1
|
He R, Fan C, Liang Q, Wang Y, Gao Y, Wu J, Wu Q, Tai F. Directed assembly of fullerenols via electrostatic and coordination interactions to fabricate diverse and water-soluble metal cation-fullerene nanocluster complexes. RSC Adv 2024; 14:1472-1487. [PMID: 38174261 PMCID: PMC10763661 DOI: 10.1039/d3ra07725j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ion-nanocluster coordination complexes can produce a variety of functional engineered nanomaterials with promising characteristics to enable widespread applications. Herein, the visualization observation of the interactions of metal ions and fullerene derivatives, particularly anionic fullerenols (Fol), were carried out in aqueous solutions. The alkali metal salts only resulted in salting out of Fol to gain re-soluble sediments, whereas multivalent metal cations (Mn+, n = 2, 3) modulated further assembly of Fol to produce insoluble hybrids. These provide crucial insights into the directed assembly of Fol that two major forces involved in actuation are electrostatic and coordination effects. Through the precise modulation of feed ratios of Fol to Mn+, a variety of water-soluble Mn+@Fol coordination complexes were facilely prepared and subsequently characterized by various measurements. Among them, X-ray photoelectron spectra validated the coordination effects through the metal cation and oxygen binding feature. Transmission electron microscopy delivered valuable information about diverse morphologies and locally-ordered microstructures at the nanoscale. This study opens a new opportunity for developing a preparation strategy to fabricate water-soluble metal cation-fullerenol coordination complexes with various merits for potential application in biomedical fields.
Collapse
Affiliation(s)
- Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Qingyuan Liang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Yan Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Yanyan Gao
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Jiakai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Qingnan Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University Zhengzhou 450046 China
| |
Collapse
|
2
|
Shakola TV, Rubanik VV, Rubanik VV, Kurliuk AV, Kirichuk AA, Tskhovrebov AG, Egorov AR, Kritchenkov AS. Benzothiazole Derivatives of Chitosan and Their Derived Nanoparticles: Synthesis and In Vitro and In Vivo Antibacterial Effects. Polymers (Basel) 2023; 15:3469. [PMID: 37631525 PMCID: PMC10459300 DOI: 10.3390/polym15163469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
In this work, we focused on synthesizing and assessing novel chitosan-based antibacterial polymers and their nanoparticles by incorporating benzothiazole substituents. The growing resistance to antibiotics has necessitated the search for alternative antimicrobial compounds. This study aimed to synthesize and evaluate chitosan-based polymers and nanoparticles with benzothiazole substituents for their antibacterial properties and toxicity. The benzothiazole derivatives of chitosan and their nanoparticles were synthesized through electrochemical coupling. The in vivo antibacterial efficacy was tested on white rats with induced peritonitis using a microbial suspension containing S. aureus and E. coli. Additionally, in vitro and in vivo toxicity assessments were conducted. The chitosan-based antibacterial systems showed significant in vivo antibacterial activity, surpassing that of unmodified chitosan and commercial antibiotics. Moreover, the toxicity studies revealed low toxicity levels of the synthesized derivatives, which did not differ significantly from native chitosan. The synthesized chitosan-based polymers and nanoparticles demonstrated potent antibacterial activity and low toxicity, highlighting their potential as effective alternatives to traditional antibiotics. Further investigations in pharmacology and preclinical trials are recommended to explore their application in clinical settings.
Collapse
Affiliation(s)
- Tatsiana V. Shakola
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
- Department of General and Clinical Pharmacology, Vitebsk State Medical University, Frunze Av. 27, 210009 Vitebsk, Belarus;
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| | - Aleh V. Kurliuk
- Department of General and Clinical Pharmacology, Vitebsk State Medical University, Frunze Av. 27, 210009 Vitebsk, Belarus;
| | - Anatoly A. Kirichuk
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Alexander G. Tskhovrebov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Anton R. Egorov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Faculty of Science, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russia; (T.V.S.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.)
| |
Collapse
|
3
|
Khubiev OM, Egorov AR, Kirichuk AA, Khrustalev VN, Tskhovrebov AG, Kritchenkov AS. Chitosan-Based Antibacterial Films for Biomedical and Food Applications. Int J Mol Sci 2023; 24:10738. [PMID: 37445916 DOI: 10.3390/ijms241310738] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Antibacterial chitosan films, versatile and eco-friendly materials, have garnered significant attention in both the food industry and medicine due to their unique properties, including biodegradability, biocompatibility, and antimicrobial activity. This review delves into the various types of chitosan films and their distinct applications. The categories of films discussed span from pure chitosan films to those enhanced with additives such as metal nanoparticles, metal oxide nanoparticles, graphene, fullerene and its derivatives, and plant extracts. Each type of film is examined in terms of its synthesis methods and unique properties, establishing a clear understanding of its potential utility. In the food industry, these films have shown promise in extending shelf life and maintaining food quality. In the medical field, they have been utilized for wound dressings, drug delivery systems, and as antibacterial coatings for medical devices. The review further suggests that the incorporation of different additives can significantly enhance the antibacterial properties of chitosan films. While the potential of antibacterial chitosan films is vast, the review underscores the need for future research focused on optimizing synthesis methods, understanding structure-property relationships, and rigorous evaluation of safety, biocompatibility, and long-term stability in real-world applications.
Collapse
Affiliation(s)
- Omar M Khubiev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anton R Egorov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Anatoly A Kirichuk
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Victor N Khrustalev
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, 119991 Moscow, Russia
| | - Alexander G Tskhovrebov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Andreii S Kritchenkov
- Faculty of Science, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus
| |
Collapse
|
4
|
Lebedev VT, Charykov NA, Shemchuk OS, Murin IV, Nerukh DA, Petrov AV, Maystrenko DN, Molchanov OE, Sharoyko VV, Semenov KN. Endometallofullerenes and their derivatives: Synthesis, Physicochemical Properties, and Perspective Application in Biomedicine. Colloids Surf B Biointerfaces 2023. [DOI: 10.1016/j.colsurfb.2023.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Injac R. Potential Medical Use of Fullerenols After Two Decades of Oncology Research. Technol Cancer Res Treat 2023; 22:15330338231201515. [PMID: 37724005 PMCID: PMC10510368 DOI: 10.1177/15330338231201515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Fullerenes are carbon molecules that are found in nature in various forms. They are composed of hexagonal and pentagonal rings that create closed structures. Almost 4 decades ago, fullerenes were identified in the form of C60 and C70, and following the award of the Nobel Prize in Chemistry for this discovery in 1996, many laboratories started working on their water-soluble derivatives that could be used in different industries, including pharmaceutical industries. One of the first fullerene forms that was the focus of different research groups was fullerenol, C60(OH)n (n = 2-44). Both in-vitro and in-vivo studies have shown that polyhydroxylate fullerene derivatives can potentially be used as either antioxidative agents or cytostatics (depending on their co-administration, forms, and concentration/dose) in biological systems. The current review aimed to present a critical view of the potential applications and limitations of fullerenols in oncology, as understood from the past 2 decades of research.
Collapse
Affiliation(s)
- Rade Injac
- Faculty of Pharmacy, Pharmaceutical Biology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Chitosan-Based Ciprofloxacin Extended Release Systems: Combined Synthetic and Pharmacological (In Vitro and In Vivo) Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248865. [PMID: 36557998 PMCID: PMC9784460 DOI: 10.3390/molecules27248865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofloxacin releasing systems (CRS). We found that ultrasound efficiently promotes N,N'-dicyclohexyl carbodiimide-mediated coupling between COOH and NH2 functionalities in water. This was used for conjugation of ciprofloxacin to chitosan. The obtained ciprofloxacin/chitosan conjugates are capable of forming their self-assembled nanoparticles (SANPs) in aqueous medium. The SANPs can be additionally loaded by ciprofloxacin to form new CRS. The CRS demonstrated high loading and encapsulation efficiency and they are characterized by extended release profile (20 h). The elaborated CRS were tested in vivo in rats. The in vivo antibacterial effect of the CRS exceeded that of the starting ciprofloxacin. Moreover, the in vivo acute and subacute toxicity of the nanoparticles was almost identical to that of the chitosan, which is considered as the non-toxic biopolymer.
Collapse
|
7
|
Egorov AR, Kurasova MN, Khubiev O, Bogdanov NA, Tskhovrebov AG, Kirichuk AA, Khrustalev VN, Rubanik VV, Rubanik VV, Kritchenkov AS. Ciprofloxacin chitosan conjugate: combined antibacterial effect and low toxicity. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Egorov AR, Artemjev AA, Kozyrev VA, Sikaona DN, Rubanik VV, Rubanik VV, Kritchenkov IS, Yagafarov NZ, Khubiev OM, Tereshina TA, Kultyshkina EK, Medjbour B, Khrustalev VN, Kritchenkov AS. Synthesis of Selenium-Containing Chitosan Derivatives and Their Antibacterial Activity. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abstract
The interaction of chitosan with 3-(chloromethyl)-[1,2,4]selendiazole[4,5-a]pyridin-4 bromide results in water-soluble, selenium-containing, cationic chitosan derivatives. Derivatives of chitosan with degrees of substitution of 0.15, 0.45, and 0.65 were obtained. These derivatives are characterized by a pronounced in vitro antibacterial activity against Staphylococcus aureus and Escherichia coli, and the antibacterial activity of the derivatives increases with an increase in their degree of substitution. The antibacterial activity of the highly substituted derivative is comparable to that of the conventional antibiotics ampicillin and gentamicin.
Collapse
|
9
|
|
10
|
|
11
|
Semenov KN, Charykov NA, Kurilenko AV, Keskinov VA, Shaimardanov ZK, Shaimardanova BK, Kulenova NA, Matuzenko MY, Klepikov VV. Thermodynamic Functions in the Binary System of a C60 Fullerene Derivative with Methionine Amino Acid–Н2О. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420040172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Keskinov VA, Semenov KN, Gol’tsov TS, Charykov NA, Podol’skii NE, Kurilenko AV, Shaimardanov ZK, Shaimardanova BK, Kulenova NA. Phase Diagrams of Fullerenol-d–LaCl3–H2O and Fullerenol-d–GdCl3–H2O Systems at 25°С. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419120124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Ageev SV, Iurev GO, Podolsky NE, Rakipov IT, Vasina LV, Noskov BA, Akentiev AV, Charykov NA, Murin IV, Semenov KN. Density, speed of sound, viscosity, refractive index, surface tension and solubility of С60[C(COOH)2]3. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Semenov KN, Kurilenko AV, Charykov NA, Keskinov VA, Vorob’ev AL, Shaimardanov ZK, Kulenova NA, Onalbaeva ZS, Letenko DG. Solubility, Thermal Analysis, and Association of the bis-Adducts of Light C60 Fullerene and Amino Acids Lysine, Threonine, and Hydroxyproline in Aqueous Solutions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419070240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Podolsky NE, Marcos MA, Cabaleiro D, Semenov KN, Lugo L, Petrov AV, Charykov NA, Sharoyko VV, Vlasov TD, Murin IV. Physico-chemical properties of C60(OH)22–24 water solutions: Density, viscosity, refraction index, isobaric heat capacity and antioxidant activity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Charykov NA, Semenov KN, López ER, Fernández J, Serebryakov EB, Keskinov VA, Murin IV. Excess thermodynamic functions in aqueous systems containing soluble fullerene derivatives. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Yur’ev GO, Keskinov VA, Semenov KN, Charykov NA. Phase equilibria in a ternary fullerenol-d(C60(OH)22–24)–SmCl3–H2O system at 25°C. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2017. [DOI: 10.1134/s0036024417050326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Petrov AA, Keskinov VA, Semenov KN, Charykov NA, Letenko DG, Nikitin VA. Formation of a new adduct based on fullerene tris-malonate samarium salt С60–[C60(=C(COO)2)3]Sm2. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2017. [DOI: 10.1134/s0036024417030207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Semenov K, Charykov N, Postnov V, Sharoyko V, Vorotyntsev I, Galagudza M, Murin I. Fullerenols: Physicochemical properties and applications. PROG SOLID STATE CH 2016. [DOI: 10.1016/j.progsolidstchem.2016.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
|
21
|
Manyakina OS, Semenov KN, Charykov NA, Ivanova NM, Keskinov VA, Sharoyko VV, Letenko DG, Nikitin VA, Klepikov VV, Murin IV. Physico-chemical properties of the water-soluble C70-tris-malonic solutions. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Pestov IA, Keskinov VA, Semenov KN, Charykov NA, Letenko DG, Nikitin VA. Solubility of [C60(=C(COOH)2)3] in the [C60(=C(COOH)2)3]-SmCl3-H2O ternary system at 25°C. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2015. [DOI: 10.1134/s0036024415060230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Semenov KN, Charykov NA, Murin IV, Pukharenko YV. Physico-chemical properties of the C60-tris-malonic derivative water solutions. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2014.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|