1
|
Singh S, Patidar R, Srivastava VC, Qiao Q, Kumar P, Singh A, Lo SL. Peroxymonosulfate activation with an α-MnO 2/Mn 2O 3/Mn 3O 4 hybrid system: parametric optimization and oxidative degradation of organic dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27422-2. [PMID: 37243765 DOI: 10.1007/s11356-023-27422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
The present study proposed the synthesis of low-toxicity and eco-friendly spherically shaped manganese oxides (α-MnO2, Mn2O3, and Mn3O4) by using the chemical precipitation method. The unique variable oxidation states and different structural diversity of manganese-based materials have a strong effect on fast electron transfer reactions. XRD, SEM, and BET analyses were used to confirm the structure morphology, higher surface area, and excellent porosity. The catalytic activity of as-prepared manganese oxides (MnOx) was investigated for the rhodamine B (RhB) organic pollutant with peroxymonosulfate (PMS) activation under the condition of control pH. In acidic conditions (pH = 3), complete RhB degradation and 90% total organic carbon (TOC) reduction were attained in 60 min. The effects of operating parameters such as solution pH, PMS loading, catalyst dosage, and dye concentration on RhB removal reduction were also tested. The different oxidation states of MnOx promote the oxidative-reductive reaction under acidic conditions and enhance the SO4•-/•OH radical formation during the treatment, whereas the higher surface area offers sufficient absorption sites for interaction of the catalyst with pollutants. A scavenger experiment was used to investigate the generation of more reactive species that participate in dye degradation. The effect of inorganic anions on divalent metal ions that genuinely occur in water bodies was also studied. Additionally, separation and mass analysis were used to investigate the RhB dye degradation mechanism at optimum conditions based on the intermediate's identification. Repeatability tests confirmed that MnOx showed superb catalytic performance on its removal trend.
Collapse
Affiliation(s)
- Seema Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, Taiwan, Republic of China
| | - Ritesh Patidar
- Department of Petroleum Engineering, Rajasthan Technical University, Kota, Rajasthan, 324010, India
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India
| | - Qicheng Qiao
- School of Environment and Biological Engineering, Nantong College of Science and Technology, Nantong City, Jiangsu, 226007, People's Republic of China
| | - Praveen Kumar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ajay Singh
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Shang-Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei, Taiwan, Republic of China.
- Water Innovation, Low Carbon and Environmental Sustainability Research Center, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
A Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis. WATER 2021. [DOI: 10.3390/w13223241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Due to the impacts of water scarcity, the world is looking at all possible solutions for decreasing the over-exploitation of finite freshwater resources. Wastewater is one of the most reliable and accessible water supplies. As the population expands, so do industrial, agricultural, and household operations in order to meet man’s enormous demands. These operations generate huge amounts of wastewater, which may be recovered and used for a variety of reasons. Conventional wastewater treatment techniques have had some success in treating effluents for discharge throughout the years. However, advances in wastewater treatment techniques are required to make treated wastewater suitable for industrial, agricultural, and household use. Diverse techniques for removing heavy metal ions from various water and wastewater sources have been described. These treatments can be categorized as adsorption, membrane, chemical, or electric. Membrane technology has been developed as a popular alternative for recovering and reusing water from various water and wastewater sources. This study integrates useful membrane technology techniques for water and wastewater treatment containing heavy metals, with the objective of establishing a low-cost, high-efficiency method as well as ideal production conditions: low-cost, high-efficiency selective membranes, and maximum flexibility and selectivity. Future studies should concentrate on eco-friendly, cost-effective, and long-term materials and procedures.
Collapse
|
3
|
Mineralization of perfluorooctanoic acid by combined aerated electrocoagulation and Modified peroxi-coagulation methods. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Adsorption of Organic Pollutants from Cold Meat Industry Wastewater by Electrochemical Coagulation: Application of Artificial Neural Networks. WATER 2020. [DOI: 10.3390/w12113040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cold meat industry is considered to be one of the main sources of organic pollutants in the wastewater of the meat sector due to the complex mixture of protein, fats, and dyes present. This study describes electrochemical coagulation (EC) treatment for the adsorption of organic pollutants reported in cold meat industry wastewater, and an artificial neural network (ANN) was employed to model the adsorption of chemical oxygen demand (COD). To depict the adsorption process, the parameters analyzed were current density (2–6 mA cm−2), initial pH (5–9), temperature (288–308 K), and EC time (0–180 min). The experimental results were fit to the Langmuir and Freundlich isotherm equations, while the modeling of the adsorption kinetics was evaluated by means of pseudo-first and pseudo-second-order rate laws. The data reveal that current density is the main control parameter in EC treatment, and 60 min are required for an effective adsorption process. The maximum removal of COD was 2875 mg L−1 (82%) when the following conditions were employed: pH = 7, current density = 6 mA cm−2, and temperature of 298 K. Experimental results obey second-order kinetics with values of the constant in the range of 1.176 × 10−5 ≤ k2 (mg COD adsorbed/g-Al.min) ≤ 1.284 × 10−5. The ANN applied in this research established that better COD removal, 3262.70 mg L−1 (93.22%) with R2 = 0.98, was found using the following conditions: EC time of 30.22 min, initial pH = 7.80, and current density = 6 mA cm−2. The maximum adsorption capacity of 621.11 mg g−1 indicates a notable affinity between the organic pollutants and coagulant metallic ions.
Collapse
|
5
|
Ukundimana Z, Omwene P, Gengec E, Can O, Kobya M. Electrooxidation as post treatment of ultrafiltration effluent in a landfill leachate MBR treatment plant: Effects of BDD, Pt and DSA anode types. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.08.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Hiwarkar AD, Singh S, Srivastava VC, Mall ID. Mineralization of pyrrole, a recalcitrant heterocyclic compound, by electrochemical method: Multi-response optimization and degradation mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 198:144-152. [PMID: 28458108 DOI: 10.1016/j.jenvman.2017.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/25/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
In this study, the electrochemical (EC) oxidation of a recalcitrant heterocyclic compound namely pyrrole has been reported using platinum coated titanium (Pt/Ti) electrodes. Response surface methodology (RSM) comprising of full factorial central composite design (CCD) with four factors and five levels has been used to examine the effects of different operating parameters such as current density (j), aqueous solution pH, conductivity (k) and treatment time (t) in an EC batch reactor. Pyrrole mineralization in aqueous solution was examined with multiple responses such as chemical oxygen demand (COD) (response, Y1) and specific energy consumption (SEC) in kWh/kg of COD removed (response, Y2). During multiple response optimization, the desirability function approach was employed to concurrently maximize Y1 and minimize Y2. At the optimum condition, 82.9% COD removal and 7.7 kWh/kg of COD removed were observed. Degradation mechanism of pyrrole in wastewater was elucidated at the optimum condition of treatment by using UV-visible spectroscopy, Fourier transformed infra-red spectroscopy (FTIR), cyclic voltammetry (CV), ion chromatography (IC), higher performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS). The degradation pathway of pyrrole was proposed on the basis of the various analysis.
Collapse
Affiliation(s)
- Ajay Devidas Hiwarkar
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Roorkee 247667, Uttarakhand, India; Department of Chemical Engineering, Bundelkhand Institute of Engineering and Technology, Jhansi 284128, Uttar Pradesh, India.
| | - Seema Singh
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Indra Deo Mall
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
7
|
Mandegari M, Fashandi H. Untapped potentials of acrylonitrile-butadiene-styrene/polyurethane (ABS/PU) blend membrane to purify dye wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 197:464-475. [PMID: 28412618 DOI: 10.1016/j.jenvman.2017.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/25/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
Production of acrylonitrile-butadiene-styrene/polyurethane (ABS/PU) blend membrane with high rejection efficiency for disperse and vat dyes, is introduced as a facile and cost effective technique to purify textile wastewater. In this respect, membranes are produced using commercially available polymers, i.e. ABS and PU, with different compositions (ABS/PU: 100/0, 80/20, 70/30, 60/40 and 50/50 w/w) through wet casting. Casting solutions with concentration of 30 wt% are prepared using two different solvents, i.e. dimethylformamide (DMF) and N-methyl-2- pyrrolidone (NMP). The prepared membranes are characterized using a variety of analytical techniques including SEM imaging, FTIR spectroscopy, dry and wet gas permeation, evaluation of reusability, antifouling and mechanical properties, photostability, surface hydrophilicity and pure water permeability (PWP) of the produced membranes. According to the results, irrespective of solvent type, ABS/PU membranes with higher PU content have lower porosity and smaller pore size both of which contribute to enhanced dye rejection efficiency. This is while the impact of PU content on the photostability of ABS/PU membranes was found to be negligible. Additionally, the produced ABS/PU membranes exhibit good reusability and antifouling properties. However, the mechanical properties of ABS/PU membranes with higher PU contents are inferior to those with lower PU contents. This contrast highlights the prominence of optimum PU content to make a trade-off between dye rejection efficiency and mechanical properties. In this regard, ABS/PU (60/40 w/w) membrane is recognized as the one with optimum composition. Furthermore, it was found that regardless of PU content, membranes cast from DMF-based solutions exhibit superior rejection performance over those cast from NMP-based solutions. Overall, one can witness that employing ABS/PU membranes provides a meritorious and clean approach to refine disperse and vat dye wastewaters, a great threat to the environment and human health.
Collapse
Affiliation(s)
- Mansoor Mandegari
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Hossein Fashandi
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| |
Collapse
|
8
|
A characteristic study on generation and interactive effect of electrocoagulated floc with Direct Green 1 and Reactive Red 2. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.01.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Singh S, Singh S, Lo SL, Kumar N. Electrochemical treatment of Ayurveda pharmaceuticals wastewater: Optimization and characterization of sludge residue. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Singh S, Srivastava VC, Mandal TK, Mall ID, Lo SL. Synthesis and application of green mixed-metal oxide nano-composite materials from solid waste for dye degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:146-156. [PMID: 27341375 DOI: 10.1016/j.jenvman.2016.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/26/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
Present study demonstrates reutilization of electrochemical (EC) sludge as a potential low-cost green catalyst for dye degradation. Hexagonal Fe2O3 type phase with trevorite (NiFe2O4)-type cubic phase nanocomposite material (NCM) was synthesized from solid waste sludge generated during EC treatment of textile industry wastewater with stainless steel electrode. For NCM synthesis, sludge was heated at different temperatures under controlled condition. Various synthesized NCMs were characterized by powder X-ray diffraction (PXD), energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis. The synthesized NCMs were found to contain iron, chromium, nickel and oxygen in the form of α-Fe2O3 (metal: oxygen = 40:60), (Fe,Cr,Ni)2O3 and trevorite NiFe2O4, (Ni,Fe,Cr) (Fe,Cr,Ni)2O4 (metal: oxygen = 43:57). Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), pore size distribution, and atomic force microscope (AFM) analysis showed distribution of grains of different shapes and sizes. Catalytic activity of NCM was studied by the methylene red dye degradation by using the catalytic wet peroxidation process. Zeta potential study was performed under different pH so as to determine the performance of the NCMs during dye degradation.
Collapse
Affiliation(s)
- Seema Singh
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Tapas Kumar Mandal
- Department of Chemistry, Indian Institute of Technology, Roorkee, Roorkee 247667, Uttarakhand, India
| | - Indra Deo Mall
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; Department of Chemical Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Shang Lien Lo
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan
| |
Collapse
|
11
|
Singh S, Srivastava VC, Mandal TK, Mall ID. Synthesis of different crystallographic Al2O3 nanomaterials from solid waste for application in dye degradation. RSC Adv 2014. [DOI: 10.1039/c4ra08842e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recycling of sludge generated during electrochemical treatment to synthesize alumina nanomaterials with different crystallographic orientations.
Collapse
Affiliation(s)
- Seema Singh
- Department of Chemical Engineering
- Indian Institute of Technology Roorkee
- Roorkee-247667, India
| | | | - Tapas Kumar Mandal
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667, India
| | - Indra Deo Mall
- Department of Chemical Engineering
- Indian Institute of Technology Roorkee
- Roorkee-247667, India
| |
Collapse
|