1
|
Chen Y, Fan S, Chen J, Deng L, Xiao Z. Catalytic Membrane Nanoreactor with Cu-Ag x Bimetallic Nanoparticles Immobilized in Membrane Pores for Enhanced Catalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9106-9115. [PMID: 35143180 DOI: 10.1021/acsami.1c22753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalytic membrane nanoreactor (CMNR) with Cu-Agx (where x is the millimolar concentration of AgNO3) bimetallic catalysts immobilized in membrane pores has been fabricated via coupling flowing synthesis and replacement reaction. Surface characterization by transmission electron microscopy (TEM) gives obvious evidence of the formation of Cu-Ag bimetallic core-shell nanostructures with Ag islands deposited on the Cu core metal. An apparent high shift phenomenon for the Cu element and a low shift phenomenon for the Ag element was determined by X-ray photoelectron spectroscopy (XPS), indicating a close interaction with the transfer of electron density from the Cu atom to the Ag atom. The hydrogenation catalysis of p-nitrophenol (p-NP) was tested to evaluate the catalytic performance. During the catalytic process, the Cu core acts as an electron-deficient site to adsorb and activate the -NO2 group for p-NP, and the Ag shell is beneficial for enhancing active H spilling to the Cu surface and then performing hydrogenation. A volcano-shaped apparent reaction rate constant can be achieved, which rises initially with the increasing Ag content and subsequently drops with a further increase in the Ag content. The highest value of 1071 min-1 can be achieved for CMNR immobilized with Cu-Ag2 owing to the suitable adsorption activation behavior and the best hydrogen spillover behavior.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqin Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Lei Deng
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
2
|
Jiang H, Liu Y, Xing W, Chen R. Porous Membrane Reactors for Liquid-Phase Heterogeneous Catalysis. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Yefei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Weihong Xing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
3
|
Chen Y, Fan S, Qiu B, Chen J, Mai Z, Wang Y, Bai K, Xiao Z. Cu-Ag Bimetallic Core-shell Nanoparticles in Pores of a Membrane Microreactor for Enhanced Synergistic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24795-24803. [PMID: 34008937 DOI: 10.1021/acsami.1c04155] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A bimetallic catalytic membrane microreactor (CMMR) with bimetallic nanoparticles in membrane pores has been fabricated via flowing synthesis. The bimetallic nanoparticle is successfully immobilized in membrane pores along its thickness direction. Enhanced synergistic catalysis can be expected in this CMMR. As a concept-of-proof, Cu-Ag core-shell nanoparticles have been fabricated and immobilized in membrane pores for p-nitrophenol (p-NP) hydrogenation. Transmission electron microscopy (TEM) for the characterization of the bimetallic core-shell nanostructure and X-ray photoelectron spectroscopy (XPS) for the characterization of the electron transfer behavior between Cu-Ag bimetal have been performed. The Ag shell on the core of Cu can improve the utilization of Ag atoms, and electron transfer between bimetallic components can promote the formation of high electron density active sites as well as active hydrogen with strong reducing properties on the Ag surface. The dispersed membrane pore can prevent nanoparticle aggregation, and the contact between the reaction fluid and catalyst is enhanced. The enhanced mass transfer can be achieved by the plug-flow mode during the process of hydrogenation catalysis. The p-NP conversion rate being over 95% can be obtained under the condition of a membrane flux of 1.59 mL·cm-2·min-1. This Cu-Ag/PES CMMR has good stability and has a potential application in industry.
Collapse
Affiliation(s)
- Yu Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Senqing Fan
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Boya Qiu
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Jiaojiao Chen
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zenghui Mai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Yilin Wang
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Ke Bai
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| | - Zeyi Xiao
- Sichuan University, No. 24 South Section 1, Yihuan Road, 610065 Chengdu, China
| |
Collapse
|
4
|
Chen Y, Mai Z, Fan S, Wang Y, Qiu B, Wang Y, Chen J, Xiao Z. Synergistic enhanced catalysis of micro-reactor with nano MnO2/ZIF-8 immobilized in membrane pores by flowing synthesis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Qiu B, Fan S, Chen Y, Chen J, Wang Y, Wang Y, Liu J, Xiao Z. Micromembrane absorber with deep‐permeation nanostructure assembled by flowing synthesis. AIChE J 2021. [DOI: 10.1002/aic.17272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Boya Qiu
- School of Chemical Engineering Sichuan University Chengdu China
| | - Senqing Fan
- School of Chemical Engineering Sichuan University Chengdu China
| | - Yu Chen
- School of Chemical Engineering Sichuan University Chengdu China
| | - Jiaojiao Chen
- School of Chemical Engineering Sichuan University Chengdu China
| | - Yilin Wang
- School of Chemical Engineering Sichuan University Chengdu China
| | - Yinan Wang
- School of Chemical Engineering Sichuan University Chengdu China
| | - Jingyun Liu
- School of Chemical Engineering Sichuan University Chengdu China
| | - Zeyi Xiao
- School of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
6
|
Lu J, Chen Q, Chen S, Jiang H, Liu Y, Chen R. Pd Nanoparticles Loaded on Ceramic Membranes by Atomic Layer Deposition with Enhanced Catalytic Properties. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jia Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Qingqing Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Sibai Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Yefei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
7
|
Qin Y, Jian S, Bai K, Wang Y, Mai Z, Fan S, Qiu B, Chen Y, Wang Y, Xiao Z. Catalytic Membrane Reactor of Nano (Ag+ZIF-8)@Poly(tetrafluoroethylene) Built by Deep-Permeation Synthesis Fabrication. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00862] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yangmei Qin
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Shizhao Jian
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Ke Bai
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yuyang Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zenghui Mai
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Senqing Fan
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Boya Qiu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yu Chen
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Yinan Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| | - Zeyi Xiao
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu 610065, China
| |
Collapse
|
8
|
Jiang WL, Xia X, Han JL, Ding YC, Haider MR, Wang AJ. Graphene Modified Electro-Fenton Catalytic Membrane for in Situ Degradation of Antibiotic Florfenicol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9972-9982. [PMID: 30067345 DOI: 10.1021/acs.est.8b01894] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The removal of low-concentration antibiotics from water to alleviate the potential threat of antibiotic-resistant bacteria and genes calls for the development of advanced treatment technologies with high efficiency. In this study, a novel graphene modified electro-Fenton (e-Fenton) catalytic membrane (EFCM) was fabricated for in situ degradation of low-concentration antibiotic florfenicol. The removal efficiency was 90%, much higher than that of electrochemical filtration (50%) and single filtration process (27%). This demonstrated that EFCM acted not only as a cathode for e-Fenton oxidation process in a continuous mode but also as a membrane barrier to concentrate and enhance the mass transfer of florfenicol, which increased its oxidation chances. The removal rate of florfenicol by EFCM was much higher (10.2 ± 0.1 mg m-2 h-1) than single filtration (2.5 ± 0.1 mg m-2 h-1) or batch e-Fenton processes (4.3 ± 0.05 mg m-2 h-1). Long-term operation and fouling experiment further demonstrated the durability and antifouling property of EFCM. Four main degradation pathways of florfenicol were proposed by tracking the degradation byproducts. The above results highlighted the feasibility of this integrated membrane catalysis process for advanced water purification.
Collapse
Affiliation(s)
- Wen-Li Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Xue Xia
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Yang-Cheng Ding
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Muhammad Rizwan Haider
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin , 150090 , China
| |
Collapse
|
9
|
Mahdavi H, Heidari AA. Chelated palladium nanoparticles on the surface of plasma-treated polyethersulfone membrane for an efficient catalytic reduction of p-nitrophenol. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hossein Mahdavi
- School of Chemistry, College of Science; University of Tehran; Tehran Iran
| | - Ali Akbar Heidari
- School of Chemistry, College of Science; University of Tehran; Tehran Iran
| |
Collapse
|
10
|
Zhang S, Jiang H, Liu Y, Chen R. High catalytic efficiency of Pd nanoparticles immobilized on TiO2
nanorods-coated ceramic membranes. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 P. R. China
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 P. R. China
| | - Yefei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 P. R. China
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 P. R. China
| |
Collapse
|
11
|
Highly efficient synthesis of cumene via benzene isopropylation over nano-sized beta zeolite in a submerged ceramic membrane reactor. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Peng M, Liu Y, Jiang H, Chen R, Xing W. Enhanced catalytic properties of Pd nanoparticles by their deposition on ZnO-coated ceramic membranes. RSC Adv 2016. [DOI: 10.1039/c5ra24150b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
13
|
Jiang H, Yan Q, Du Y, Chen R. Synthesis of p-aminophenol from p-nitrophenol reduction over Pd@ZIF-8. REACTION KINETICS MECHANISMS AND CATALYSIS 2015. [DOI: 10.1007/s11144-015-0928-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Du Y, Chen R. Fabrication of palladium nanoparticles immobilized on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method with enhanced catalytic properties. KOREAN J CHEM ENG 2015. [DOI: 10.1007/s11814-015-0030-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Liu M, Zhao ZP, Chen KC, Liu WF. New chiral catalytic membrane reactor created by immobilizing salen-Mn(III) onto APTES modified ceramic membrane and its performances in epoxidation of styrene. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2015.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Nanocomposite shuttle-supported palladium nanoparticles as a PH-triggered phase transfer catalyst for the aerobic oxidation of alcohols. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-014-0584-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Cao P, Ni Y, Zou R, Zhang L, Yue D. Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Adv 2015. [DOI: 10.1039/c4ra11711e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rh NPs deposited on chemical modified SiO2 is an effective, selective and recyclable catalyst for hydrogenation of nitrile butadiene rubber.
Collapse
Affiliation(s)
- Peng Cao
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanqiang Ni
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Rui Zou
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
| | - Dongmei Yue
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
| |
Collapse
|