1
|
Palumbo MC, de Graaf AA, Morettini M, Tieri P, Krishnan S, Castiglione F. A computational model of the effects of macronutrients absorption and physical exercise on hormonal regulation and metabolic homeostasis. Comput Biol Med 2023; 163:107158. [PMID: 37390762 DOI: 10.1016/j.compbiomed.2023.107158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
Regular physical exercise and appropriate nutrition affect metabolic and hormonal responses and may reduce the risk of developing chronic non-communicable diseases such as high blood pressure, ischemic stroke, coronary heart disease, some types of cancer, and type 2 diabetes mellitus. Computational models describing the metabolic and hormonal changes due to the synergistic action of exercise and meal intake are, to date, scarce and mostly focussed on glucose absorption, ignoring the contribution of the other macronutrients. We here describe a model of nutrient intake, stomach emptying, and absorption of macronutrients in the gastrointestinal tract during and after the ingestion of a mixed meal, including the contribution of proteins and fats. We integrated this effort to our previous work in which we modeled the effects of a bout of physical exercise on metabolic homeostasis. We validated the computational model with reliable data from the literature. The simulations are overall physiologically consistent and helpful in describing the metabolic changes due to everyday life stimuli such as multiple mixed meals and variable periods of physical exercise over prolonged periods of time. This computational model may be used to design virtual cohorts of subjects differing in sex, age, height, weight, and fitness status, for specialized in silico challenge studies aimed at designing exercise and nutrition schemes to support health.
Collapse
Affiliation(s)
- Maria Concetta Palumbo
- Institute for Applied Computing (IAC) "Mauro Picone", National Research Council of Italy, via dei Taurini 19, Rome, 00185, Italy.
| | - Albert A de Graaf
- Department Healthy Living, Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO), Sylviusweg 71, Leiden, 2333 BE, The Netherlands.
| | - Micaela Morettini
- Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche 12, Ancona, 60131, Italy.
| | - Paolo Tieri
- Institute for Applied Computing (IAC) "Mauro Picone", National Research Council of Italy, via dei Taurini 19, Rome, 00185, Italy.
| | - Shaji Krishnan
- Department Healthy Living, Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek (TNO), Princetonlaan 6, Utrecht, 3584 BE, The Netherlands.
| | - Filippo Castiglione
- Institute for Applied Computing (IAC) "Mauro Picone", National Research Council of Italy, via dei Taurini 19, Rome, 00185, Italy.
| |
Collapse
|
2
|
Kurian V, Ghadipasha N, Gee M, Chalant A, Hamill T, Okossi A, Chen L, Yu B, Ogunnaike BA, Beris AN. Systems Engineering Approach to Modeling and Analysis of Chronic Obstructive Pulmonary Disease. ACS OMEGA 2023; 8:20524-20535. [PMID: 37332794 PMCID: PMC10268641 DOI: 10.1021/acsomega.3c00854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by airflow limitation. This study develops a systems engineering framework for representing important mechanistic details of COPD in a model of the cardiorespiratory system. In this model, we present the cardiorespiratory system as an integrated biological control system responsible for regulating breathing. Four engineering control system components are considered: sensor, controller, actuator, and the process itself. Knowledge of human anatomy and physiology is used to develop appropriate mechanistic mathematical models for each component. Following a systematic analysis of the computational model, we identify three physiological parameters associated with reproducing clinical manifestations of COPD: changes in the forced expiratory volume, lung volumes, and pulmonary hypertension. We quantify the changes in these parameters (airway resistance, lung elastance, and pulmonary resistance) as the ones that result in a systemic response that is diagnostic of COPD. A multivariate analysis of the simulation results reveals that the changes in airway resistance have a broad impact on the human cardiorespiratory system and that the pulmonary circuit is stressed beyond normal under hypoxic environments in most COPD patients.
Collapse
Affiliation(s)
- Varghese Kurian
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Navid Ghadipasha
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Michelle Gee
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Daniel
Baugh Institute of Functional Genomics/Computational Biology, Department
of Pathology and Genomic Medicine, Thomas
Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Anais Chalant
- American
Air Liquide Inc., Innovation Campus Delaware, Newark, Delaware 19702, United States
| | - Teresa Hamill
- American
Air Liquide Inc., Innovation Campus Delaware, Newark, Delaware 19702, United States
| | - Alphonse Okossi
- American
Air Liquide Inc., Innovation Campus Delaware, Newark, Delaware 19702, United States
| | - Lucy Chen
- American
Air Liquide Inc., Innovation Campus Delaware, Newark, Delaware 19702, United States
| | - Bin Yu
- American
Air Liquide Inc., Innovation Campus Delaware, Newark, Delaware 19702, United States
| | - Babatunde A. Ogunnaike
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Antony N. Beris
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Personalized insulin dose manipulation attack and its detection using interval-based temporal patterns and machine learning algorithms. J Biomed Inform 2022; 132:104129. [PMID: 35781036 DOI: 10.1016/j.jbi.2022.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022]
Abstract
Many patients with diabetes are currently being treated with insulin pumps and other diabetes devices which improve their quality of life and enable effective treatment of diabetes. These devices are connected wirelessly and thus, are vulnerable to cyber-attacks which have already been proven feasible. In this paper, we focus on two types of cyber-attacks on insulin pump systems: an overdose of insulin, which can cause hypoglycemia, and an underdose of insulin, which can cause hyperglycemia. Both of these attacks can result in a variety of complications and endanger a patient's life. Specifically, we propose a sophisticated and personalized insulin dose manipulation attack; this attack is based on a novel method of predicting the blood glucose (BG) level in response to insulin dose administration. To protect patients from the proposed sophisticated and malicious insulin dose manipulation attacks, we also present an automated machine learning based system for attack detection; the detection system is based on an advanced temporal pattern mining process, which is performed on the logs of real insulin pumps and continuous glucose monitors (CGMs). Our multivariate time-series data (MTSD) collection consists of 225,780 clinical logs, collected from real insulin pumps and CGMs of 47 patients with type I diabetes (13 adults and 34 children) from two different clinics at Soroka University Medical Center in Beer-Sheva, Israel over a four-year period. We enriched our data collection with additional relevant medical information related to the subjects. In the extensive experiments performed, we evaluated the proposed attack and detection system and examined whether: (1) it is possible to accurately predict BG levels in order to create malicious data that simulate a manipulation attack and the patient's body in response to it; (2) it is possible to automatically detect such attacks based on advanced machine learning (ML) methods that leverage temporal patterns; (3) the detection capabilities of the proposed detection system differ for insulin overdose and underdose attacks; and (4) the granularity of the learning model (general / adult vs. pediatric clinic / individual patient) affects the detection capabilities. Our results show that (a) it is possible to predict, with nearly 90% accuracy, BG levels using our proposed methods, and by doing so, enable malicious data creation for our detection system evaluation; (b) it is possible to accurately detect insulin manipulation attacks using temporal patterns mining using several ML methods, including Logistic Regression, Random Forest, TPF class model, TPF top k, and ANN algorithms; (c) it is easier to detect an overdose attack than an underdose attack in more than 25%, in terms of AUC scores; and (d) the adult vs. pediatric model outperformed models of other granularities in the detection of overdose attacks, while the general model outperformed the other models in the case of detecting underdose attacks; for both attacks, attack detection among children was found to be more challenging than among adults. In addition to its use in the evaluation of our detection system, the proposed BG prediction method has great importance in the medical domain where it can contribute to improved care of patients with diabetes.
Collapse
|
4
|
Gambo IP, Massenon R, Kolawole BA, Ikono R. Analysis and Design Process for Predicting and Controlling Blood Glucose in Type 1 Diabetic Patients. INTERNATIONAL JOURNAL OF HEALTHCARE INFORMATION SYSTEMS AND INFORMATICS 2021. [DOI: 10.4018/ijhisi.289461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineering smart software that can monitor, predict, and control blood glucose is critical to improving patients' quality of treatments with type 1 Diabetic Mellitus (T1DM). However, ensuring a reasonable glycemic level in diabetic patients is quite challenging, as many methods do not adequately capture the complexities involved in glycemic control. This problem introduces a new level of complexity and uncertainty to the patient's psychological state, thereby making this problem nonlinear and unobservable. In this paper, we formulated a mathematical model using carbohydrate counting, insulin requirements, and the Harris-Benedict energy equations to establish the framework for predicting and controlling blood glucose level regulation in T1DM. We implemented the framework and evaluated its performance using root mean square error (RMSE) and mean absolute error (MAE) on a case study. Our framework had less error rate in terms of RMSE and MAE, which indicates a better fit with reasonable accuracy.
Collapse
Affiliation(s)
| | | | | | - Rhoda Ikono
- Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
5
|
Feature Selection for Blood Glucose Level Prediction in Type 1 Diabetes Mellitus by Using the Sequential Input Selection Algorithm (SISAL). Symmetry (Basel) 2019. [DOI: 10.3390/sym11091164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Feature selection is a primary exercise to tackle any forecasting task. Machine learning algorithms used to predict any variable can improve their performance by lessening their computational effort with a proper dataset. Anticipating future glycemia in type 1 diabetes mellitus (DM1) patients provides a baseline in its management, and in this task, we need to carefully select data, especially now, when novel wearable devices offer more and more information. In this paper, a complete characterization of 25 diabetic people has been carried out, registering innovative variables like sleep, schedule, or heart rate in addition to other well-known ones like insulin, meal, and exercise. With this ground-breaking data compilation, we present a study of these features using the Sequential Input Selection Algorithm (SISAL), which is specially prepared for time series data. The results rank features according to their importance, regarding their relevance in blood glucose level prediction as well as indicating the most influential past values to be taken into account and distinguishing features with person-dependent behavior from others with a common performance in any patient. These ideas can be used as strategies to select data for predicting glycemia depending on the availability of computational power, required speed, or required accuracy. In conclusion, this paper tries to analyze if there exists symmetry among the different features that can affect blood glucose levels, that is, if their behavior is symmetric in terms of influence in glycemia.
Collapse
|
6
|
Oviedo S, Vehí J, Calm R, Armengol J. A review of personalized blood glucose prediction strategies for T1DM patients. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2833. [PMID: 27644067 DOI: 10.1002/cnm.2833] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
This paper presents a methodological review of models for predicting blood glucose (BG) concentration, risks and BG events. The surveyed models are classified into three categories, and they are presented in summary tables containing the most relevant data regarding the experimental setup for fitting and testing each model as well as the input signals and the performance metrics. Each category exhibits trends that are presented and discussed. This document aims to be a compact guide to determine the modeling options that are currently being exploited for personalized BG prediction.
Collapse
Affiliation(s)
- Silvia Oviedo
- Institut d'Informàtica i Aplicacions, Parc Científic i Tecnològic de la Universitat de Girona, 17003, Girona, Spain
| | - Josep Vehí
- Institut d'Informàtica i Aplicacions, Universitat de Girona, Campus Montilivi, Edifici P4, 17071, Girona, Spain
| | - Remei Calm
- Institut d'Informàtica i Aplicacions, Universitat de Girona, Campus Montilivi, Edifici P4, 17071, Girona, Spain
| | - Joaquim Armengol
- Institut d'Informàtica i Aplicacions, Universitat de Girona, Campus Montilivi, Edifici P4, 17071, Girona, Spain
| |
Collapse
|
7
|
Cescon M, Johansson R, Renard E. Subspace-based linear multi-step predictors in type 1 diabetes mellitus. Biomed Signal Process Control 2015. [DOI: 10.1016/j.bspc.2014.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Balakrishnan NP, Samavedham L, Rangaiah GP. Personalized mechanistic models for exercise, meal and insulin interventions in children and adolescents with type 1 diabetes. J Theor Biol 2014; 357:62-73. [DOI: 10.1016/j.jtbi.2014.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/29/2014] [Accepted: 04/30/2014] [Indexed: 11/15/2022]
|
9
|
Ghosh S. A differential evolution based approach for estimating minimal model parameters from IVGTT data. Comput Biol Med 2014; 46:51-60. [PMID: 24529205 DOI: 10.1016/j.compbiomed.2013.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 10/25/2022]
|