1
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
2
|
Specific phosphorothioate substitution within domain 6 of a group II intron ribozyme leads to changes in local structure and metal ion binding. J Biol Inorg Chem 2017; 23:167-177. [DOI: 10.1007/s00775-017-1519-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
3
|
Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human. Proc Natl Acad Sci U S A 2016; 113:E5125-34. [PMID: 27531956 DOI: 10.1073/pnas.1607411113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Telomerase is an RNA-protein complex that includes a unique reverse transcriptase that catalyzes the addition of single-stranded telomere DNA repeats onto the 3' ends of linear chromosomes using an integral telomerase RNA (TR) template. Vertebrate TR contains the template/pseudoknot (t/PK) and CR4/5 domains required for telomerase activity in vitro. All vertebrate pseudoknots include two subdomains: P2ab (helices P2a and P2b with a 5/6-nt internal loop) and the minimal pseudoknot (P2b-P3 and associated loops). A helical extension of P2a, P2a.1, is specific to mammalian TR. Using NMR, we investigated the structures of the full-length TR pseudoknot and isolated subdomains in Oryzias latipes (Japanese medaka fish), which has the smallest vertebrate TR identified to date. We determined the solution NMR structure and studied the dynamics of medaka P2ab, and identified all base pairs and tertiary interactions in the minimal pseudoknot. Despite differences in length and sequence, the structure of medaka P2ab is more similar to human P2ab than predicted, and the medaka minimal pseudoknot has the same tertiary interactions as the human pseudoknot. Significantly, although P2a.1 is not predicted to form in teleost fish, we find that it forms in the full-length pseudoknot via an unexpected hairpin. Model structures of the subdomains are combined to generate a model of t/PK. These results provide evidence that the architecture for the vertebrate t/PK is conserved from teleost fish to human. The organization of the t/PK on telomerase reverse transcriptase for medaka and human is modeled based on the cryoEM structure of Tetrahymena telomerase, providing insight into function.
Collapse
|
4
|
Preimesberger M, Majumdar A, Rice SL, Que L, Lecomte JTJ. Helix-Capping Histidines: Diversity of N-H···N Hydrogen Bond Strength Revealed by (2h)JNN Scalar Couplings. Biochemistry 2015; 54:6896-908. [PMID: 26523621 PMCID: PMC4660981 DOI: 10.1021/acs.biochem.5b01002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/31/2015] [Indexed: 11/29/2022]
Abstract
In addition to its well-known roles as an electrophile and general acid, the side chain of histidine often serves as a hydrogen bond (H-bond) acceptor. These H-bonds provide a convenient pH-dependent switch for local structure and functional motifs. In hundreds of instances, a histidine caps the N-terminus of α- and 310-helices by forming a backbone NH···Nδ1 H-bond. To characterize the resilience and dynamics of the histidine cap, we measured the trans H-bond scalar coupling constant, (2h)JNN, in several forms of Group 1 truncated hemoglobins and cytochrome b5. The set of 19 measured (2h)JNN values were between 4.0 and 5.4 Hz, generally smaller than in nucleic acids (~6-10 Hz) and indicative of longer, weaker bonds in the studied proteins. A positive linear correlation between (2h)JNN and the difference in imidazole ring (15)N chemical shift (Δ(15)N = |δ(15)Nδ1 - δ(15)Nε2|) was found to be consistent with variable H-bond length and variable cap population related to the ionization of histidine in the capping and noncapping states. The relative ease of (2h)JNN detection suggests that this parameter can become part of the standard arsenal for describing histidines in helix caps and other key structural and catalytic elements involving NH···N H-bonds. The combined nucleic acid and protein data extend the utility of (2h)JNN as a sensitive marker of local structural, dynamic, and thermodynamic properties in biomolecules.
Collapse
Affiliation(s)
- Matthew
R. Preimesberger
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular
NMR Center, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Selena L. Rice
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Lauren Que
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Juliette T. J. Lecomte
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Dallmann A, Sattler M. Detection of hydrogen bonds in dynamic regions of RNA by NMR spectroscopy. ACTA ACUST UNITED AC 2014; 59:7.22.1-19. [PMID: 25501594 DOI: 10.1002/0471142700.nc0722s59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
NMR spectroscopy is a powerful tool to study the structure and dynamics of nucleic acids. In this unit, we give an overview of important experiments to determine and characterize hydrogen bonds in nucleic acids and provide detailed instructions for setting up recently developed sensitivity-improved NMR pulse sequences, i.e., BEST selective long-range HNN-COSY, selective BEST-TROSY-HNNCOSY, and Py H(CC)NN-COSY. The strengths and limitations of these experiments will also be discussed. Detailed step-by-step protocols are provided for each of the three pulse sequences, with special emphasis on adjusting and setting of delays and shaped pulses. The NMR pulse sequences with example datasets and optimized, nonstandard adiabatic pulse shapes used for selective (15)N magnetization transfer are provided. These experiments enable NMR analysis of a broad variety of RNAs ranging from low to high molecular weight and complexity.
Collapse
Affiliation(s)
- Andre Dallmann
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Center for Integrated Protein Science Munich and Chair of Biomolecular NMR-Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany; Present address: Division of Molecular Structure, National Institute of Medical Research, London, United Kingdom
| | | |
Collapse
|
6
|
Burkhard Luy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/anie.201310223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Burkhard Luy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Kruschel D, Skilandat M, Sigel RK. NMR structure of the 5' splice site in the group IIB intron Sc.ai5γ--conformational requirements for exon-intron recognition. RNA (NEW YORK, N.Y.) 2014; 20:295-307. [PMID: 24448450 PMCID: PMC3923125 DOI: 10.1261/rna.041137.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A crucial step of the self-splicing reaction of group II intron ribozymes is the recognition of the 5' exon by the intron. This recognition is achieved by two regions in domain 1 of the intron, the exon-binding sites EBS1 and EBS2 forming base pairs with the intron-binding sites IBS1 and IBS2 located at the end of the 5' exon. The complementarity of the EBS1•IBS1 contact is most important for ensuring site-specific cleavage of the phosphodiester bond between the 5' exon and the intron. Here, we present the NMR solution structures of the d3' hairpin including EBS1 free in solution and bound to the IBS1 7-mer. In the unbound state, EBS1 is part of a flexible 11-nucleotide (nt) loop. Binding of IBS1 restructures and freezes the entire loop region. Mg(2+) ions are bound near the termini of the EBS1•IBS1 helix, stabilizing the interaction. Formation of the 7-bp EBS1•IBS1 helix within a loop of only 11 nt forces the loop backbone to form a sharp turn opposite of the splice site, thereby presenting the scissile phosphate in a position that is structurally unique.
Collapse
|
9
|
Dallmann A, Simon B, Duszczyk MM, Kooshapur H, Pardi A, Bermel W, Sattler M. Efficient Detection of Hydrogen Bonds in Dynamic Regions of RNA by Sensitivity-Optimized NMR Pulse Sequences. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Pechlaner M, Sigel RKO, van Gunsteren WF, Dolenc J. Structure and Conformational Dynamics of the Domain 5 RNA Hairpin of a Bacterial Group II Intron Revealed by Solution Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Biochemistry 2013; 52:7099-113. [DOI: 10.1021/bi400784r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Maria Pechlaner
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roland K. O. Sigel
- Institute
of Inorganic Chemistry, University of Zurich, CH-8057 Zurich, Switzerland
| | - Wilfred F. van Gunsteren
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - Jožica Dolenc
- Laboratory
of Physical Chemistry, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| |
Collapse
|
11
|
Dallmann A, Simon B, Duszczyk MM, Kooshapur H, Pardi A, Bermel W, Sattler M. Efficient detection of hydrogen bonds in dynamic regions of RNA by sensitivity-optimized NMR pulse sequences. Angew Chem Int Ed Engl 2013; 52:10487-90. [PMID: 23946052 DOI: 10.1002/anie.201304391] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/31/2013] [Indexed: 12/24/2022]
Abstract
Improved Sensitivity: Efficient NMR experiments are presented for determining the secondary structure in large and dynamic RNAs using J-couplings across hydrogen bonds. The experiments provide up to eight-fold improved sensitivity and thus enable detection of base pairs in dynamic regions even in large RNAs.
Collapse
Affiliation(s)
- Andre Dallmann
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg (Germany) http://www.nmr.ch.tum.de/; Center for Integrated Protein Science Munich and Chair of Biomolecular NMR, TU München, Lichtenbergstr. 4, 85747 Garching (Germany)
| | | | | | | | | | | | | |
Collapse
|
12
|
Korth MMT, Sigel RKO. Unusually high-affinity Mg(2+) binding at the AU-rich sequence within the antiterminator hairpin of a Mg(2+) riboswitch. Chem Biodivers 2013; 9:2035-49. [PMID: 22976989 DOI: 10.1002/cbdv.201200031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mg(2+)-Responsive riboswitches represent a fascinating example of bifunctional RNAs that sense Mg(2+) ions with high selectivity and autonomously regulate the expression of Mg(2+)-transporter proteins. The mechanism of the mgtA riboswitch is scarcely understood, and a detailed structural analysis is called for to study how this RNA can selectively recognize Mg(2+) and respond by switching between two alternative stem loop structures. In this work, we investigated the structure and Mg(2+)-binding properties of the lower part of the antiterminator loop C from the mgtA riboswitch of Yersinia enterocolitica by solution NMR and report a discrete Mg(2+)-binding site embedded in the AU-rich sequence. At the position of Mg(2+) binding, the helical axis exhibits a distinct kink accompanied by a widening of the major groove, which accommodates the Mg(2+)-binding pocket. An unusually large overlap between two adenine residues on the opposite strands suggests that the bending may be sequence-induced by strong stacking interactions, enabling Mg(2+) to bind at this so-far not described metal-ion binding site.
Collapse
Affiliation(s)
- Maximiliane M T Korth
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, (phone: +41 44 635 4652; fax: +41 44 635 6802)
| | | |
Collapse
|
13
|
Skov J, Gaudin M, Podbevšek P, Olsthoorn RC, Petersen M. The subgenomic promoter of brome mosaic virus folds into a stem-loop structure capped by a pseudo-triloop that is structurally similar to the triloop of the genomic promoter. RNA (NEW YORK, N.Y.) 2012; 18:992-1000. [PMID: 22393035 PMCID: PMC3334706 DOI: 10.1261/rna.029918.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In brome mosaic virus, both the replication of the genomic (+)-RNA strands and the transcription of the subgenomic RNA are carried out by the viral replicase. The production of (-)-RNA strands is dependent on the formation of an AUA triloop in the stem-loop C (SLC) hairpin in the 3'-untranslated region of the (+)-RNA strands. Two alternate hypotheses have been put forward for the mechanism of subgenomic RNA transcription. One posits that transcription commences by recognition of at least four key nucleotides in the subgenomic promoter by the replicase. The other posits that subgenomic transcription starts by binding of the replicase to a hairpin formed by the subgenomic promoter that resembles the minus strand promoter hairpin SLC. In this study, we have determined the three-dimensional structure of the subgenomic promoter hairpin using NMR spectroscopy. The data show that the hairpin is stable at 30°C and that it forms a pseudo-triloop structure with a transloop base pair and a nucleotide completely excluded from the helix. The transloop base pair is capped by an AUA triloop that possesses an extremely well packed structure very similar to that of the AUA triloop of SLC, including the formation of a so-called clamped-adenine motif. The similarities of the NMR structures of the hairpins required for genomic RNA and subgenomic RNA synthesis show that the replicase recognizes structure rather than sequence-specific motifs in both promoters.
Collapse
Affiliation(s)
- Joan Skov
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mathieu Gaudin
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Peter Podbevšek
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - René C.L. Olsthoorn
- Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Michael Petersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
- Corresponding author.E-mail .
| |
Collapse
|
14
|
Dračínský M, Jansa P, Bouř P. Computational and Experimental Evidence of Through-Space NMR Spectroscopic J Coupling of Hydrogen Atoms. Chemistry 2011; 18:981-6. [DOI: 10.1002/chem.201102272] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Indexed: 11/06/2022]
|
15
|
Federwisch G, Kleinmaier R, Drettwan D, Gschwind RM. The H-Bonding Network of Acylguanidine Complexes: Combined Intermolecular 2hJH,P and 3hJN,P Scalar Couplings Provide an Insight into the Geometric Arrangement. J Am Chem Soc 2008; 130:16846-7. [DOI: 10.1021/ja807042u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guido Federwisch
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| | - Roland Kleinmaier
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| | - Diana Drettwan
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| | - Ruth M. Gschwind
- Institut für Organische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| |
Collapse
|
16
|
Alkorta I, Elguero J, Denisov GS. A review with comprehensive data on experimental indirect scalar NMR spin-spin coupling constants across hydrogen bonds. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2008; 46:599-624. [PMID: 18357569 DOI: 10.1002/mrc.2209] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Scalar NMR spin-spin coupling constants across hydrogen bonds are fundamental in structural studies and as test grounds for theoretical calculations. Since they are scattered among many articles of different kinds, it seems useful to collect them in the most comprehensive way.
Collapse
Affiliation(s)
- Ibon Alkorta
- Instituto de Química Médica (CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | | | | |
Collapse
|
17
|
Erat MC, Zerbe O, Fox T, Sigel RKO. Solution structure of domain 6 from a self-splicing group II intron ribozyme: a Mg(2+) binding site is located close to the stacked branch adenosine. Chembiochem 2008; 8:306-14. [PMID: 17200997 DOI: 10.1002/cbic.200600459] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Group II intron self-splicing is essential for the correct expression of organellar genes in plants, fungi, and yeast, as well as of bacterial genes. Self-excision of these autocatalytic introns from the primary RNA transcript is achieved in a two-step mechanism that is apparently analogous to that of the eukaryotic spliceosome. The 2'-OH of a conserved adenosine (the branch point) located within domain 6 (D6) acts as the nucleophile in the first step of splicing. Despite the biological importance of group II introns, little is known about their structural organization and usage of metal ions in catalysis. Here we report the first solution structure of a catalytically active D6 construct encompassing the branch point and the neighboring helical regions from the mitochondrial yeast intron ai5gamma. The branch adenosine is the single unpaired nucleotide, and, in contrast to the spliceosomal branch site, resides within the helix, being partially stacked between two flanking GU wobble pairs. We identified a novel prominent Mg(2+) binding site in the major groove of the branch site. Importantly, Mg(2+) addition does not impair the stacking of the branch adenosine, rather it strengthens the interaction with the flanking uridines, as shown by NMR and fluorescence studies. This means that domain 6 presents the branch adenosine in a stacked fashion to the core of group II introns upon folding to the active conformation.
Collapse
Affiliation(s)
- Michèle C Erat
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
18
|
Dingley AJ, Nisius L, Cordier F, Grzesiek S. Direct detection of N−H⋯N hydrogen bonds in biomolecules by NMR spectroscopy. Nat Protoc 2008; 3:242-8. [DOI: 10.1038/nprot.2007.497] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Abstract
Density functional theory calculations were used to examine the effect of H-bond cooperativity on the magnitude of the NMR chemical shifts and spin-spin coupling constants in a C4h-symmetric G-quartet and in structures consisting of six cyanamide monomers. These included two ring structures (a planar C6h-symmetric structure and a nonplanar S6-symmetric structure) and two linear chain structures (a fully optimized planar Cs-symmetric chain and a planar chain structure where all intra- and intermolecular parameters were constrained to be identical). The NMR parameters were computed for the G-quartet and cyanamide structures, as well as for shorter fragments derived from these assemblies without reoptimization. In the ring structures and the chain with identical monomers, the intra- and intermolecular geometries of the cyanamides were identical, thereby allowing the study of cooperative effects in the absence of geometry changes. The magnitude of the |1JNH| coupling, 1H and 15N chemical shifts of the H-bonding amino N-H group, and the |h2JNN| H-bond coupling increased, whereas the size of the |1JNH| coupling of the non-H-bonded amino N-H bonds of the first amino group in the chain, which are roughly perpendicular to the H-bonding network, decreased in magnitude when H-bonding monomers were progressively added to extending ring or chain structures. These effects are attributed to electron redistribution induced by the presence of the nearby H-bonding guanine or cyanamide molecules.
Collapse
Affiliation(s)
- Tanja van Mourik
- Chemistry Department, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | | |
Collapse
|
20
|
Wu H, Feigon J. H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification. Proc Natl Acad Sci U S A 2007; 104:6655-60. [PMID: 17412831 PMCID: PMC1871841 DOI: 10.1073/pnas.0701534104] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the biogenesis of eukaryotic ribosomal RNA (rRNA) and spliceosomal small nuclear RNA (snRNA), uridines at specific sites are converted to pseudouridines by H/ACA ribonucleoprotein particles (RNPs). Each H/ACA RNP contains a substrate-specific H/ACA RNA and four common proteins, the pseudouridine synthase Cbf5, Nop10, Gar1, and Nhp2. The H/ACA RNA contains at least one pseudouridylation (psi) pocket, which is complementary to the sequences flanking the target uridine. In this article, we show structural evidence that the psi pocket can form the predicted base pairs with substrate RNA in the absence of protein components. We report the solution structure of the complex between an RNA hairpin derived from the 3' psi pocket of human U65 H/ACA small nucleolar RNA (snoRNA) and the substrate rRNA. The snoRNA-rRNA substrate complex has a unique structure with two offset parallel pairs of stacked helices and two unusual intermolecular three-way junctions, which together organize the substrate for docking into the active site of Cbf5. The substrate RNA interacts on one face of the snoRNA in the complex, forming a structure that easily could be accommodated in the H/ACA RNP, and explains how successive substrate RNAs could be loaded onto and unloaded from the H/ACA RNA in the RNP.
Collapse
Affiliation(s)
- Haihong Wu
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
| | - Juli Feigon
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, CA 90095-1569
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
21
|
Richards RJ, Wu H, Trantirek L, O'Connor CM, Collins K, Feigon J. Structural study of elements of Tetrahymena telomerase RNA stem-loop IV domain important for function. RNA (NEW YORK, N.Y.) 2006; 12:1475-85. [PMID: 16809815 PMCID: PMC1524899 DOI: 10.1261/rna.112306] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tetrahymena telomerase RNA (TER) contains several regions in addition to the template that are important for function. Central among these is the stem-loop IV domain, which is involved in both catalysis and RNP assembly, and includes binding sites for both the holoenzyme assembly protein p65 and telomerase reverse transcriptase (TERT). Stem-loop IV contains two regions with high evolutionary sequence conservation: a central GA bulge between helices, and a terminal loop. We solved the solution structure of loop IV and modeled the structure of the helical region containing the GA bulge, using NMR and residual dipolar couplings. The central GA bulge with flanking C-G base pairs induces a approximately 50 degrees semi-rigid bend in the helix. Loop IV is highly structured, and contains a conserved C-U base pair at the top of the helical stem. Analysis of new and previous biochemical data in light of the structure provides a rationale for some of the sequence conservation in this region of TER. The results suggest that during holoenzyme assembly the protein p65 recognizes a bend in stem IV, and this binding to central stem IV helps to position the structured loop IV for interaction with TERT and other region(s) of TER.
Collapse
Affiliation(s)
- Rebecca J Richards
- Department of Molecular Biology and Biochemistry, University of South Bohemia, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
van Mourik T, Dingley AJ. Characterization of the monovalent ion position and hydrogen-bond network in guanine quartets by DFT calculations of NMR parameters. Chemistry 2006; 11:6064-79. [PMID: 16052652 DOI: 10.1002/chem.200500198] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Conformational stability of G-quartets found in telomeric DNA quadruplex structures requires the coordination of monovalent ions. Here, an extensive Hartree-Fock and density functional theory analysis of the energetically favored position of Li+, Na+, and K+ ions is presented. The calculations show that at quartet-quartet distances observed in DNA quadruplex structures (3.3 A), the Li+ and Na+ ions favor positions of 0.55 and 0.95 A outside the plane of the G-quartet, respectively. The larger K+ ion prefers a central position between successive G-quartets. The energy barrier separating the minima in the quartet-ion-quartet model are much smaller for the Li+ and Na+ ions compared with the K+ ion; this suggests that K+ ions will not move as freely through the central channel of the DNA quadruplex. Spin-spin coupling constants and isotropic chemical shifts in G-quartets extracted from crystal structures of K+- and Na+-coordinated DNA quadruplexes were calculated with B3LYP/6-311G(d). The results show that the sizes of the trans-hydrogen-bond couplings are influenced primarily by the hydrogen bond geometry and only slightly by the presence of the ion. The calculations show that the R(N2N7) distance of the N2-H2...N7 hydrogen bond is characterized by strong correlations to both the chemical shifts of the donor group atoms and the (h2)J(N2N7) couplings. In contrast, weaker correlations between the (h3)J(N1C6') couplings and single geometric factors related to the N1-H1...O6=C6 hydrogen bond are observed. As such, deriving geometric information on the hydrogen bond through the use of trans-hydrogen-bond couplings and chemical shifts is more complex for the N1-H1...O6=C6 hydrogen bond than for the N2-H2...N7 moiety. The computed trans-hydrogen-bond couplings are shown to correlate with the experimentally determined couplings. However, the experimental values do not show such strong geometric dependencies.
Collapse
Affiliation(s)
- Tanja van Mourik
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | |
Collapse
|
23
|
Khanna M, Wu H, Johansson C, Caizergues-Ferrer M, Feigon J. Structural study of the H/ACA snoRNP components Nop10p and the 3' hairpin of U65 snoRNA. RNA (NEW YORK, N.Y.) 2006; 12:40-52. [PMID: 16373493 PMCID: PMC1370884 DOI: 10.1261/rna.2221606] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The H/ACA small nucleolar ribonucleoprotein (snoRNP) complexes guide the modification of uridine to pseudouridine at conserved sites in rRNA. The H/ACA snoRNPs each comprise a target-site-specific snoRNA and four core proteins, Nop10p, Nhp2p, Gar1p, and the pseudouridine synthase, Cbf5p, in yeast. The secondary structure of the H/ACA snoRNAs includes two hairpins that each contain a large internal loop (the pseudouridylation pocket), one or both of which are partially complementary to the target RNA(s). We have determined the solution structure of an RNA hairpin derived from the human U65 box H/ACA snoRNA including the pseudouridylation pocket and adjacent stems, providing the first three-dimensional structural information on these H/ACA snoRNAs. We have also determined the structure of Nop10p and investigated its interaction with RNA using NMR spectroscopy. Nop10p contains a structurally well-defined N-terminal region composed of a beta-hairpin, and the rest of the protein lacks a globular structure. Chemical shift mapping of the interaction of RNA constructs of U65 box H/ACA 3' hairpin with Nop10p shows that the beta-hairpin binds weakly but specifically to RNA. The unstructured region of Nop10p likely interacts with Cbf5p.
Collapse
Affiliation(s)
- May Khanna
- Department of Chemistry and Biochemistry, 607 Charles Young Drive East, P.O. Box 951569, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
24
|
Dayie KT. Resolution enhanced homonuclear carbon decoupled triple resonance experiments for unambiguous RNA structural characterization. JOURNAL OF BIOMOLECULAR NMR 2005; 32:129-39. [PMID: 16034664 DOI: 10.1007/s10858-005-5093-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 03/21/2005] [Indexed: 05/03/2023]
Abstract
Large RNAs (>30 nucleotides) suffer from extensive resonance overlap that can seriously hamper unambiguous structural characterization. Here we present a set of 3D multinuclear NMR experiments with improved and optimized resolution and sensitivity for aiding with the assignment of RNA molecules. In all these experiments strong base and ribose carbon-carbon couplings are eliminated by homonuclear band-selective decoupling, leading to improved signal to noise and resolution of the C5, C6, and C1' carbon resonances. This decoupling scheme is applied to base-type selective 13C-edited NOESY, 13C-edited TOCSY (HCCH, CCH), HCCNH, and ribose H1C1C2 experiments. The 3D implementation of the HCCNH experiment with both carbon and nitrogen evolution enables direct correlation of 13C and 15N resonances at different proton resonant frequencies. The advantages of the new experiments are demonstrated on a 36 nucleotides hairpin RNA from domain 5 (D5) of the group II intron Pylaiella littoralis using an abbreviated assignment strategy. These four experiments provided additional separation for regions of the RNA that have overlapped chemical shift resonances, and enabled the assignment of critical D5 bulge nucleotides that could not be assigned using current experimental schemes.
Collapse
Affiliation(s)
- Kwaku T Dayie
- Department of Molecular Genetics and Program in Structural Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| |
Collapse
|
25
|
Theimer CA, Blois CA, Feigon J. Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function. Mol Cell 2005; 17:671-82. [PMID: 15749017 DOI: 10.1016/j.molcel.2005.01.017] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 01/18/2005] [Accepted: 01/21/2005] [Indexed: 11/27/2022]
Abstract
Human telomerase contains a 451 nt RNA (hTR) and several proteins, including a specialized reverse transcriptase (hTERT). The 5' half of hTR comprises the pseudoknot (core) domain, which includes the RNA template for telomere synthesis and a highly conserved pseudoknot that is required for telomerase activity. The solution structure of this essential pseudoknot, presented here, reveals an extended triple helix surrounding the helical junction. The network of tertiary interactions explains the phylogenetic sequence conservation and existing human and mouse TR functional studies as well as mutations linked to disease. Thermodynamic stability, dimerization potential, and telomerase activity of mutant RNAs that alter the tertiary contacts were investigated. Telomerase activity is strongly correlated with tertiary structure stability, whereas there is no correlation with dimerization potential of the pseudoknot. These studies reveal that a conserved pseudoknot tertiary structure is required for telomerase activity.
Collapse
Affiliation(s)
- Carla A Theimer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
26
|
Abstract
NMR spectroscopy is a powerful tool for studying proteins and nucleic acids in solution. This is illustrated by the fact that nearly half of all current RNA structures were determined by using NMR techniques. Information about the structure, dynamics, and interactions with other RNA molecules, proteins, ions, and small ligands can be obtained for RNA molecules up to 100 nucleotides. This review provides insight into the resonance assignment methods that are the first and crucial step of all NMR studies, into the determination of base-pair geometry, into the examination of local and global RNA conformation, and into the detection of interaction sites of RNA. Examples of NMR investigations of RNA are given by using several different RNA molecules to illustrate the information content obtainable by NMR spectroscopy and the applicability of NMR techniques to a wide range of biologically interesting RNA molecules.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe University, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
27
|
Sigel RKO, Sashital DG, Abramovitz DL, Palmer AG, Butcher SE, Pyle AM. Solution structure of domain 5 of a group II intron ribozyme reveals a new RNA motif. Nat Struct Mol Biol 2004; 11:187-92. [PMID: 14745440 DOI: 10.1038/nsmb717] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 10/29/2003] [Indexed: 11/08/2022]
Abstract
Domain 5 (D5) is the central core of group II intron ribozymes. Many base and backbone substituents of this highly conserved hairpin participate in catalysis and are crucial for binding to other intron domains. We report the solution structures of the 34-nucleotide D5 hairpin from the group II intron ai5 gamma in the absence and presence of divalent metal ions. The bulge region of D5 adopts a novel fold, where G26 adopts a syn conformation and flips down into the major groove of helix 1, close to the major groove face of the catalytic AGC triad. The backbone near G26 is kinked, exposing the base plane of the adjacent A-U pair to the solvent and causing bases of the bulge to stack intercalatively. Metal ion titrations reveal strong Mg(2+) binding to a minor groove shelf in the D5 bulge. Another distinct metal ion-binding site is observed along the minor groove side of the catalytic triad, in a manner consistent with metal ion binding in the ribozyme active site.
Collapse
Affiliation(s)
- Roland K O Sigel
- Department of Chemistry, Winterthurerstrasse 190, University of Zürich, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
28
|
Theimer CA, Finger LD, Feigon J. YNMG tetraloop formation by a dyskeratosis congenita mutation in human telomerase RNA. RNA (NEW YORK, N.Y.) 2003; 9:1446-55. [PMID: 14624001 PMCID: PMC1370499 DOI: 10.1261/rna.5152303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Autosomal dominant dyskeratosis congenita (DKC) has been linked to mutations in the RNA component of telomerase, the ribonucleoprotein responsible for telomere maintenance. Recent studies have investigated the role of the GC (107-108) --> AG mutation in the conserved P3 helix in the pseudoknot domain of human telomerase RNA. The mutation was found to significantly destabilize the pseudoknot conformation, resulting in a shift in the thermodynamic equilibrium to favor formation of a P2b hairpin intermediate. In the wild-type sequence, the hairpin intermediate was found to form a novel sequence of pyrimidine base pairs in a continuous stem capped by a structured pentaloop. The DKC mutant hairpin was observed to be slightly more stable than the wild-type hairpin, further shifting the pseudoknot-hairpin equilibrium to favor the mutant P2b hairpin. Here we examined the solution structure of the DKC mutant hairpin to identify the reason for this additional stability. We found that the mutant hairpin forms the same stem structure as wild-type and that the additional stabilization observed using optical melting can be explained by the formation of a YNMG-type tetraloop structure, with the last nucleotide of the pentaloop bulged out into the major groove. Our results provide a structural explanation for the increased stability of the mutant hairpin and further our understanding of the effect of this mutation on the structure and stability of the dominant conformation of the pseudoknot domain in this type of DKC.
Collapse
Affiliation(s)
- Carla A Theimer
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
29
|
Theimer CA, Finger LD, Trantirek L, Feigon J. Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc Natl Acad Sci U S A 2003; 100:449-54. [PMID: 12525685 PMCID: PMC141015 DOI: 10.1073/pnas.242720799] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autosomal dominant dyskeratosis congenita (DKC), as well as aplastic anemia, has been linked to mutations in the RNA component of telomerase, the ribonucleoprotein responsible for telomere maintenance. Here we examine the effect of the DKC mutations on the structure and stability of human telomerase RNA pseudoknot and CR7 domains by using NMR and thermal melting. The CR7 domain point mutation decreases stability and alters a conserved secondary structure thought to be involved in human telomerase RNA accumulation in vivo. We find that pseudoknot constructs containing the conserved elements of the pseudoknot domain are in equilibrium with a hairpin conformation. The solution structure of the wild-type hairpin reveals that it forms a continuous helix containing a novel run of three consecutive U.U and a U.C base pairs closed by a pentaloop. The six base pairs unique to the hairpin conformation are phylogenetically conserved in mammals, suggesting that this conformation is also functionally important. The DKC mutation in the pseudoknot domain results in a shift in the equilibrium toward the hairpin form, primarily due to destabilization of the pseudoknot. Our results provide insight into the effect of these mutations on telomerase structure and suggest that the catalytic cycle of telomerase involves a delicate interplay between RNA conformational states, alteration of which leads to the disease state.
Collapse
Affiliation(s)
- Carla A Theimer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | |
Collapse
|
30
|
Allen M, Varani L, Varani G. Nuclear magnetic resonance methods to study structure and dynamics of RNA-protein complexes. Methods Enzymol 2001; 339:357-76. [PMID: 11462821 DOI: 10.1016/s0076-6879(01)39322-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M Allen
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
31
|
Abstract
During the past few years, NMR methodology for the study of nucleic acids has benefited from new developments that greatly improved state-of-the-art technology for the precise determination of three-dimensional structures. Substantial progress has been made in designing experimental protocols for the measurement of residual dipolar couplings, in sensitivity optimization of triple-resonance experiments and in detection of hydrogen bonds and in developing computational methods for structure refinement using NMR restraints.
Collapse
Affiliation(s)
- L Zídek
- National Centre for Biomolecular Research, Masaryk University, Kotlárská 2, 611 37, Brno, Czech Republic
| | | | | |
Collapse
|
32
|
|