1
|
Lozano I, Pérez-Guzmán CJ, Mora A, Mahlknecht J, Aguilar CL, Cervantes-Avilés P. Pharmaceuticals and personal care products in water streams: Occurrence, detection, and removal by electrochemical advanced oxidation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154348. [PMID: 35257780 DOI: 10.1016/j.scitotenv.2022.154348] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical and personal care products (PPCPs) are part of the emerging contaminants (ECs) in the environment due to their known or suspected adverse effects in aquatic and terrestrial organisms, as well as in human health. Presence of PPCPs in aquatic and terrestrial ecosystems has been mainly attributed to the effluents of wastewater treatment plants (WWTPs). Although several PPCPs have been detected in wastewater, their removal from wastewater via biological processes is limited. Removal of PPCPs depends on their chemical structure, concentration, solubility, and technology used to treat the wastewater. Electrochemical Advanced Oxidation Processes (EAOPs) are some of the most sought-after methods for dealing with organic pollutants in water including PPCPs, due to generation of strong oxidants such as •OH, H2O2 and O3- by using directly or indirectly electrochemical technology. This review is focused on the removal of main PPCPs via EAOPs such as, anodic oxidation, electro-Fenton, photoelectron-Fenton, solar photoelectron-Fenton, photoelectrocatalysis and sonoelectrochemical processes. Although more than 40 PPCPs have been identified through different analytical approaches, antibiotics, anti-inflammatory and antifungal are the main categories of PPCPs detected in different water matrices. Application of EAOPs has been centered in the removal of antibiotics and analgesics of high consumption by using model media, e.g. Na2SO4. Photoelectrocatalysis and Electro-Fenton processes have been the most versatile EAOPs applied for PPCPs removal under a wide range of operating conditions and a variety of electrodes. Although EAOPs have gained significant scientific interest due to their effectiveness, low environmental impact, and simplicity, further research about the removal of PPCPs and their by-products under realistic concentrations and media is needed. Moreover, mid-, and long-term experiments that evaluate EAOPs performance will provide knowledge about key parameters that allow these technologies to be scaled and reduce the potential risk of PPCPs in aquatic and terrestrial ecosystem.
Collapse
Affiliation(s)
- Iván Lozano
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Carlos J Pérez-Guzmán
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64149, Nuevo León, Mexico
| | - Claudia López Aguilar
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Av. San Claudio, Ciudad Universitaria, Puebla 72570, Puebla, Mexico
| | - Pabel Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Vía Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla 72453, Puebla, Mexico.
| |
Collapse
|
2
|
Hao Y, Deng S, Wang R, Xia Q, Zhang K, Wang X, Liu H, Liu Y, Huang M, Xie M. Development of dual-enhancer biocatalyst with photothermal property for the degradation of cephalosporin. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128294. [PMID: 35065309 DOI: 10.1016/j.jhazmat.2022.128294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The abuse of cephalosporins poses a serious threat to human health and the ecological environment. In this work, cephalosporinase (AmpC enzyme) and Prussian blue (PB) crystals were encapsulated into ZIF-8 metal-organic frameworks (MOFs), and a photothermal AmpC/PB@ZIF-8 MOFs (APZ) nanocatalyst was prepared for the catalytic degradation of cephalosporin. The temperature of the APZ catalytic degradation system can be regulated by irradiation with near infrared light due to the photothermal effect of PB, and then, the activity of the APZ biocatalyst is significantly enhanced. Thereby, the degradation efficiency of cefuroxime can reach to 96%, and the degradation kinetic rate of cefuroxime augmented 4.5-fold comparing with that catalyzed by free enzyme. Moreover, encapsulation of the enzyme and PB can increase the affinity and charge transfer efficiency between APZ and substrate molecules, which can also improve the degradation efficiency of cephalosporins. Catalytic degradation pathways for three generations of cephalosporins were proposed based on their degradation products. The dual-enhancer biocatalyst based on the photothermal effect and immobilization of the PB and enzyme can significantly enhance the activity and stability of the enzyme, and it can also be recycled. Therefore, the biocatalyst has potential applications for the effective degradation of cephalosporins in the environment.
Collapse
Affiliation(s)
- Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Ruoxin Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Qianshu Xia
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Kaina Zhang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Min Huang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Dou M, Wang J, Ma Z, Gao B, Huang X. Origins of selective differential oxidation of β-lactam antibiotics with different structure in an efficient visible-light driving mesoporous g-C 3N 4 activated persulfate synergistic mechanism. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128111. [PMID: 34954433 DOI: 10.1016/j.jhazmat.2021.128111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
In the study, an efficient '1 + 1 > 2' synergistic coupling system driven by visible light consisting of mesoporous g-C3N4 (MCN) and persulfate (PS)was constructed. The free radical transformation, electron transfer and non-covalent interaction between the MCN layer and PS in the system were explored via experiments and DFT calculations. The similarity for the fate of the seven β-lactam antibiotics with typical structures in the oxidation system was studied systematically in depth. First, the consistencies and differences of the seven antibiotics were summarized from three aspects: three-dimensional structures, electron cloud distributions, and the vulnerable sites. Notably, the selective differential degradation of β-lactam antibiotics in the MCN/PS system was speculated to be related with the molecular ionization potential (MIP), as a key index to describe the difficulty of oxidation. The distribution relationship between MIP and the oxidation kinetic constant (K) was explored and showed the following trend: a higher MIP indicates a weaker ability to provide electrons, and this leads to a greater resistance to oxidative degradation. In total, four main oxidation pathways of β-lactam antibiotics were systematically summarized combining HPLC-QTOF-MS and the simplified Fukui function calculation. The toxicity assessment of intermediate products provided by the T.E.S.T software of USEPA also shows a decreasing trend in the oxidation process. In the end, the superior practicability and stability of the MCN/PS system was verified by complex environment simulation and cyclic test. This research clarified the selective differential degradation mechanism of β-lactam antibiotics and provided a possible idea for the effective removal of refractory organic pollutants in water.
Collapse
Affiliation(s)
- Mengmeng Dou
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Jin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Haidian District, Beijing 100044, China.
| | - Zhaokun Ma
- Shandong Academy for Environmental Planning, Jinan 250101, China
| | - Boru Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Xue Huang
- Beijing Greentech Technology Group Co., Ltd, Beijing 100083, China
| |
Collapse
|
4
|
Hu Y, Zhou Y, Hu X, Chen Q, Shi Y, Zhuang J, Wang Q. Cefotaxime sodium inhibited melanogenesis in B16F10 cells by cAMP/PKA/CREB pathways. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Wang A, Zhang Y, Han S, Guo C, Wen Z, Tian X, Li J. Electro-Fenton oxidation of a β-lactam antibiotic cefoperazone: Mineralization, biodegradability and degradation mechanism. CHEMOSPHERE 2021; 270:129486. [PMID: 33418225 DOI: 10.1016/j.chemosphere.2020.129486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
Oxidation of a commonly-used β-lactam pharmaceutical, cefoperazone (CFPZ), was systematically investigated by anodic oxidation (AO), AO in presence of H2O2 electro-generation (AO-H2O2) and electro-Fenton (EF) processes with an activated carbon fiber cathode from the biodegradability viewpoint. The degradation and mineralization rates increased in a sequence of AO < AO-H2O2 < EF. Even CPFZ could be efficiently degraded in EF process, achieving complete CFPZ mineralization was rather difficult. Thereby, the biodegradability of the effluent after electrochemical pretreatment was examined to test the feasibility of the combination of electrochemical and biological processes. The results suggested that compared with AO and AO-H2O2, EF process could effectively transform the non-biodegradable CFPZ into biocompatible materials with a high BOD5/COD value (0.33 after 720 min), allowing the possible biotreatment for further remediation. This behavior was relatively accorded with the average oxidation state (AOS) results, evidencing the potential of EF process in enhancing the biodegradability of CFPZ. The determination of inorganic ions revealed that N in CFPZ molecular was oxidized into NH4+ and NO3- ions in EF process. Oxalic, succinic, oxamic, fumaric and formic acids were also formed. Besides, six aromatic by-products were qualified and a possible pathway involving hydrolysis, hydroxylation and decarboxylation during CFPZ mineralization was proposed.
Collapse
Affiliation(s)
- Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yanyu Zhang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Shanshan Han
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Chunxiao Guo
- Machinery Technology Development Co. Ltd., Beijing, 100044, China
| | - Zhenjun Wen
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
6
|
Comparative Photo-Electrochemical and Photocatalytic Studies with Nanosized TiO2 Photocatalysts towards Organic Pollutants Oxidation. Catalysts 2021. [DOI: 10.3390/catal11030349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The size of TiO2 can significantly affect both its photocatalytic and photo-electrochemical properties, thus altering the photooxidation of organic pollutants in air or water. In this work, we give an account of the photo-electrochemical and photocatalytic features of some nanosized TiO2 commercial powders towards a model reaction, the photooxidation of acetone. Cyclic voltammograms (CV) of TiO2 particulate electrodes under UV illumination experiments were carried out in either saturated O2 or N2 solutions for a direct correlation with the photocatalytic process. In addition, the effect of different reaction conditions on the photocatalytic efficiency under UV light in both aqueous and gaseous phases was also investigated. CV curves with the addition of acetone under UV light showed a negative shift of the photocurrent onset, confirming the efficient transfer of photoproduced reactive oxygen species (ROSs), e.g., hydroxyl radicals or holes to acetone molecules. The photocatalytic experiments showed that the two nano-sized samples exhibit the best photocatalytic performance. The different photoactivity of the larger-sized samples is probably attributed to their morphological differences, affecting both the amount and distribution of free ROSs involved in the photooxidation reaction. Finally, a direct correlation between the photocatalytic measurements in gas phase and the photo-electrochemical measurements in aqueous phase is given, thus evincing the important role of the substrate-surface interaction with similar acetone concentrations.
Collapse
|
7
|
Di Y, Ma C, Fu Y, Dong X, Liu X, Ma H. Engineering Cationic Sulfur-Doped Co 3O 4 Architectures with Exposing High-Reactive (112) Facets for Photoelectrocatalytic Water Purification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8405-8416. [PMID: 33566566 DOI: 10.1021/acsami.0c20353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Promoting the generation of intermediate active species (superoxide radical (•O2-)) is an important and challenging task for water purification by photoelectrocatalytic (PEC) oxidation. Herein, we have constructed hierarchical cationic sulfur-doped Co3O4 architectures with controllable morphology and highly exposed reactive facets by introducing l-cysteine as a capping reagent and sulfur resource via a one-step hydrothermal reaction. The as-obtained cationic sulfur (1.8 mmol l-cysteine) source doped Co3O4 (SC-1.8) architectures with highly exposed (112) facets exhibited superior PEC activities and long-term stability (∼25,000 s) in 1.0 mol·L-1 sulfuric acid for an accelerated reactive brilliant blue KN-R degradation test. Our experimental and theoretical results confirmed that the superior PEC performance of the SC-1.8 architectures could be ascribed the following factors: (1) the highly exposed reactive (112) facets of SC-1.8 promoted carrier transport and diffusion during the PEC process and facilitated separating the electron/hole pairs and producing the predominant active species (•O2-) compared with currently used other electrodes. (2) Cationic sulfur doped on the lattice of Co3O4 can narrow the band gap to extend the photoadsorption range and improve the lifetime of •O2- to enhance the PEC efficiency. This work not only proves that the SC-1.8 architectures with highly exposed (112) facets are a promising PEC catalyst due to increasing the electron transport and the lifetime of active species but also presents a new strategy for constructing an active PEC catalyst.
Collapse
Affiliation(s)
- Yanwei Di
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| | - Chun Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| | - Yinghuan Fu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| | - Xinghui Liu
- Department of Chemistry, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-Gu, Suwon 16419, Republic of Korea
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Ganjingzi District, Dalian 116034, P.R. China
| |
Collapse
|
8
|
Pirsaheb M, Hoseini H, Abtin V. Photoelectrocatalytic degradation of humic acid and disinfection over Ni TiO2-Ni/ AC-PTFE electrode under natural sunlight irradiation: Modeling, optimization and reaction pathway. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2020.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
9
|
Vasantharaghavan V, Cingaram R. Voltammetry Determination of Cefotaxime on Zinc Oxide Nanorod Modified Electrode. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190716140230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The Glassy Carbon Electrode (GCE) was modified with zinc oxide nanoparticles
to enhance the electrocatalytic activity of the redox behavior of cefotaxime ion. ATOMIC Force
Microscopy (AFM) photographic studies showed the nanorod like structure of the zinc oxide, which
was coated uniformly on the electrode surface.
Methods:
The zinc oxide nanorod modified electrode was used as novel voltammetric determination of
cefotaxime. The results of voltammetric behavior are satisfactory in the electro oxidation of cefotaxime,
and exhibit considerable improvement compared to glassy carbon electrode.
Results:
Under the optimized experimental conditions, the ZnO nanorod modified electrode exhibit
better linear dynamic range from 300 ppb to 700 ppb with lower limit of detection 200 ppb for the
stripping voltammetric determination of cefotaxime.
Conclusion:
The pharmaceutical and clinical formulation of cefotaxime was successfully applied for
accurate determination of trace amounts on ZnO nanomateials modified electrode.
Collapse
|
10
|
Kong XX, Jiang JL, Qiao B, Liu H, Cheng JS, Yuan YJ. The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:271-280. [PMID: 30236844 DOI: 10.1016/j.scitotenv.2018.09.187] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Cephalosporin residues in the environment are a great concern, but bioremediation options do exist. Bacillus clausii T reached a removal rate of 100% within 8 h when challenged with a mixture of cefuroxime (CFX), cefotaxime (CTX), and cefpirome (CPR). The co-culture of B. clausii T and B. clausii O/C displayed a higher removal efficiency for the mixture of CFX, CTX and CPR than a pure culture of B. clausii O/C. B. clausii T alleviated the biotoxicity of CFX and CPR. What's more, the biotoxicity of for CFX and CPR transformation products released by the co-culture of B. clausii T and B. clausii O/C was lower than that in pure cultures. Real-time PCR was applied to detect the changes in the expression levels of the relevant antibiotic-resistance genes of B. clausii T during CFX and CPR degradation. The results indicated that CFX and CPR enhanced the expression of the β-lactamase gene bcl1. Hydrolysis, deacetylation and decarboxylation are likely the major mechanisms of CTX biodegradation by B. clausii. These results demonstrate that B. clausii T is a promising strain for the bioremediation of environmental contamination by CFX, CTX, and CPR.
Collapse
Affiliation(s)
- Xiu-Xiu Kong
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Jian-Lan Jiang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Bin Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| | - Jing-Sheng Cheng
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China.
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China; SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, PR China
| |
Collapse
|
11
|
Domínguez-Espíndola RB, Bruguera-Casamada C, Silva-Martínez S, Araujo RM, Brillas E, Sirés I. Photoelectrocatalytic inactivation of Pseudomonas aeruginosa using an Ag-decorated TiO2 photoanode. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Peleyeju MG, Umukoro EH, Tshwenya L, Moutloali R, Babalola JO, Arotiba OA. Photoelectrocatalytic water treatment systems: degradation, kinetics and intermediate products studies of sulfamethoxazole on a TiO2–exfoliated graphite electrode. RSC Adv 2017. [DOI: 10.1039/c7ra07399b] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
EG–TiO2 photoanode was applied for the photoelectrocatalytic degradation of sulfamethoxazole. Significant COD abatement was obtained and degradation route was proposed.
Collapse
Affiliation(s)
- Moses G. Peleyeju
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | - Eseoghene H. Umukoro
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
| | - Luthando Tshwenya
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | - Richard Moutloali
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| | | | - Omotayo A. Arotiba
- Department of Applied Chemistry
- University of Johannesburg
- Doornfontein 2028
- South Africa
- DST/Mintek Nanotechnology Innovation Centre
| |
Collapse
|
13
|
Moraes FC, Gorup LF, Rocha RS, Lanza MRV, Pereira EC. Photoelectrochemical removal of 17β-estradiol using a RuO2-graphene electrode. CHEMOSPHERE 2016; 162:99-104. [PMID: 27487094 DOI: 10.1016/j.chemosphere.2016.07.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
A new electrode for the photoelectrochemical removal of 17β-estradiol from water using ruthenium oxide nanoparticles supported on reduced graphene oxide is proposed in this study. The morphology, microstructure and the electrochemical performance of the material were characterized using HRTEM, XRD and Raman spectroscopy. The characterization showed the formation of reduced graphene oxide from a micro-wave assisted hydrothermal method with a particle size of 5.0 nm + 2.4 nm. The electrochemical measurements point to a high performance of the electrode in the presence of a white light source. The hormone removal efficiency in water containing 50 μmol L(-1) of 17β-estradiol was evaluated using chronoamperometry at +1.0 V and the process was monitored using liquid chromatography. The reaction is pseudo first order with the removal of 92.2% of 17β-estradiol after 60 min of photoelectrocatalytic treatment.
Collapse
Affiliation(s)
- Fernando C Moraes
- Department of Chemistry, Federal University of São Carlos, P.O. Box 676, C.P, 13560-970 São Carlos, SP, Brazil.
| | - Luiz F Gorup
- Department of Chemistry, Federal University of São Carlos, P.O. Box 676, C.P, 13560-970 São Carlos, SP, Brazil
| | - Robson S Rocha
- Institute of Chemistry of São Carlos, University of São Paulo, P.O. Box 780, C.P, 78060-900 São Carlos, SP, Brazil
| | - Marcos R V Lanza
- Institute of Chemistry of São Carlos, University of São Paulo, P.O. Box 780, C.P, 78060-900 São Carlos, SP, Brazil
| | - Ernesto C Pereira
- Department of Chemistry, Federal University of São Carlos, P.O. Box 676, C.P, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
14
|
Zhou L, Alvarez OG, Mazon CS, Chen L, Deng H, Sui M. The roles of conjugations of graphene and Ag in Ag3PO4-based photocatalysts for degradation of sulfamethoxazole. Catal Sci Technol 2016. [DOI: 10.1039/c6cy00192k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three different photocatalysts, namely silver phosphate (Ag3PO4; AGP), Ag3PO4-graphene (AGP–G) and Ag/Ag3PO4–graphene (AAGP–G), were fabricated by a chemical precipitation approach. The mechanism of AAGP–G to degrade SMX was explained in detail.
Collapse
Affiliation(s)
- Li Zhou
- College of Environmental State Key Laboratory of Pollution Control and Resource Reuse
- Tongji University
- Shanghai
- China
- Key Laboratory of Yangtze River Water Environment
| | | | | | - Ling Chen
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- Shanghai
- China
| | - Huiping Deng
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- Shanghai
- China
| | - Minghao Sui
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- Shanghai
- China
| |
Collapse
|
15
|
Nguyen MA, Bedford NM, Ren Y, Zahran EM, Goodin RC, Chagani FF, Bachas LG, Knecht MR. Direct Synthetic Control over the Size, Composition, and Photocatalytic Activity of Octahedral Copper Oxide Materials: Correlation Between Surface Structure and Catalytic Functionality. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13238-13250. [PMID: 26010080 DOI: 10.1021/acsami.5b04282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a synthetic approach to form octahedral Cu2O microcrystals with a tunable edge length and demonstrate their use as catalysts for the photodegradation of aromatic organic compounds. In this particular study, the effects of the Cu(2+) and reductant concentrations and stoichiometric ratios were carefully examined to identify their roles in controlling the final material composition and size under sustainable reaction conditions. Varying the ratio and concentrations of Cu(2+) and reductant added during the synthesis determined the final morphology and composition of the structures. Octahedral particles were prepared at selected Cu(2+):glucose ratios that demonstrated a range of photocatalytic reactivity. The results indicate that material composition, surface area, and substrate charge effects play important roles in controlling the overall reaction rate. In addition, analysis of the post-reacted materials revealed photocorrosion was inhibited and that surface etching had preferentially occurred at the particle edges during the reaction, suggesting that the reaction predominately occurred at these interfaces. Such results advance the understanding of how size and composition affect the surface interface and catalytic functionality of materials.
Collapse
Affiliation(s)
- Michelle A Nguyen
- †Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Nicholas M Bedford
- ‡Applied Chemicals and Materials Division, National Institute Standards and Technology, 325 Broadway, Boulder, Colorado 80305, United States
| | - Yang Ren
- §X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Elsayed M Zahran
- †Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Robert C Goodin
- ∥Westminster Christian School, 6855 SW 152nd Street, Palmetto Bay, Florida 33157, United States
| | - Fatima F Chagani
- †Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Leonidas G Bachas
- †Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Marc R Knecht
- †Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|