elements were varied in the devices. First, the thermophysical property effect (with deionized water and phosphate-buffered saline (PBS)) on flow behavior was revealed. The results showed a better performance of the device in terms of cavitation generation and intensity with PBS due to its higher density, higher saturation vapor pressure, and lower surface tension in comparison with water. Moreover, the second and third microfluidic devices were tested with water and Salmonella typhimurium bacteria suspension in PBS. Accordingly, the presence of the bacteria intensified cavitating flows. As a result, both devices performed better in terms of the intensity of cavitating flow with the presence of bacteria. Finally, the deactivation performance was assessed. A decrease in the bacteria colonies on the agar plate was detected upon the tenth cycle of cavitating flows, while a complete deactivation was achieved after the fifteenth cycle. Thus, the proposed devices can be considered as reliable hydrodynamic cavitation reactors for “water treatment on chip” applications.
Collapse
|
20
|
Controlled Hydrodynamic Cavitation: A Review of Recent Advances and Perspectives for Greener Processing. Processes (Basel) 2020. [DOI: 10.3390/pr8020220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 20th century has witnessed a remarkable enhancement in the demand for varieties of consumer products, ranging from food, pharmaceutical, cosmetics, to other industries. To enhance the quality of the product and to reduce the production cost, industries are gradually inclined towards greener processing technologies. Cavitation-based technologies are gaining interest among processing technologies due to their cost effectiveness in operation, minimization of toxic solvent usage, and ability to obtain superior processed products compared to conventional methods. Also, following the recent advancements, cavitation technology with large-scale processing applicability is only denoted to the hydrodynamic cavitation (HC)-based method. This review includes a general overview of hydrodynamic cavitation-based processing technologies and a detailed discussion regarding the process effectiveness. HC has demonstrated its usefulness in food processing, extraction of valuable products, biofuel synthesis, emulsification, and waste remediation, including broad-spectrum contaminants such as pharmaceuticals, bacteria, dyes, and organic pollutants of concern. Following the requirement of a specific process, HC has been implemented either alone or in combination with other process-intensifying steps, for example, catalyst, surfactant, ultraviolet (UV), hydrogen peroxide (H2O2), and ozone (O3), for better performance. The reactor set-up of HC includes orifice, slit venturi, rotor-stator, and sonolator type constrictions that initiate and control the formation of bubbles. Moreover, the future directions have also been pointed out with careful consideration of specific drawbacks.
Collapse
|
21
|
Arya SS, Sawant O, Sonawane SK, Show PL, Waghamare A, Hilares R, Santos JCD. Novel, Nonthermal, Energy Efficient, Industrially Scalable Hydrodynamic Cavitation – Applications in Food Processing. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1669163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S. S. Arya
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, Brazil
| | - O. Sawant
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Sachin K. Sonawane
- Food Science and Technology, School of Biotechnology and Bioinformatics, D. Y. Patil University, Navi Mumbai, India
| | - P. L Show
- Department of Chemical and Environmental Engineering, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - A. Waghamare
- Food Engineering and Technology Department, Institute of Chemical Technology, Mumbai, India
| | - Ruly Hilares
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Asaithambi N, Singha P, Dwivedi M, Singh SK. Hydrodynamic cavitation and its application in food and beverage industry: A review. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Poonam Singha
- Department of Food ScienceCornell University Ithaca New York
| | - Madhuresh Dwivedi
- Department of Food Process EngineeringNIT Rourkela Rourkela Odisha India
| | - Sushil K. Singh
- Department of Food Process EngineeringNIT Rourkela Rourkela Odisha India
| |
Collapse
|
23
|
Prá VD, Pires FB, Dolwitsch CB, Lazzaretti Jr. AP, Roggia I, Mortari SR, Freire DMG, Souza H, Mazutti MA, Rosa MBD. FORMULATION AND CHARACTERIZATION OF ULTRASOUND-ASSISTED NANOEMULSIONS CONTAINING PALM OIL (Elaeis guineensis Jacq) IN WATER. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190362s20180291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Martinez NY, Moreno MS. Oil-in-water emulsion development for the encapsulation and sustained release of xanthone. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1578663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Nelida Yanina Martinez
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina
| | - Mario Sergio Moreno
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, San Carlos de Bariloche, Argentina
| |
Collapse
|
25
|
Wu Z, Tagliapietra S, Giraudo A, Martina K, Cravotto G. Harnessing cavitational effects for green process intensification. ULTRASONICS SONOCHEMISTRY 2019; 52:530-546. [PMID: 30600212 DOI: 10.1016/j.ultsonch.2018.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The impressive chemico-physical effects observed in sonochemistry are a result of cavitation, as ultrasonic and hydrodynamic cavitation does not interact with matter at the atomic and molecular levels. Bubble collapse leads to the quasi-adiabatic heating of the vapour inside bubbles, giving rise to local hot spots in the fluid. Cavitation thus transforms a mechanical energy into high kinetic energy, which is released in very short bursts that are exploited for green process intensification. This paper reviews relevant applications of hydrodynamic and acoustic cavitation with the aim of highlighting the particular advantages that these phenomena offer to the intensification of green chemical processes. Emulsification, biodiesel preparation, wastewater decontamination, organic synthesis, enzymatic catalysis and extractions are discussed among others. As a comparison, hydrodynamic cavitation technique is more advantageous in dealing with process intensification at large-scale, as well as the enhancement of mass transfer and heat transfer, while ultrasonic cavitation technique is more convenient to operate, easier to control in the studies at lab-scale, and exhibits more efficient in producing active free radicals and inducing the cleavage of volatile compounds.
Collapse
Affiliation(s)
- Zhilin Wu
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Alessadro Giraudo
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Turin 10125, Italy.
| |
Collapse
|
26
|
Sekhar KPC, Nayak RR. Nonionic Glycolipids for Chromium Flotation- and Emulsion (W/O and O/W)-Based Bioactive Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14347-14357. [PMID: 30392368 DOI: 10.1021/acs.langmuir.8b03138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biosourced surfactants are endeavored as a green alternative to biosurfactants and petrochemical surfactants having industrial utilization. Nine glycolipids with headgroup and chain length variation were derived from renewable resources like vegetable oils, carbohydrates, and amino acids. The concentration-dependent interfacial activity, foamability, wetting power, emulsification power, and solubilization capacities of glycolipids were investigated to provide a structure-activity relationship. Later, the metal flotation and emulsification experiments were performed. In general, for metal flotation, the surfactant should contain a hydrophobic tail, hydrophilic head, and chelating function. In the present investigation, it was observed that the headgroup of a glycolipid can serve as a hydrophilic head as well as perform a chelating function. Moreover, heat energy generated from the sunlight was utilized for metal flotation. Additionally, these glycolipids are capable to form stable sunflower oil-water (W/O and O/W) emulsions. The mechanical and thermal stabilities and hydrophobic chain length dependency of the prepared emulsions at different water volume fractions are explored. Furthermore, encapsulation and release of water-soluble (riboflavin and l-ascorbic acid) and oil-soluble (curcumin and α-tocopherol) bioactives in glycolipid emulsions were monitored. Thus, glycolipids under investigation had shown the possibility for pretreatment of chromium-containing wastewaters and bioactive-loaded emulsions toward the controlled release.
Collapse
Affiliation(s)
- Kanaparedu P C Sekhar
- Centre for Lipid Science and Technology , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India
| | - Rati Ranjan Nayak
- Centre for Lipid Science and Technology , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
- Academy of Scientific and Innovative Research (AcSIR) , New Delhi 110001 , India
| |
Collapse
|
27
|
Raviadaran R, Chandran D, Shin LH, Manickam S. Optimization of palm oil in water nano-emulsion with curcumin using microfluidizer and response surface methodology. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Zhao S, Dong Z, Yao C, Wen Z, Chen G, Yuan Q. Liquid-liquid two-phase flow in ultrasonic microreactors: Cavitation, emulsification, and mass transfer enhancement. AIChE J 2017. [DOI: 10.1002/aic.16010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shuainan Zhao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhengya Dong
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Chaoqun Yao
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Zhenghui Wen
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Guangwen Chen
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| | - Quan Yuan
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
29
|
Carpenter J, Saharan VK. Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. ULTRASONICS SONOCHEMISTRY 2017; 35:422-430. [PMID: 28340947 DOI: 10.1016/j.ultsonch.2016.10.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/07/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
The present work reports the ultrasound assisted preparation of mustard oil in water nanoemulsion stabilized by Span 80 and Tween 80 at different operating conditions. Effects of various operating parameters such as HLB (Hydrophilic Lipophilic Balance) value, surfactant volume fraction (φS), oil volume fraction (φO) and power amplitude were investigated and optimized on the basis of droplet size and stability of nanoemulsions. It was observed that minimum droplet size of about 87.38nm was obtained within 30min of ultrasonication at an optimum HLB value of 10, φS of 0.08 (8%, v/v), φO of 0.1 (10%, v/v) and ultrasonic power amplitude of 40%. The stability of the nanoemulsion was measured through visual observation and it was found that the unstable emulsions got separated within 24h whereas, stable emulsions never showed any separation until 90days. In addition to that, the kinetic stability of the prepared nanoemulsions was also assessed under centrifuge and thermal stress conditions. The emulsion stability was found to be unaffected by these forces as the droplet size remained unchanged. The ultrasound prepared emulsion was found to be long term stable even after 3months of storage at ambient conditions without any visual evidence of creaming and phase separation and also remained kinetically stable. FTIR analysis of the emulsions at different sonication conditions was carried out to examine the possible impact of ultrasonically induced chemical effects on oil structure during emulsification and it was found that the oil molecular structure was unaffected by ultrasonication process. The present work illustrates the formation and stability of mustard oil in water nanoemulsion using ultrasound cavitation which may be useful in food and cosmetic based applications.
Collapse
Affiliation(s)
- Jitendra Carpenter
- Chemical Engineering Department, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Virendra Kumar Saharan
- Chemical Engineering Department, Malaviya National Institute of Technology, Jaipur 302017, India.
| |
Collapse
|
30
|
Carpenter J, Badve M, Rajoriya S, George S, Saharan VK, Pandit AB. Hydrodynamic cavitation: an emerging technology for the intensification of various chemical and physical processes in a chemical process industry. REV CHEM ENG 2017. [DOI: 10.1515/revce-2016-0032] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractHydrodynamic cavitation (HC) has been explored by many researchers over the years after the first publication on hydrolysis of fatty oils using HC was published by Pandit and Joshi [Pandit AB, Joshi JB. Hydrolysis of fatty oils: effect of cavitation. Chem Eng Sci 1993; 48: 3440–3442]. Before this publication, most of the studies related to cavitation in hydraulic system were concentrated to avoid the generation of cavities/cavitating conditions. The fundamental concept was to harness the energy released by cavities in a positive way for various chemical and mechanical processes. In HC, cavitation is generated by a combination of flow constriction and pressure-velocity conditions, which are monitored in such a way that cavitating conditions will be reached in a flowing system and thus generate hot spots. It allows the entire process to operate at otherwise ambient conditions of temperature and pressure while generating the cavitating conditions locally. In this review paper, we have explained in detail various cavitating devices and the effect of geometrical and operating parameters that affect the cavitation conditions. The optimization of different cavitating devices is discussed, and some strategies have been suggested for designing these devices for different applications. Also, various applications of HC such as wastewater treatment, preparation of nanoemulsions, biodiesel synthesis, water disinfection, and nanoparticle synthesis were discussed in detail.
Collapse
|
31
|
Zeng L, Xin X, Zhang Y. Development and characterization of promising Cremophor EL-stabilized o/w nanoemulsions containing short-chain alcohols as a cosurfactant. RSC Adv 2017. [DOI: 10.1039/c6ra27096d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nanoemulsions have attracted much attention due to their wide application in commercial industries such as pharmaceutics, food, beverages and skin care.
Collapse
Affiliation(s)
- Liya Zeng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education
- Entomological Museum
- College of Plant Protection
- Northwest A&F University
- Yangling 712100
| | - Xin Xin
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education
- Entomological Museum
- College of Plant Protection
- Northwest A&F University
- Yangling 712100
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education
- Entomological Museum
- College of Plant Protection
- Northwest A&F University
- Yangling 712100
| |
Collapse
|
32
|
Malik P, Singh M. Study of curcumin antioxidant activities in robust oil–water nanoemulsions. NEW J CHEM 2017. [DOI: 10.1039/c7nj02612a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Symbolic representation of increased interactions from oil to CLFs, indicatedviaenhancedρandu.
Collapse
Affiliation(s)
- Parth Malik
- School of Nano Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Man Singh
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| |
Collapse
|
33
|
Miastkowska MA, Banach M, Pulit-Prociak J, Sikora ES, Głogowska A, Zielina M. Statistical Analysis of Optimal Ultrasound Emulsification Parameters in Thistle-Oil Nanoemulsions. J SURFACTANTS DETERG 2016; 20:233-246. [PMID: 28111519 PMCID: PMC5222920 DOI: 10.1007/s11743-016-1887-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/23/2016] [Indexed: 11/23/2022]
Abstract
Thistle oil (INCI: Silybum marianum seed oil) is known as an anti-oxidant, moisturizing and skin regenerating cosmetic raw material. Nanoemulsions are a new form of cosmetic product showing very good user properties (ease of spreading over the skin with no greasy feeling). Moreover, due to their structure, they can also transport both hydrophilic and hydrophobic active substances to the skin. The aim of this work was the preparation and characterization of nanoemulsions, based on thistle oil. The non-ionic surfactants polysorbate 80 (PEG-20 sorbitan monooleate), decyl glucoside, and a polyglyceryl-4 ester blend were applied to stabilize the nanosystems. All formulations were obtained by a high energy method, using an ultrasonic device (Labsonic U, an ultrasound homogenizer). Variations in the emulsification parameters were tested, including surfactants concentration, pre-emulsification time, ultrasound power and sonication time. On the basis of statistical analysis (experimental design, cluster analysis, classification and regression trees) the best emulsification process parameters were determined. In order to verify the results of statistical analysis, once more an experimental study was conducted. The results obtained confirmed that statistical analysis can be a useful method in determining the conditions for obtaining stable nanoemulsions with desired properties. Formulations obtained with the use of Silybum marianum seed oil were characterized by long-term stability, a low polydispersity index, low viscosity and an average droplet size less than 200 nm.
Collapse
Affiliation(s)
- Małgorzata A Miastkowska
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Institute of Chemistry and Inorganic Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Jolanta Pulit-Prociak
- Faculty of Chemical Engineering and Technology, Institute of Chemistry and Inorganic Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Elżbieta S Sikora
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Agata Głogowska
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Michał Zielina
- Faculty of Environmental Engineering, Institute of Water Supply and Environmental Protection, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| |
Collapse
|
34
|
Zhang Z, Wang G, Nie Y, Ji J. Hydrodynamic cavitation as an efficient method for the formation of sub-100 nm O/W emulsions with high stability. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Nakashima K, Ebi Y, Shibasaki-Kitakawa N, Soyama H, Yonemoto T. Hydrodynamic Cavitation Reactor for Efficient Pretreatment of Lignocellulosic Biomass. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04375] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazunori Nakashima
- Department of Chemical Engineering, and ‡Department of
Nanomechanics, Tohoku University, Aoba-ku, Sendai 980-8579, Japan
| | - Yuuki Ebi
- Department of Chemical Engineering, and ‡Department of
Nanomechanics, Tohoku University, Aoba-ku, Sendai 980-8579, Japan
| | - Naomi Shibasaki-Kitakawa
- Department of Chemical Engineering, and ‡Department of
Nanomechanics, Tohoku University, Aoba-ku, Sendai 980-8579, Japan
| | - Hitoshi Soyama
- Department of Chemical Engineering, and ‡Department of
Nanomechanics, Tohoku University, Aoba-ku, Sendai 980-8579, Japan
| | - Toshikuni Yonemoto
- Department of Chemical Engineering, and ‡Department of
Nanomechanics, Tohoku University, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
36
|
Rajoriya S, Carpenter J, Saharan VK, Pandit AB. Hydrodynamic cavitation: an advanced oxidation process for the degradation of bio-refractory pollutants. REV CHEM ENG 2016. [DOI: 10.1515/revce-2015-0075] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Samyn P, Van Nieuwkerke D, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H. Hybrid palm-oil/styrene-maleimide nanoparticles synthesized in aqueous dispersion under different conditions. J Microencapsul 2015; 32:336-48. [DOI: 10.3109/02652048.2015.1028493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Cavazos-Garduño A, Ochoa Flores AA, Serrano-Niño JC, Martínez-Sanchez CE, Beristain CI, García HS. Preparation of betulinic acid nanoemulsions stabilized by ω-3 enriched phosphatidylcholine. ULTRASONICS SONOCHEMISTRY 2015; 24:204-213. [PMID: 25572417 DOI: 10.1016/j.ultsonch.2014.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/02/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
Bioactive compounds such as ω-3 fatty acids and terpenes, have been associated with beneficial health effects; however, their solubility in the gastrointestinal tract and its bioavailability in the body are low. Nanoemulsions offer a viable alternative to disperse lipophilic compounds and improve their dissolution, permeation, absorption and bioavailability. Enzyme modified phosphatidylcholine (PC) with ω-3 fatty acids was used as emulsifier to stabilize oil-in-water nanoemulsions generated using ultrasound device. These systems were used as carriers of betulinic acid, which has reported anti-carcinogenic activity. Phospholipase-catalyzed modification of PC allowed the incorporation of 50 mol% of ω-3 fatty acids. Formation variables such as oil type and ultrasound amplitude had effects on nanoemulsion characteristics. Incorporation of betulinic acid affected globule size; however, betulinic acid nanoemulsions below 200 nm could be prepared. The conditions under which betulinic acid nanoemulsions were obtained using the modified phosphatidylcholine with the smaller globule size (91 nm) were 10% PC, 25% glycerol, medium chain oil and 30% amplitude for 12 min in the sonicator. Storage temperature had an effect on the stability of the nanoemulsions, at 5°C we observed the smallest growth in globule size. The use of olive oil decreased the globule size growth during storage of the nanoemulsion stabilized with modified phosphatidylcholine, although globule size obtained was greater than 200 nm. Medium pH had a significant effect on the nanoemulsions; alkaline pH values improved storage stability. These results provide useful information for using this type of carrier system on the formulation of products in the pharmaceutical or food industry.
Collapse
Affiliation(s)
- A Cavazos-Garduño
- UNIDA-Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz, Ver. 91897, Mexico
| | - A A Ochoa Flores
- UNIDA-Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz, Ver. 91897, Mexico
| | - J C Serrano-Niño
- UNIDA-Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz, Ver. 91897, Mexico
| | - C E Martínez-Sanchez
- Instituto Tecnologico de Tuxtepec, Calzada Dr. Víctor Bravo Ahuja s/n, Col. 5 de Mayo, Tuxtepec, Oax. 68350, Mexico
| | - C I Beristain
- Instituto de Ciencias Básicas, Universidad Veracruzana, Apdo. Postal 575, Xalapa, Ver., Mexico
| | - H S García
- UNIDA-Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz, Ver. 91897, Mexico.
| |
Collapse
|
39
|
Bhanvase BA, Darda NS, Veerkar NC, Shende AS, Satpute SR, Sonawane SH. Ultrasound assisted synthesis of PANI/ZnMoO4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing. ULTRASONICS SONOCHEMISTRY 2015; 24:87-97. [PMID: 25465877 DOI: 10.1016/j.ultsonch.2014.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/13/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Ultrasound assisted in-situ semi-batch emulsion polymerization has been used for the preparation of polyaniline (PANI) and PANI/ZnMoO4 nanocomposite with different loading of ZnMoO4 (ZM) nanoparticles. ZM nanoparticles were functionalized using Myristic acid (MA) for better compatibility with PANI. The cavitational effects induced due to ultrasonic irradiations have been shown significant enhancement in the dispersion of functionalized ZM nanoparticles into the PANI during ultrasound assisted in-situ emulsion polymerization process. TEM images of PANI/ZM nanocomposite particles give the direct evidence of fine dispersion and encapsulation of MA treated ZM nanoparticles in PANI matrix. The presence of ZM nanoparticles in PANI/ZM nanocomposite shows significant improvement in the mechanical (cross-cut adhesion), thermal, anticorrosion and sensing properties of PANI/ZM nanocomposite/alkyd coatings over PANI/alkyd and neat alkyd resin coating. Fine and uniform dispersion of ZM nanoparticles in PANI matrix using this novel synthesis method (PANI (p-type)/ZM (n-type) hetero-junction) improves LPG sensing ability and minimizes response time to sense LPG significantly compared with neat PANI.
Collapse
Affiliation(s)
- B A Bhanvase
- Chemical Engineering Department, Laxminarayan Institute of Technology, Nagpur 440033, MS, India.
| | - N S Darda
- Chemical Engineering Department, Vishwakarma Institute of Technology, Pune 411037, MS, India
| | - N C Veerkar
- Chemical Engineering Department, Vishwakarma Institute of Technology, Pune 411037, MS, India
| | - A S Shende
- Chemical Engineering Department, Vishwakarma Institute of Technology, Pune 411037, MS, India
| | - S R Satpute
- Chemical Engineering Department, Bharati Vidyapeeth College of Engineering, Pune, MS, India.
| | - S H Sonawane
- Department of Chemical Engineering, National Institute of Technology, Warangal 506004, AP, India
| |
Collapse
|
40
|
Sivakumar M, Tang SY, Tan KW. Cavitation technology - a greener processing technique for the generation of pharmaceutical nanoemulsions. ULTRASONICS SONOCHEMISTRY 2014; 21:2069-83. [PMID: 24755340 DOI: 10.1016/j.ultsonch.2014.03.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 05/23/2023]
Abstract
Novel nanoemulsion-based drug delivery systems (DDS) have been proposed as alternative and effective approach for the delivery of various types of poorly water-soluble drugs in the last decade. This nanoformulation strategy significantly improves the cell uptake and bioavailability of numerous hydrophobic drugs by increasing their solubility and dissolution rate, maintaining drug concentration within the therapeutic range by controlling the drug release rate, and reducing systemic side effects by targeting to specific disease site, thus offering a better patient compliance. To date, cavitation technology has emerged to be an energy-efficient and promising technique to generate such nanoscale emulsions encapsulating a variety of highly potent pharmaceutical agents that are water-insoluble. The micro-turbulent implosions of cavitation bubbles tear-off primary giant oily emulsion droplets to nano-scale, spontaneously leading to the formation of highly uniform drug contained nanodroplets. A substantial body of recent literatures in the field of nanoemulsions suggests that cavitation is a facile, cost-reducing yet safer generation tool, remarkably highlighting its industrial commercial viability in the development of designing novel nanocarriers or enhancing the properties of existing pharmaceutical products. In this review, the fundamentals of nanoemulsion and the principles involved in their formation are presented. The underlying mechanisms in the generation of pharmaceutical nanoemulsion under acoustic field as well as the advantages of using cavitation compared to the conventional techniques are also highlighted. This review focuses on recent nanoemulsion-based DDS development and how cavitation through ultrasound and hydrodynamic means is useful to generate the pharmaceutical grade nanoemulsions including the complex double or submicron multiple emulsions.
Collapse
Affiliation(s)
- Manickam Sivakumar
- Manufacturing and Industrial Processes Research Division, Faculty of Engineering, University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia.
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia
| | - Khang Wei Tan
- Department of Chemical Engineering, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Ramisetty KA, Pandit AB, Gogate PR. Novel Approach of Producing Oil in Water Emulsion Using Hydrodynamic Cavitation Reactor. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502753d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kiran A. Ramisetty
- Chemical
Engineering Department, Institute of Chemical Technology, Mumbai-40019, India
| | - Aniruddha B. Pandit
- Chemical
Engineering Department, Institute of Chemical Technology, Mumbai-40019, India
| | - Parag R. Gogate
- Chemical
Engineering Department, Institute of Chemical Technology, Mumbai-40019, India
| |
Collapse
|
42
|
Mahmood T, Akhtar N, Manickam S. Interfacial film stabilized W/O/W nano multiple emulsions loaded with green tea and lotus extracts: systematic characterization of physicochemical properties and shelf-storage stability. J Nanobiotechnology 2014; 12:20. [PMID: 24885994 PMCID: PMC4025563 DOI: 10.1186/1477-3155-12-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/29/2014] [Indexed: 11/10/2022] Open
Abstract
Background and aims Multiple emulsions have excellent encapsulating potential and this investigation has been aimed to encapsulate two different plant extracts as functional cosmetic agents in the W/O/W multiple emulsions and the resultant system’s long term stability has been determined in the presence of a thickener, hydroxypropyl methylcellulose (HPMC). Methods Multiple W/O/W emulsions have been generated using cetyl dimethicone copolyol as lipophilic emulsifier and a blend of polyoxyethylene (20) cetyl ether and cetomacrogol 1000® as hydrophilic emulsifiers. The generated multiple emulsions have been characterized with conductivity, pH, microscopic analysis, phase separation and rheology for a period of 30 days. Moreover, long term shelf-storage stability has been tested to understand the shelf-life by keeping the generated multiple emulsion formulations at 25 ± 10°C and at 40 ± 10% relative humidity for a period of 12 months. Results It has been observed that the hydrophilic emulsifiers and HPMC have considerably improved the stability of multiple emulsions for the followed period of 12 months at different storage conditions. These multiple emulsions have shown improved entrapment efficiencies concluded on the release rate of conductometric tracer entrapped in the inner aqueous phase of the multiple emulsions. Conclusion Multiple emulsions have been found to be stable for a longer period of time with promising characteristics. Hence, stable multiple emulsions loaded with green tea and lotus extracts could be explored for their cosmetic benefits.
Collapse
Affiliation(s)
- Tariq Mahmood
- Department of Pharmacy, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | | | | |
Collapse
|