1
|
Ma Y, Li B, Zhang X, Wang C, Chen W. Production of Gluconic Acid and Its Derivatives by Microbial Fermentation: Process Improvement Based on Integrated Routes. Front Bioeng Biotechnol 2022; 10:864787. [PMID: 35651548 PMCID: PMC9149244 DOI: 10.3389/fbioe.2022.864787] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gluconic acid (GA) and its derivatives, as multifunctional biological chassis compounds, have been widely used in the food, medicine, textile, beverage and construction industries. For the past few decades, the favored production means of GA and its derivatives are microbial fermentation using various carbon sources containing glucose hydrolysates due to high-yield GA production and mature fermentation processes. Advancements in improving fermentation process are thriving which enable more efficient and economical industrial fermentation to produce GA and its derivatives, such as the replacement of carbon sources with agro-industrial byproducts and integrated routes involving genetically modified strains, cascade hydrolysis or micro- and nanofiltration in a membrane unit. These efforts pave the way for cheaper industrial fermentation process of GA and its derivatives, which would expand the application and widen the market of them. This review summarizes the recent advances, points out the existing challenges and provides an outlook on future development regarding the production of GA and its derivatives by microbial fermentation, aiming to promote the combination of innovative production of GA and its derivatives with industrial fermentation in practice.
Collapse
Affiliation(s)
- Yan Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xinyue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Chao Wang
- Dongcheng District Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Chao Wang, ; Wei Chen,
| | - Wei Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Chao Wang, ; Wei Chen,
| |
Collapse
|
2
|
Zhang Z, Yang B, Zhang B, Cui M, Tang J, Qiao X. Type II porous ionic liquid based on metal-organic cages that enables L-tryptophan identification. Nat Commun 2022; 13:2353. [PMID: 35487897 PMCID: PMC9054828 DOI: 10.1038/s41467-022-30092-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Porous liquids with chemical separation properties are quite well-studied in general, but there is only a handful of reports in the context of identification and separation of non-gaseous molecules. Herein, we report a Type II porous ionic liquid composed of coordination cages that exhibits exceptional selectivity towards L-tryptophan (L-Trp) over other aromatic amino acids. A previously known class of anionic organic-inorganic hybrid doughnut-like cage (HD) is dissolved in trihexyltetradecylphosphonium chloride (THTP_Cl). The resulting liquid, HD/THTP_Cl, is thereby composed of common components, facile to prepare, and exhibit room temperature fluidity. The permanent porosity is manifested by the high-pressure isotherm for CH4 and modeling studies. With evidence from time-dependent amino acid uptake, competitive extraction studies and molecular dynamic simulations, HD/THTP_Cl exhibit better selectivity towards L-Trp than other solid state sorbents, and we attribute it to not only the intrinsic porosity of HD but also the host-guest interactions between HD and L-Trp. Specifically, each HD unit is filled with nearly 5 L-Trp molecules, which is higher than the L-Trp occupation in the structure unit of other benchmark metal-organic frameworks.
Collapse
Affiliation(s)
- Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Baolin Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Bingjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China.
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, 210009, Nanjing, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China.
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, 210009, Nanjing, China.
| |
Collapse
|
3
|
|
4
|
Pal P, Kumar R, VikramaChakravarthi D, Chakrabortty S. Modeling and simulation of continuous production of L (+) glutamic acid in a membrane-integrated bioreactor. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|