1
|
El-Shazly AI, Wahba MI, Abdelwahed NAM, Shehata AN. Immobilization of alkaline protease produced by Streptomyces rochei strain NAM-19 in solid state fermentation based on medium optimization using central composite design. 3 Biotech 2024; 14:161. [PMID: 38799268 PMCID: PMC11111645 DOI: 10.1007/s13205-024-04003-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
This study evaluated Streptomyces rochei strain NAM-19 solid-state fermentation of agricultural wastes to produce alkaline protease. Alkaline protease production increased with flaxseed, rice bran, and cheese whey fermentation reaching 147 U/mL at 48 h. Statistical optimization of alkaline protease production was performed using the central composite design (CDD). Results of CDD and the optimization plot showed that 4.59 g/L flaxseed, 4.31 g/L rice bran, 4.17 mL cheese whey, and a vegetative inoculum size of 7.0% increased alkaline protease production by 27.2% reaching 186 U/mL. Using the 20-70% ammonium sulfate fractionation method, the optimally produced enzyme was partially purified to fivefold. The partially purified alkaline protease was then covalently immobilized on a biopolymer carrier, glutaraldehyde-polyethylene-imine-κ-carrageenan (GA-PEI-Carr), with 90% immobilization efficiency. Characterizations revealed that immobilization improved thermostability, reusability, optimum temperature, and sensitivity towards metal ions of the free enzyme. The optimal temperature for free and immobilized enzymes was 40 and 50 °C, respectively. Both enzymes had the same optimum pH of 10. Immobilization increased Km from 19.73 to 26.52 mM and Vmax from 56.7 to 62.5 mmol min-1L-1. The immobilized enzyme retained 35% of its initial activity at 70 °C, while the free enzyme retained only 5%. The immobilized enzyme kept 80% of its initial activity at the 20th cycle. After 7 weeks of storage, the free enzyme lost all its initial activity, whereas the immobilized enzyme retained 50%. The free and immobilized enzymes were able to hydrolyze gelatin, and azo-casein demonstrating different relative activity, 85, 80, 90 and 95%, respectively, compared to casein (100%).
Collapse
Affiliation(s)
- Asmaa I. El-Shazly
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drugs Research Institute, National Research Centre, Cairo, Egypt
| | - Marwa I. Wahba
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drugs Research Institute, National Research Centre, Cairo, Egypt
- Centre of Scientific Excellence-Group of Advanced Materials and Nanotechnology, National Research Centre, Cairo, Egypt
| | - Nayera A. M. Abdelwahed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drugs Research Institute, National Research Centre, Cairo, Egypt
| | - Abeer N. Shehata
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Sengupta S, Basak P, Ghosh P, Pramanik A, Chakraborty A, Mukhopadhyay M, Sen A, Bhattacharyya M. Study of nano-hydroxyapatite tagged alkaline protease isolated from Himalayan sub-alpine Forest soil bacteria and role in recalcitrant feather waste degradation. Int J Biol Macromol 2023; 253:127317. [PMID: 37820911 DOI: 10.1016/j.ijbiomac.2023.127317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Purified calcium serine metalloprotease from Stenotrophomonas maltophilia strain SMPB12 exhibits highest enzyme activity at pH 9 and temperature range between 15 °C-25 °C. Enzyme supplemented with 40 μM Ca-Hap-NP (NP-protease) showed maximum elevated activity of 17.29 μmole/min/ml (1.9-fold of original protease activity). The thermostability of the enzyme was maintained for 1 h at 60 °C over an alkaline pH range 7.5-10, as compared to the NP untreated enzyme whose activity was of 8.97 μmole/min/ml. A significant loss of activity with EDTA (1.05 μmole/min/ml, 11.75 %), PMSF (0.93 μmole/min/ml, 10.46 %) and Hg2+ (3.81 μmole/min/ml, 42.49 %) was also observed. Kinetics study of NP-protease showed maximum decreases in Km (28.11 %) from 0.28 mM (NP untreated enzyme) to 0.22 mM (NP-protease) along with maximum increase in Vmax (42.88 %) from 1.25 μmole/min/ml to 1.79 μmole/min/ml at varying temperatures. The enhanced activity of NP-protease was able to efficiently degrade recalcitrant solid wastes like feather to produce value-added products like amino acids and helps in declogging recalcitrant solid wastes. The nano-enabled protease may be utilized in a smaller amount for degrading in bulk recalcitrant solid proteinaceous waste at 15 °C temperature as declogging agents providing an eco-friendly efficient process.
Collapse
Affiliation(s)
- Shritoma Sengupta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | - Pijush Basak
- Jagadis Bose National Science Talent Search, Kolkata, West Bengal, India
| | - Piya Ghosh
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India
| | - Arnab Pramanik
- Jagadis Bose National Science Talent Search, Kolkata, West Bengal, India
| | | | | | - Aparna Sen
- Department of Microbiology, Lady Brabourne College, Kolkata, West Bengal, India.
| | | |
Collapse
|
3
|
Zhang W, Liu R, Yang X, Nian B, Hu Y. Immobilization of laccase on organic—inorganic nanocomposites and its application in the removal of phenolic pollutants. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Liu Y, Zhang Y, Zhou Y, Feng XS. Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques. Crit Rev Anal Chem 2022; 54:1430-1461. [PMID: 36045567 DOI: 10.1080/10408347.2022.2116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Anthocyanins (ANCs), a kind of natural pigments, are widely present in food substrates. Evidence has shown that ANCs can promote health in terms of anti-oxidation, anti-tumor, and anti-inflammation. However, the oxidative stability of ANCs limits accurate quantitation and analysis. Therefore, faster, more accurate, and highly sensitive extraction and determination methods are necessary for understanding the role of ANCs in medicine and food. This review presents an updated overview of pretreatment and detection techniques for ANCs in various food substrates since 2015. Liquid-liquid extraction and various green solvent extraction methods, such as accelerated solvents extraction, deep eutectic solvents extraction, ionic liquids extraction, and supercritical fluid extraction, are commonly used pretreatment methods for extraction and purification of ANCs. Liquid chromatography coupled with different detectors (tandem mass spectrometry and UV detectors) and spectrophotometry methods are some of the determination methods for ANC. This study has updated, compared, and discussed different pretreatment and analysis methods. Moreover, the advanced methods and development prospects in this field are comprehensively summarized, which can provide references for further utilization of ANCs.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Application Prospects and Opportunities of Inorganic Nanomaterials for Enzyme Immobilization in the Food Processing Industry. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Wahba MI. Gum tragacanth for immobilization of Bacillus licheniformis protease: Optimization, thermodynamics and application. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Sáringer S, Valtner T, Varga Á, Maléth J, Szilágyi I. Development of polymer-based multifunctional composite particles of protease and peroxidase activities. J Mater Chem B 2021; 10:2523-2533. [PMID: 34757359 DOI: 10.1039/d1tb01861b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A hybrid material (SL-PPN-HEP-HRP) of dual enzyme function was prepared by co-immobilization of papain (PPN) and horseradish peroxidase (HRP) on sulphate latex (SL) microspheres using heparin (HEP) polyelectrolyte as a building block in the sequential adsorption method. The doses of PPN, HEP and HRP were optimized in each step of the preparation process to achieve high functional and colloidal stability. The enzymes and the polyelectrolyte strongly adsorbed on the oppositely charged surfaces via electrostatic forces, and enzyme leakage was not observed from the hybrid material, as confirmed by colorimetric protein tests and microscopy measurements. It was found that the polyelectrolyte acted as a separator between PPN and HRP to prevent hydrolytic attack on the latter enzyme, which otherwise prevents the joint use of these important biocatalysts. Excellent colloidal stability was obtained for the SL-PPN-HEP-HRP composite and the embedded PPN and HRP showed remarkable protease and peroxidase activities, respectively, at least until five days after preparation. The present results offer a promising approach to develop biocatalytic systems of dual function, which are often required in manufacturing processes in the food industry, where the colloidal stability of such multifunctional materials is a key parameter to achieve remarkable efficiency.
Collapse
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Tamás Valtner
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| | - Árpád Varga
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group and HCEMM-SZTE Molecular Gastroenterology Research Group, Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - József Maléth
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group and HCEMM-SZTE Molecular Gastroenterology Research Group, Department of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
8
|
Arya PS, Yagnik SM, Rajput KN, Panchal RR, Raval VH. Understanding the Basis of Occurrence, Biosynthesis, and Implications of Thermostable Alkaline Proteases. Appl Biochem Biotechnol 2021; 193:4113-4150. [PMID: 34648116 DOI: 10.1007/s12010-021-03701-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
The group of hydrolytic enzymes synonymously known as proteases is predominantly most favored for the class of industrial enzymes. The present work focuses on the thermostable nature of these proteolytic enzymes that occur naturally among mesophilic and thermophilic microbes. The broad thermo-active feature (40-80 °C), ease of cultivation, maintenance, and bulk production are the key features associated with these enzymes. Detailing of contemporary production technologies, and controllable operational parameters including the purification strategies, are the key features that justify their industrial dominance as biocatalysts. In addition, the rigorous research inputs by protein engineering and enzyme immobilization studies add up to the thermo-catalytic features and application capabilities of these enzymes. The work summarizes key features of microbial proteases that make them numero-uno for laundry, biomaterials, waste management, food and feed, tannery, and medical as well as pharmaceutical industries. The quest for novel and/or designed and engineered thermostable protease from unexplored sources is highly stimulating and will address the ever-increasing industrial demands.
Collapse
Affiliation(s)
- Prashant S Arya
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Shivani M Yagnik
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Kiransinh N Rajput
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Rakeshkumar R Panchal
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India
| | - Vikram H Raval
- Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, Ahmedabad, 380009, India.
| |
Collapse
|
9
|
Wang LL, Fan M, Xing X, Liu Y, Sun S. Immobilization of glyceraldehyde-3-phosphate dehydrogenase on Fe 3O 4 magnetic nanoparticles and its application in histamine removal. Colloids Surf B Biointerfaces 2021; 205:111917. [PMID: 34120088 DOI: 10.1016/j.colsurfb.2021.111917] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/29/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Lactobacillus plantarum is a novel biocatalyst in the degradation of histamine, but its properties need enhancement before practical application. Herein, we used Fe3O4 magnetic nanoparticles (MNPs) as the carrier core to prepare immobilized GAPDH. GAPDH was cloned, expressed in E. coli and purified, followed by immobilization on Fe3O4 MNPs and characterization by TEM and FT-IR. Then, characteristic comparisons between immobilized enzyme and its free form showed that the optimal pH and temperature of the former shifted to 7.5 and 40 °C, respectively, and pH tolerance and thermostability were separately broadened to 4.5-8.5 and 50-60 °C. In a wine-making experiment, including grape and black raspberry wines, using the immobilized enzyme, the results showed that over 81 %, 75 % and 59 % of histamine was removed after each treatment. These findings demonstrate that immobilizing GAPDH onto Fe3O4 MNPs is facile and efficient for histamine removal in fermented beverages.
Collapse
Affiliation(s)
- Lu-Liang Wang
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, 264025, PR China
| | - Minting Fan
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China; Institute of Food Science and Engineering, Yantai University, Yantai, Shandong, 264005, PR China
| | - Xin Xing
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China
| | - Yushen Liu
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, 264025, PR China
| | - Shuyang Sun
- School of Food Engineering, Ludong University, Yantai, Shandong, 264025, PR China; Institute of Bionanotechnology, Ludong University, Yantai, Shandong, 264025, PR China.
| |
Collapse
|
10
|
Hu TG, Zou YX, Li EN, Liao ST, Wu H, Wen P. Effects of enzymatic hydrolysis on the structural, rheological, and functional properties of mulberry leaf polysaccharide. Food Chem 2021; 355:129608. [PMID: 33799260 DOI: 10.1016/j.foodchem.2021.129608] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Effects of enzymatic hydrolysis on the structural, rheological, and functional properties of mulberry leaf polysaccharide (MLP) were characterized in this study. The enzymatic hydrolysis of MLP raised the carbonyl, carboxyl, and hydroxyl groups from 7.21 ± 0.86 to 10.08 ± 0.28 CO/100 Glu, 9.40 ± 0.13 to 17.55 ± 0.34 COOH/100 Glu, and 5.71 ± 0.33 to 8.14 ± 0.24 OH/100 Glu, respectively. Meanwhile, an increase in thixotropic performance and structure-recovery capacities were observed in hydrolyzed MLP, while the molecular weight, surface tension, apparent viscosity, and thermal stability were decreased. An improved antioxidant activity of MLP was also achieved after the enzymatic degradation. Moreover, the hydrolyzed MLP showed greater ability to promote the growths of Bifidobacterium bifidum, Bifidobacterium adolescentis, Lactobacillus rhamnosus, and Lactobacillus acidophilus and the production of acetic acid, butyric acid, and lactic acid. The results demonstrate that enzymatic modification is a useful approach for polysaccharide processing.
Collapse
Affiliation(s)
- Teng-Gen Hu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, China; Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Yu-Xiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Er-Na Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Sen-Tai Liao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, China.
| | - Peng Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
de Oliveira JM, Fernandes P, Benevides RG, de Assis SA. Production, characterization, and immobilization of protease from the yeast Rhodotorula oryzicola. Biotechnol Appl Biochem 2020; 68:1033-1043. [PMID: 32918838 DOI: 10.1002/bab.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protease was produced extracellularly in submerged fermentation by the yeast Rhodotorula oryzicola using different sources of nitrogen and maximum activity (6.54 × 10-3 U/mg) was obtained in medium containing 2% casein (w/v). Purification of the protease by gel filtration chromatography resulted in a 3.07-fold increase of specific protease activity. The optimal pH and temperature for enzyme activity were 6.51 and 63.04 °C, respectively. Incubation in the presence of some salts enhanced enzyme activity, which peaked under 0.01 M BaCl2 . The enzyme retained about 90% of enzymatic activity at temperatures 50-60 °C. The commercially available enzyme carriers evaluated, silica gel, Celite 545, and chitosan effectively immobilized the protease. The enzyme immobilized in Celite 545 retained 73.53% of the initial activity after 15 reuse cycles. These results are quite promising for large-scale production and immobilization of protease from R. oryzicola, as the high operational stability of the immobilized enzyme lowers production costs in biotechnological applications that require high enzymatic activity and stability under high temperatures.
Collapse
Affiliation(s)
- Juliana Mota de Oliveira
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Pedro Fernandes
- DREAMS and Faculty of Engineering, Lusófona University, Lisbon, Portugal.,Department of Bioengineering, IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Raquel Guimarães Benevides
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Sandra Aparecida de Assis
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
12
|
Ye Q, Chen K, Yang X, Xiao K, Shen Y. Facile and moderate immobilization of proteases on SPS nanospheres for the active collagen peptides. Food Chem 2020; 335:127610. [PMID: 32738532 DOI: 10.1016/j.foodchem.2020.127610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/20/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Although collagen peptides have been proved to possess wide applications in functional foods, cosmetics, medical materials and pharmaceuticals, the production of collagen peptides are deeply affected by proteases and substrate. In this study, the scalable-synthesis sulfonated polystyrene (SPS) nanospheres were utilized as accessible supports for efficient subtilisin immobilization. Detailed characterizations through SEM-EDS, TEM, TGA and FT-IR confirmed the undamaged formation of the SPS-subtilisin. Owing to the moderate hydrophobic effect and electrostatic interaction, the SPS-subtilisin could achieve 397.15 mg/g enzyme loading and 77.3% activity recovery. The tilapia skin collagen, as a resource-rich raw material, was hydrolyzed by the prepared immobilized subtilisin. The antioxidant activity of the attained peptides was verified. With the mass spectrometry and molecular docking analysis of product peptides sequences, representative peptides were synthesized and their anti-oxidation capacity and mechanism were affirmed, which further verified the undiminished catalytic ability of immobilized subtilisin.
Collapse
Affiliation(s)
- Qianqian Ye
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kai Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaocui Yang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kaijun Xiao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yi Shen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
13
|
Zeng Q, Li Q, Sun D, Zheng M. Alcalase Microarray Base on Metal Ion Modified Hollow Mesoporous Silica Spheres as a Sustainable and Efficient Catalysis Platform for Proteolysis. Front Bioeng Biotechnol 2020; 8:565. [PMID: 32587851 PMCID: PMC7297948 DOI: 10.3389/fbioe.2020.00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 11/19/2022] Open
Abstract
The industrial exploitation of protease is limited owing to its sensitivity to environmental factors and autolysis during biocatalytic processes. In the present study, the alcalase microarray (Bacillus licheniformis, alcalase@HMSS-NH2-Metal) based on different metal ions modified hollow mesoporous silica spheres (HMSS-NH2-Metal) was successfully developed via a facile approach. Among the alcalase@HMSS-NH2-Metal (Ca2+, Zn2+, Fe3+, Cu2+), the alcalase@HMSS-NH2-Fe3+ revealed the best immobilization efficiency and enzymatic properties. This tailor-made nanocomposite immobilized alcalase on a surface-bound network of amino-metal complex bearing protein-modifiable sites via metal-protein affinity. The coordination interaction between metal ion and alcalase advantageously changed the secondary structure of enzyme, thus significantly enhanced the bioactivities and thermostability of alcalase. The as-prepared alcalase@HMSS-NH2-Fe3+ exhibited excellent loading capacity (227.8 ± 23.7 mg/g) and proteolytic activity. Compared to free form, the amidase activity of alcalase microarray increased by 5.3-fold, the apparent kinetic constant Vmax/Km of alcalase@HMSS-NH2-Fe3+ (15.6 min−1) was 1.9-fold higher than that of free alcalase, and the biocatalysis efficiency increased by 2.1-fold for bovine serum albumin (BSA) digestion. Moreover, this particular immobilization strategy efficiently reduced the bioactivities losses of alcalase caused by enzyme leaking and autolysis during the catalytic process. The alcalase microarray still retained 70.7 ± 3.7% of the initial activity after 10 cycles of successive reuse. Overall, this study established a promising strategy to overcome disadvantages posed by free alcalase, which provided new expectations for the application of alcalase in sustainable and efficient proteolysis.
Collapse
Affiliation(s)
- Qi Zeng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Qi Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
| |
Collapse
|
14
|
Liu Y, Cai Z, Ma M, Sheng L, Huang X. Effect of eggshell membrane as porogen on the physicochemical structure and protease immobilization of chitosan-based macroparticles. Carbohydr Polym 2020; 242:116387. [PMID: 32564851 DOI: 10.1016/j.carbpol.2020.116387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023]
Abstract
Chitosan-based macroparticle is a common carrier for enzyme immobilization applied in food industry. Driven by the requirement of large carrier pores for the biomacromolecular substrates such as protein, the eggshell membrane powder (ESMP) was employed as multifunctional porogen to improve the physicochemical structure of chitosan-based macroparticles. The prepared macroparticles were characterized by SEM, XRD, FTIR, Raman spectroscopy, nitrogen adsorption-desorption isotherms, and thermogravimetric analysis. The results showed that an increase of ESMP percentage could improve the porosity of macro holes in macroparticles, and it also enlarged the size of mesopores. Moreover, the ESMP significantly increased (P < 0.05) the amount of papain immobilization, whereas the specific activity of immobilized papain achieved a maximum value of 871.95 U/mg at CSESM2 and then declined with the increase of ESMP. Therefore, the inclusion of 20 % ESMP in chitosan-based macroparticles gave the highest activity of its immobilized protease.
Collapse
Affiliation(s)
- Yuanyuan Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
15
|
Development of nano-silver alkaline protease bio-conjugate depilating eco-benign formulation by utilizing potato peel based medium. Int J Biol Macromol 2020; 152:261-271. [PMID: 32105689 DOI: 10.1016/j.ijbiomac.2020.02.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 01/20/2023]
Abstract
A new bio-conjugate nano-silver enzyme conjugate complex (BC-nAg-Akp) was formulated containing alkaline protease (Akp). The present research involved synthesis of nAg particles in acetone concentrated enzyme sol using 0.005 M AgNO3 solution formed within interaction time of 24 h through photo catalysis. The BC-nAG-Akp composite exhibited 1.9-fold increase in enzyme activity. The formulation was characterized using techniques viz., SEM, SEM-EDS, TEM, and DLS spectroscopy. The TEM analysis revealed synthesis of silver nano rods with size dimensions ranging from 40 to 80 nm. Likewise, the mean hydrodynamic diameter was 114 nm with polydispersity index of 0.260 and had the largest diffusion constant of 4.28 × 108 amongst the three forms of the formulation (crude, acetone concentrated and partially purified) on DLS characterization. The SEM-EDS analysis showed occurrence of 18.32 and 3.79%weight and %atom of Ag element respectively. The prepared formulation was investigated for its dehairing performance. The ideal dehairing was achieved at 37 °C after 12 h of treatment. The histopathological studies revealed that complete dehairing with minimal rarefication was achieved and was found perform better compared to the commercial Akp and control (crude enzyme) formulations.
Collapse
|
16
|
Zhao JF, Tao-Wang, Lin JP, Yang LR, Wu MB. Preparation of High-purity 1,3-Diacylglycerol Using Performance-enhanced Lipase Immobilized on Nanosized Magnetite Particles. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0458-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Shen H, Song J, Zhou Z, Li M, Zhang R, Su P, Yang Y. DNA-Directed Immobilized Enzymes on Recoverable Magnetic Nanoparticles Shielded in Nucleotide Coordinated Polymers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hao Shen
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Mengqi Li
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ruiqi Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
18
|
Kashefi S, Borghei SM, Mahmoodi NM. Superparamagnetic enzyme-graphene oxide magnetic nanocomposite as an environmentally friendly biocatalyst: Synthesis and biodegradation of dye using response surface methodology. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Zhang J, Wang J, Zhao Y, Li J, Liu Y. Study on the interaction between calcium ions and alkaline protease of bacillus. Int J Biol Macromol 2019; 124:121-130. [DOI: 10.1016/j.ijbiomac.2018.11.198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023]
|
20
|
Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol. Appl Biochem Biotechnol 2019; 188:677-689. [DOI: 10.1007/s12010-018-02947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/26/2018] [Indexed: 11/26/2022]
|
21
|
Nadar SS, Rathod VK. A co-immobilization of pectinase and cellulase onto magnetic nanoparticles for antioxidant extraction from waste fruit peels. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2018.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Zhu X, Li Y, Yang G, Lv M, Zhang L. Covalent immobilization of alkaline proteinase on amino‐functionalized magnetic nanoparticles and application in soy protein hydrolysis. Biotechnol Prog 2018; 35:e2756. [DOI: 10.1002/btpr.2756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/10/2018] [Accepted: 11/20/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Xinjun Zhu
- Shandong Province Collegial Key Laboratory of Exploitation and Utilization of Functional Biological ResourcesDezhou University Dezhou P.R. China
| | - Ying Li
- Shandong Province Collegial Key Laboratory of Exploitation and Utilization of Functional Biological ResourcesDezhou University Dezhou P.R. China
| | - Guang Yang
- Animal Husbandry and Veterinary Bureau Binzhou P.R. China
| | - Min Lv
- Shandong Province Collegial Key Laboratory of Exploitation and Utilization of Functional Biological ResourcesDezhou University Dezhou P.R. China
| | - Lianying Zhang
- Shandong Province Collegial Key Laboratory of Exploitation and Utilization of Functional Biological ResourcesDezhou University Dezhou P.R. China
| |
Collapse
|
23
|
Transforming food waste: how immobilized enzymes can valorize waste streams into revenue streams. NPJ Sci Food 2018; 2:19. [PMID: 31304269 PMCID: PMC6550151 DOI: 10.1038/s41538-018-0028-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022] Open
Abstract
Food processing generates byproduct and waste streams rich in lipids, carbohydrates, and proteins, which contribute to its negative environmental impact. However, these compounds hold significant economic potential if transformed into revenue streams such as biofuels and ingredients. Indeed, the high protein, sugar, and fat content of many food waste streams makes them ideal feedstocks for enzymatic valorization. Compared to synthetic catalysts, enzymes have higher specificity, lower energy requirement, and improved environmental sustainability in performing chemical transformations, yet their poor stability and recovery limits their performance in their native state. This review article surveys the current state-of-the-art in enzyme stabilization & immobilization technologies, summarizes opportunities in enzyme-catalyzed valorization of waste streams with emphasis on streams rich in mono- and disaccharides, polysaccharides, lipids, and proteins, and highlights challenges and opportunities in designing commercially translatable immobilized enzyme systems towards the ultimate goals of sustainable food production and reduced food waste.
Collapse
|
24
|
Sharma A, Sharma T, Meena KR, Kumar A, Kanwar SS. High throughput synthesis of ethyl pyruvate by employing superparamagnetic iron nanoparticles-bound esterase. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol 2018; 114:1134-1143. [DOI: 10.1016/j.ijbiomac.2018.03.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 11/17/2022]
|
26
|
Ali M, Husain Q, Sultana S, Ahmad M. Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of Reactive Blue 4 dye. CHEMOSPHERE 2018; 202:198-207. [PMID: 29571140 DOI: 10.1016/j.chemosphere.2018.03.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/03/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
In the present study novel polypyrrole-cellulose-graphene oxide nanocomposite (PCeGONC) was employed for the immobilization of ginger peroxidase (GP) via simple adsorption mechanism. Immobilization of enzyme on the obtained support resulted in enhancement of the enzyme activity. The recovery of activity was 128% of the initial activity. Consequently, in 3 h stirred batch treatment, PCeGONC bound GP exhibited higher decolorization efficiency (99%) for Reactive Blue 4 (RB 4) dye as compared to free GP (88%). The immobilized GP exhibited higher operational stability and retained approximately 72% of its initial activity even after ten sequential cycles of dye decolorization in batch process. The kinetic characterization of PCeGONC bound GP revealed slightly lower Km and 3.3 times higher Vmax compared to free GP. Degraded products were identified on the basis of GC-MS analysis and degradation pathway was proposed accordingly which confirms enzymatic breakdown of RB 4 into low molecular weight compounds. Genotoxic assessment of GP treated RB 4 revealed significant reduction of its genotoxic potential. In-silico analysis identified that binding site of PCeGONC on enzyme is distinct and lies far away from the active site of the enzyme. Furthermore, it also revealed higher affinity of 1-hydroxybenzotriazole (a redox mediator) and RB 4 for PCeGONC bound enzyme as compared to the free enzyme. This is in consensus with the observed decrease in Km of the immobilized GP.
Collapse
Affiliation(s)
- Misha Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP, India.
| | - Saima Sultana
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, 202002 UP, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP, India
| |
Collapse
|
27
|
Gao Z, Yi Y, Zhao J, Xia Y, Jiang M, Cao F, Zhou H, Wei P, Jia H, Yong X. Co-immobilization of laccase and TEMPO onto amino-functionalized magnetic Fe3O4 nanoparticles and its application in acid fuchsin decolorization. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0215-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
28
|
Cao LP, Wang JJ, Zhou T, Ruan R, Liu YH. Bamboo (Phyllostachys pubescens) as a Natural Support for Neutral Protease Immobilization. Appl Biochem Biotechnol 2018; 186:109-121. [PMID: 29508212 DOI: 10.1007/s12010-018-2697-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/09/2018] [Indexed: 12/28/2022]
Abstract
Lignin polymers in bamboo (Phyllostachys pubescens) were decomposed into polyphenols at high temperatures and oxidized for the introduction of quinone groups from peroxidase extracted from bamboo shoots and catalysis of UV. According to the results of FT-IR spectra analysis, neutral proteases (NPs) can be immobilized on the oxidized lignin by covalent bonding formed by amine group and quinone group. The optimum condition for the immobilization of NPs on the bamboo bar was obtained at pH 7.0, 40 °C, and duration of 4 h; the amount of immobilized enzyme was up to 5 mg g-1 bamboo bar. The optimal pH for both free NP (FNP) and INP was approximately 7.0, and the maximum activity of INP was determined at 60 °C, whereas FNP presented maximum activity at 50 °C. The Km values of INP and FNP were determined as 0.773 and 0.843 mg ml-1, respectively; INP showed a lower Km value and Vmax, than FNP, which demonstrated that INP presented higher affinity to substrate. Compared to FNP, INP showed broader thermal and storage stability under the same trial condition. With respect to cost, INP presented considerable recycling efficiency for up to six consecutive cycles.
Collapse
Affiliation(s)
- Lei-Peng Cao
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Jing-Jing Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Ting Zhou
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
| | - Roger Ruan
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, Paul, MN, 55108, USA
| | - Yu-Huan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
29
|
Song J, Shen H, Yang Y, Zhou Z, Su P, Yang Y. Multifunctional magnetic particles for effective suppression of non-specific adsorption and coimmobilization of multiple enzymes by DNA directed immobilization. J Mater Chem B 2018; 6:5718-5728. [DOI: 10.1039/c8tb01842a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterion-functionalized magnetic particles can efficiently suppress non-specific adsorption of enzymes and can be used for coimmobilization of multienzymes by DNA directed immobilization.
Collapse
Affiliation(s)
- Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Hao Shen
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ye Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Zixin Zhou
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
30
|
Song J, Lei T, Yang Y, Wu N, Su P, Yang Y. Attachment of enzymes to hydrophilic magnetic nanoparticles through DNA-directed immobilization with enhanced stability and catalytic activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj00426a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient enzyme immobilization strategy based on DNA directed immobilization on hydrophilic polydopamine (PDA) modified magnetic nanoparticles was developed in this study.
Collapse
Affiliation(s)
- Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ting Lei
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ye Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Nan Wu
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- College of Science
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
31
|
Dai H, Ou S, Liu Z, Huang H. Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr Polym 2017; 169:504-514. [DOI: 10.1016/j.carbpol.2017.04.057] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 11/17/2022]
|
32
|
Kadam AA, Jang J, Lee DS. Supermagnetically Tuned Halloysite Nanotubes Functionalized with Aminosilane for Covalent Laccase Immobilization. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15492-15501. [PMID: 28418639 DOI: 10.1021/acsami.7b02531] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halloysite nanotubes (HNTs) were tuned with supermagnetic Fe3O4 (M-HNTs) and functionalized with γ-aminopropyltriethoxysilane (APTES) (A-M-HNTs). Gluteraldehyde (GTA) was linked to A-M-HNTs (A-M-HNTs-GTA) and explored for covalent laccase immobilization. The structural characterization of M-HNTs, A-M-HNTs, and A-M-HNTs-GTA-immobilized laccase (A-M-HNTs-GTA-Lac) was determined by X-ray photoelectron spectroscopy, field-emission high-resolution transmission electron microscopy, a magnetic property measurement system, and thermogavimetric analyses. A-M-HNTs-GTA-Lac gave 90.20% activity recovery and a loading capability of 84.26 mg/g, with highly improved temperature and storage stabilities. Repeated usage of A-M-HNTs-GTA-Lac revealed a remarkably consistent relative activity of 80.49% until the ninth cycle. The A-M-HNTs-GTA-Lac gave consistent redox-mediated sulfamethoxazole (SMX) degradation up to the eighth cycle. In the presence of guaiacol, A-M-HNTs-GTA-Lac gave elevated SMX degradation compared with 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) and syrinialdehyde. Therefore, the A-M-HNTs can serve as supermagnetic amino-functionalized nanoreactors for biomacromolecule immobilization. The obtained A-M-HNTs-GTA-Lac is an environmentally friendly biocatalyst for effective degradation of micropollutants, such as SMX, and can be easily retrieved from an aqueous solution by a magnet after decontamination of pollutants in water and wastewater.
Collapse
Affiliation(s)
- Avinash A Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University , Biomedi Campus, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea
| | - Jiseon Jang
- Department of Environmental Engineering, Kyungpook National University , 80 Daehak-ro, Buk-Gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University , 80 Daehak-ro, Buk-Gu, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
Song J, Su P, Ma R, Yang Y, Yang Y. Based on DNA Strand Displacement and Functionalized Magnetic Nanoparticles: A Promising Strategy for Enzyme Immobilization. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiayi Song
- Beijing Key Laboratory of
Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ping Su
- Beijing Key Laboratory of
Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ruian Ma
- Beijing Key Laboratory of
Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ye Yang
- Beijing Key Laboratory of
Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yi Yang
- Beijing Key Laboratory of
Environmentally Harmful Chemical Analysis, College of Science, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
34
|
Xia GH, Cao SL, Xu P, Li XH, Zhou J, Zong MH, Lou WY. Preparation of a Nanobiocatalyst by Efficiently Immobilizing Aspergillus niger
Lipase onto Magnetic Metal-Biomolecule Frameworks (BioMOF). ChemCatChem 2017. [DOI: 10.1002/cctc.201700070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gao-Hui Xia
- Lab of Applied Biocatalysis; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Shi-Lin Cao
- Lab of Applied Biocatalysis; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- Department of Food Science; Foshan University; Foshan 528000 China
| | - Pei Xu
- Lab of Applied Biocatalysis; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xue-Hui Li
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Min-Hua Zong
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
- State Key Laboratory of Pulp and Paper Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
35
|
Verma N, Kumar N, Upadhyay LSB, Sahu R, Dutt A. Fabrication and Characterization of Cysteine-Functionalized Zinc Oxide Nanoparticles for Enzyme Immobilization. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1245315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nishant Verma
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Nikhil Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | | | - Reecha Sahu
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Aditya Dutt
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
36
|
Wu L, Qiu J, Wu S, Liu X, Liu C, Xu Z, Li S, Xu H. Bioinspired Production of Antibacterial Sucrose Isomerase-Sponge for the Synthesis of Isomaltulose. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Lingtian Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Juanjuan Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Shanshan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Xiaoliu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Biological and Pharmaceutical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Chao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
- College of Food Science and Light Industry; Nanjing Tech University; 30 Puzhu South Road Nanjing 211816 People's Republic of China
| |
Collapse
|
37
|
Yazid NA, Barrena R, Sánchez A. The immobilisation of proteases produced by SSF onto functionalized magnetic nanoparticles: Application in the hydrolysis of different protein sources. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Syed F, Ali K, Asad MJ, Fraz MG, Khan Z, Imran M, Taj R, Ahmad A. Preparation and characterization of a green nano-support for the covalent immobilization of glucoamylase from Neurospora sitophila. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:309-317. [DOI: 10.1016/j.jphotobiol.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/27/2016] [Accepted: 07/03/2016] [Indexed: 10/21/2022]
|
39
|
Wu L, Wu S, Xu Z, Qiu Y, Li S, Xu H. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization. Biosens Bioelectron 2016; 80:59-66. [DOI: 10.1016/j.bios.2016.01.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/16/2016] [Indexed: 11/25/2022]
|
40
|
Alagöz D, Tükel SS, Yildirim D. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis. Appl Biochem Biotechnol 2015; 177:1348-63. [DOI: 10.1007/s12010-015-1819-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023]
|
41
|
Mukhopadhyay A, Chakrabarti K. Enhancement of thermal and pH stability of an alkaline metalloprotease by nano-hydroxyapatite and its potential applications. RSC Adv 2015. [DOI: 10.1039/c5ra16179g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protease stabilization using nanotechnology.
Collapse
Affiliation(s)
- Arka Mukhopadhyay
- Department of Biochemistry and Microbiology
- Rhodes University
- Grahamstown-6140
- South Africa
| | - Krishanu Chakrabarti
- Department of Biochemistry
- University College of Science
- Calcutta University
- Kolkata 700 019
- India
| |
Collapse
|