1
|
Solano YJ, Kiser PD. Double-duty isomerases: a case study of isomerization-coupled enzymatic catalysis. Trends Biochem Sci 2024; 49:703-716. [PMID: 38760195 DOI: 10.1016/j.tibs.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Enzymes can usually be unambiguously assigned to one of seven classes specifying the basic chemistry of their catalyzed reactions. Less frequently, two or more reaction classes are catalyzed by a single enzyme within one active site. Two examples are an isomerohydrolase and an isomero-oxygenase that catalyze isomerization-coupled reactions crucial for production of vision-supporting 11-cis-retinoids. In these enzymes, isomerization is obligately paired and mechanistically intertwined with a second reaction class. A handful of other enzymes carrying out similarly coupled isomerization reactions have been described, some of which have been subjected to detailed structure-function analyses. Herein we review these rarefied enzymes, focusing on the mechanistic and structural basis of their reaction coupling with the goal of revealing catalytic commonalities.
Collapse
Affiliation(s)
- Yasmeen J Solano
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA 92697, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, University of California Irvine School of Medicine, Irvine, CA 92697, USA; Department of Clinical Pharmacy Practice, University of Irvine School of Pharmacy and Pharmaceutical Sciences, Irvine, CA 92697, USA; Department of Ophthalmology, Gavin Herbert Eye Institute - Center for Translational Vision Research, University of California Irvine School of Medicine, Irvine, CA 92697, USA; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, USA.
| |
Collapse
|
2
|
Karvelis E, Swanson C, Tidor B. Substrate Turnover Dynamics Guide Ketol-Acid Reductoisomerase Redesign for Increased Specific Activity. ACS Catal 2024; 14:10491-10509. [PMID: 39050899 PMCID: PMC11264209 DOI: 10.1021/acscatal.4c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
The task of adapting enzymes for specific applications is often hampered by our incomplete ability to tune and tailor catalytic functions, particularly when seeking increased activity. Here, we develop and demonstrate a rational approach to address this challenge, applied to ketol-acid reductoisomerase (KARI), which has uses in industrial-scale isobutanol production. While traditional structure-based computational enzyme redesign strategies typically focus on the enzyme-bound ground state (GS) and transition state (TS), we postulated that additionally treating the underlying dynamics of complete turnover events that connect and pass through both states could further elucidate the structural properties affecting catalysis and help identify mutations that lead to increased catalytic activity. To examine the dynamics of substrate conversion with atomistic detail, we adapted and applied computational methods based on path sampling techniques to gather thousands of QM/MM simulations of attempted substrate turnover events by KARI: both productive (reactive) and unproductive (nonreactive) attempts. From these data, machine learning models were constructed and used to identify specific conformational features (interatomic distances, angles, and torsions) associated with successful, productive catalysis. Multistate protein redesign techniques were then used to select mutations that stabilized reactive-like structures over nonreactive-like ones while also meeting additional criteria consistent with enhanced specific activity. This procedure resulted in eight high-confidence enzyme mutants with a significant improvement in calculated specific activity relative to wild type (WT), with the fastest variant's increase in calculated k cat being (2 ± 1) × 104-fold. Collectively, these results suggest that introducing mutations designed to increase the population of reaction-promoting conformations of the enzyme-substrate complex before it reaches the barrier can provide an effective approach to engineering improved enzyme catalysts.
Collapse
Affiliation(s)
- Elijah Karvelis
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chloe Swanson
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bruce Tidor
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Zhuang YC, Ye DS, Weng SU, Tsai HHG. Double Proton Transfer during a Novel Tertiary α-Ketol Rearrangement in Ketol-Acid Reductoisomerase: A Water-Mediated, Metal-Catalyzed, Base-Induced Mechanism. J Phys Chem B 2021; 125:11893-11906. [PMID: 34618450 DOI: 10.1021/acs.jpcb.1c07137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
(KARI) catalyzes the conversion of (S)-2-acetolactate or (S)-2-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-alkylbutyrate, the second step in the biosynthesis of branched chain amino acids (BCAAs). Because the BCAA biosynthetic pathway is present in bacteria, plants, and fungi, but absent in animals, it is an excellent target for the development of new-generation antibiotics and herbicides. Nevertheless, the mechanism of the KARI-catalyzed reaction has not yet been fully solved. In this study, we used iterative molecular dynamics (MD) flexible fitting-Rosetta techniques to optimize the three-dimensional solution structure of archaea KARI from Sulfolobus solfataricus (Sso-KARI) determined from cryo-electron microscopy. On the basis of the structure of the Sso-KARI/2Mg2+/NADH/(S)-2-acetolactate complex, we deciphered the catalytic mechanism of the KARI-mediated reaction through hybrid quantum mechanics/molecular mechanics MD simulations in conjunction with umbrella sampling. With an activation energy of only 6.06 kcal/mol, a water-mediated, metal-catalyzed, base-induced (WMMCBI) mechanism was preferred for deprotonation of the tertiary OH group of (S)-2-acetolactate in Sso-KARI. The WMMCBI mechanism for double proton transfer occurred within a proton wire route with two steps involving the formation of hydroxide: (i) Glu233 served as a general base to deprotonate the Mg2+-bound water, forming a hydroxide-coordinated Mg2+ ion; (ii) this hydroxide ion acted as a strong base that rapidly deprotonated the ternary OH group of the substrate. In contrast, the direct deprotonation of the substrate by Glu233 was kinetically unfavorable. This mechanism suggests a novel approach for designing catalysts for deprotonation and provides clues for the development of new-generation antibiotics and herbicides.
Collapse
Affiliation(s)
- Yi-Chuan Zhuang
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Dong-Sheng Ye
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Sheng-Uei Weng
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| | - Hui-Hsu Gavin Tsai
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan.,Research Center of New-Generation Light-Driven Photovoltaic Modules, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan City 32001, Taiwan
| |
Collapse
|
4
|
Bonk B, Weis JW, Tidor B. Machine Learning Identifies Chemical Characteristics That Promote Enzyme Catalysis. J Am Chem Soc 2019; 141:4108-4118. [PMID: 30761897 PMCID: PMC6407039 DOI: 10.1021/jacs.8b13879] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Indexed: 11/28/2022]
Abstract
Despite tremendous progress in understanding and engineering enzymes, knowledge of how enzyme structures and their dynamics induce observed catalytic properties is incomplete, and capabilities to engineer enzymes fall far short of industrial needs. Here, we investigate the structural and dynamic drivers of enzyme catalysis for the rate-limiting step of the industrially important enzyme ketol-acid reductoisomerase (KARI) and identify a region of the conformational space of the bound enzyme-substrate complex that, when populated, leads to large increases in reactivity. We apply computational statistical mechanical methods that implement transition interface sampling to simulate the kinetics of the reaction and combine this with machine learning techniques from artificial intelligence to select features relevant to reactivity and to build predictive models for reactive trajectories. We find that conformational descriptors alone, without the need for dynamic ones, are sufficient to predict reactivity with greater than 85% accuracy (90% AUC). Key descriptors distinguishing reactive from almost-reactive trajectories quantify substrate conformation, substrate bond polarization, and metal coordination geometry and suggest their role in promoting substrate reactivity. Moreover, trajectories constrained to visit a region of the reactant well, separated from the rest by a simple hyperplane defined by ten conformational parameters, show increases in computed reactivity by many orders of magnitude. This study provides evidence for the existence of reactivity promoting regions within the conformational space of the enzyme-substrate complex and develops methodology for identifying and validating these particularly reactive regions of phase space. We suggest that identification of reactivity promoting regions and re-engineering enzymes to preferentially populate them may lead to significant rate enhancements.
Collapse
Affiliation(s)
- Brian
M. Bonk
- Department
of Biological Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - James W. Weis
- Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Computational
and Systems Biology, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bruce Tidor
- Department
of Biological Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Computational
and Systems Biology, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Fan F, Chen N, Wang Y, Wu R, Cao Z. QM/MM and MM MD Simulations on the Pyrimidine-Specific Nucleoside Hydrolase: A Comprehensive Understanding of Enzymatic Hydrolysis of Uridine. J Phys Chem B 2018; 122:1121-1131. [PMID: 29285933 DOI: 10.1021/acs.jpcb.7b10524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The pyrimidine-specific nucleoside hydrolase Yeik (CU-NH) from Escherichia coli cleaves the N-glycosidic bond of uridine and cytidine with a 102-104-fold faster rate than that of purine nucleoside substrates, such as inosine. Such a remarkable substrate specificity and the plausible hydrolytic mechanisms of uridine have been explored by using QM/MM and MM MD simulations. The present calculations show that the relatively stronger hydrogen-bond interactions between uridine and the active-site residues Gln227 and Tyr231 in CU-NH play an important role in enhancing the substrate binding and thus promoting the N-glycosidic bond cleavage, in comparison with inosine. The estimated energy barrier of 30 kcal/mol for the hydrolysis of inosine is much higher than 22 kcal/mol for uridine. Extensive MM MD simulations on the transportation of substrates to the active site of CU-NH indicate that the uridine binding is exothermic by ∼23 kcal/mol, more remarkable than inosine (∼12 kcal/mol). All of these arise from the noncovalent interactions between the substrate and the active site featured in CU-NH, which account for the substrate specificity. Quite differing from other nucleoside hydrolases, here the enzymatic N-glycosidic bond cleavage of uridine is less influenced by its protonation.
Collapse
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 360015, China
| | - Nanhao Chen
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Yongheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 360015, China
| |
Collapse
|
6
|
Tadrowski S, Pedroso MM, Sieber V, Larrabee JA, Guddat LW, Schenk G. Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol-Acid Reductoisomerase. Chemistry 2016; 22:7427-36. [PMID: 27136273 DOI: 10.1002/chem.201600620] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/13/2023]
Abstract
Ketol-acid reductoisomerase (KARI) is a Mg(2+) -dependent enzyme in the branched-chain amino acid biosynthesis pathway. It catalyses a complex two-part reaction: an alkyl migration followed by a NADPH-dependent reduction. Both reactions occur within the one active site, but in particular, the mechanism of the isomerisation step is poorly understood. Here, using a combination of kinetic, thermodynamic and spectroscopic techniques, the reaction mechanisms of both Escherichia coli and rice KARI have been investigated. We propose a conserved mechanism of catalysis, whereby a hydroxide, bridging the two Mg(2+) ions in the active site, initiates the reaction by abstracting a proton from the C2 alcohol group of the substrate. While the μ-hydroxide-bridged dimetallic centre is pre-assembled in the bacterial enzyme, in plant KARI substrate binding leads to a reduction of the metal-metal distance with the concomitant formation of a hydroxide bridge. Only Mg(2+) is capable of promoting the isomerisation reaction, likely to be due to non-competent substrate binding in the presence of other metal ions.
Collapse
Affiliation(s)
- Sonya Tadrowski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Volker Sieber
- Straubing Center of Science, Technische Universität München, Straubing, Germany
| | - James A Larrabee
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT, 05753, USA
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
7
|
Zhou J, Wu R, Wang B, Cao Z, Yan H, Mo Y. Proton-Shuttle-Assisted Heterolytic Carbon–Carbon Bond Cleavage and Formation. ACS Catal 2015. [DOI: 10.1021/acscatal.5b00079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P.R. China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Zexing Cao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Honggao Yan
- Center
for Biological Modeling and Departments of Biochemistry and Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yirong Mo
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
8
|
Świderek K, Tuñón I, Moliner V, Bertran J. Protein Flexibility and Preorganization in the Design of Enzymes. The Kemp Elimination Catalyzed by HG3.17. ACS Catal 2015. [DOI: 10.1021/cs501904w] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Katarzyna Świderek
- Departament
de Química Física, Universitat de València, 46100 Burjasot, Spain
- Institute
of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Iñaki Tuñón
- Departament
de Química Física, Universitat de València, 46100 Burjasot, Spain
| | - Vicent Moliner
- Departament
de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Joan Bertran
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
9
|
Lim CH, Holder AM, Hynes JT, Musgrave CB. Reduction of CO2 to Methanol Catalyzed by a Biomimetic Organo-Hydride Produced from Pyridine. J Am Chem Soc 2014; 136:16081-95. [DOI: 10.1021/ja510131a] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - James T. Hynes
- Chemistry
Department, Ecole Normale Supérieure, UMR ENS-CNRS-UPMC 8640, 24 rue Lhomond, 75005 Paris, France
| | | |
Collapse
|
10
|
Klippenstein SJ, Pande VS, Truhlar DG. Chemical Kinetics and Mechanisms of Complex Systems: A Perspective on Recent Theoretical Advances. J Am Chem Soc 2014; 136:528-46. [DOI: 10.1021/ja408723a] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen J. Klippenstein
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Vijay S. Pande
- Department
of Chemistry and Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Donald G. Truhlar
- Department
of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
11
|
Rungrotmongkol T, Mulholland AJ, Hannongbua S. QM/MM simulations indicate that Asp185 is the likely catalytic base in the enzymatic reaction of HIV-1 reverse transcriptase. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00319a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
McSkimming A, Colbran SB. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction. Chem Soc Rev 2013; 42:5439-88. [PMID: 23507957 DOI: 10.1039/c3cs35466k] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In biological reduction processes the dihydronicotinamides NAD(P)H often transfer hydride to an unsaturated substrate bound within an enzyme active site. In many cases, metal ions in the active site bind, polarize and thereby activate the substrate to direct attack by hydride from NAD(P)H cofactor. This review looks more widely at the metal coordination chemistry of organic donors of hydride ion--organo-hydrides--such as dihydronicotinamides, other dihydropyridines including Hantzsch's ester and dihydroacridine derivatives, those derived from five-membered heterocycles including the benzimidazolines and benzoxazolines, and all-aliphatic hydride donors such as hexadiene and hexadienyl anion derivatives. The hydride donor properties--hydricities--of organo-hydrides and how these are affected by metal ions are discussed. The coordination chemistry of organo-hydrides is critically surveyed and the use of metal-organo-hydride systems in electrochemically-, photochemically- and chemically-driven reductions of unsaturated organic and inorganic (e.g. carbon dioxide) substrates is highlighted. The sustainable electrocatalytic, photochemical or chemical regeneration of organo-hydrides such as NAD(P)H, including for driving enzyme-catalysed reactions, is summarised and opportunities for development are indicated. Finally, new prospects are identified for metal-organo-hydride systems as catalysts for organic transformations involving 'hydride-borrowing' and for sustainable multi-electron reductions of unsaturated organic and inorganic substrates directly driven by electricity or light or by renewable reductants such as formate/formic acid.
Collapse
Affiliation(s)
- Alex McSkimming
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
13
|
McSkimming A, Bhadbhade MM, Colbran SB. Bio-Inspired Catalytic Imine Reduction by Rhodium Complexes with Tethered Hantzsch Pyridinium Groups: Evidence for Direct Hydride Transfer from Dihydropyridine to Metal-Activated Substrate. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201210086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
McSkimming A, Bhadbhade MM, Colbran SB. Bio-Inspired Catalytic Imine Reduction by Rhodium Complexes with Tethered Hantzsch Pyridinium Groups: Evidence for Direct Hydride Transfer from Dihydropyridine to Metal-Activated Substrate. Angew Chem Int Ed Engl 2013; 52:3411-6. [DOI: 10.1002/anie.201210086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Indexed: 11/06/2022]
|
15
|
Correlation between biological activity and binding energy in systems of integrin with cyclic RGD-containing binders: a QM/MM molecular dynamics study. J Mol Model 2012; 18:4917-27. [DOI: 10.1007/s00894-012-1487-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
|
16
|
Ferrer S, Ruiz-Pernía J, Martí S, Moliner V, Tuñón I, Bertrán J, Andrés J. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 85:81-142. [PMID: 21920322 DOI: 10.1016/b978-0-12-386485-7.00003-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The development of characterization techniques, advanced synthesis methods, as well as molecular modeling has transformed the study of systems in a well-established research field. The current research challenges in biocatalysis and biotransformation evolve around enzyme discovery, design, and optimization. How can we find or create enzymes that catalyze important synthetic reactions, even reactions that may not exist in nature? What is the source of enzyme catalytic power? To answer these and other related questions, the standard strategies have evolved from trial-and-error methodologies based on chemical knowledge, accumulated experience, and common sense into a clearly multidisciplinary science that allows one to reach the molecular design of tailor-made enzyme catalysts. This is even more so when one refers to enzyme catalysts, for which the detailed structure and composition are known and can be manipulated to introduce well-defined residues which can be implicated in the chemical rearrangements taking place in the active site. The methods and techniques of theoretical and computational chemistry are becoming more and more important in both understanding the fundamental biological roles of enzymes and facilitating their utilization in biotechnology. Improvement of the catalytic function of enzymes is important from scientific and industrial viewpoints, and to put this fact in the actual perspective as well as the potentialities, we recommend the very recent report of Sanderson [Sanderson, K. (2011). Chemistry: enzyme expertise. Nature 471, 397.]. Great fundamental advances have been made toward the ab initio design of enzyme catalysts based on molecular modeling. This has been based on the molecular mechanistic knowledge of the reactions to be catalyzed, together with the development of advanced synthesis and characterization techniques. The corresponding molecular mechanism can be studied by means of powerful quantum chemical calculations. The catalytic active site can be optimized to improve the transition state analogues (TSA) and to enhance the catalytic activity, even improve the active site to favor a desired direction of some promiscuous enzymes. In this chapter, we give a brief introduction, the state of the art, and future prospects and implications of enzyme design. Current computational tools to assist experimentalists for the design and engineering of proteins with desired catalytic properties are described. The interplay between enzyme design, molecular simulations, and experiments will be presented to emphasize the interdisciplinary nature of this research field. This text highlights the recent advances and examples selected from our laboratory are shown, of how the applications of these tools are a first attempt to de novo design of protein active sites. Identification of neutral/advantageous/deleterious mutation platforms can be exploited to penetrate some of Nature's closely guarded secrets of chemical reactivity. In this chapter, we give a brief introduction, the state of the art, and future prospects and implications of enzyme design. The first part describes briefly how the molecular modeling is carried out. Then, we discuss the requirements of hybrid quantum mechanical/molecular mechanics molecular dynamics (QM/MM MD) simulations, analyzing what are the basis of these theoretical methodologies, how we can use them with a view to its application in the study of enzyme catalysis, and what are the best methodologies for assessing its catalytic potential. In the second part, we focus on some selected examples, taking as a common guide the chorismate to prephenate rearrangement, studying the corresponding molecular mechanism in vacuo, in solution and in an enzyme environment. In addition, examples involving catalytic antibodies (CAs) and promiscuous enzymes will be presented. Finally, a special emphasis is made to provide some hints about the logical evolution that can be anticipated in this research field. Moreover, it helps in understanding the open directions in this area of knowledge and highlights the importance of computational approaches in discovering specific drugs and the impact on the rational design of tailor-made enzymes.
Collapse
Affiliation(s)
- Silvia Ferrer
- Departamento de Química Física y Analítica, Universitat Jaume I, Castellón, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG. Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. J Phys Chem B 2011; 115:14556-62. [DOI: 10.1021/jp205508z] [Citation(s) in RCA: 675] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Raphael F. Ribeiro
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| | - Aleksandr V. Marenich
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
18
|
Truhlar DG. Tunneling in enzymatic and nonenzymatic hydrogen transfer reactions. J PHYS ORG CHEM 2010. [DOI: 10.1002/poc.1676] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Benchmark calculations on models of the phosphoryl transfer reaction catalyzed by protein kinase A. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0600-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Wu R, Xie H, Mo Y, Cao Z. Broad Substrate Specificity and Catalytic Mechanism of Pseudomonas stutzeri l-Rhamnose Isomerase: Insights from QM/MM Molecular Dynamics Simulations. J Phys Chem A 2009; 113:11595-603. [DOI: 10.1021/jp901093g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ruibo Wu
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Hujun Xie
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Yirong Mo
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| | - Zexing Cao
- Department of Chemistry and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China, and Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008
| |
Collapse
|
21
|
Ruiz-Pernía JJ, Garcia-Viloca M, Bhattacharyya S, Gao J, Truhlar DG, Tuñón I. Critical role of substrate conformational change in the proton transfer process catalyzed by 4-oxalocrotonate tautomerase. J Am Chem Soc 2009; 131:2687-98. [PMID: 19199636 PMCID: PMC2746755 DOI: 10.1021/ja8087423] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-Oxalocrotonate tautomerase enzyme (4-OT) catalyzes the isomerization of 2-oxo-4-hexenedioate to 2-oxo-3-hexenedioate. The chemical process involves two proton transfers, one from a carbon of the substrate to the nitrogen of Pro1 and another from this nitrogen atom to a different carbon of the substrate. In this paper the isomerization has been studied using the combined quantum mechanical and molecular mechanical method with a dual-level treatment of the quantum subsystem employing the MPW1BK density functional as the higher level. Exploration of the potential energy surface shows that the process is stepwise, with a stable intermediate state corresponding to the deprotonated substrate and a protonated proline. The rate constant of the overall process has been evaluated using ensemble-averaged variational transition state theory, including the quantized vibrational motion of a primary zone of active-site atoms and a transmission coefficient based on an ensemble of optimized reaction coordinates to account for recrossing trajectories and optimized multidimensional tunneling. The two proton-transfer steps have similar free energy barriers, but the transition state associated with the first proton transfer is found to be higher in energy. The calculations show that reaction progress is coupled to a conformational change of the substrate, so it is important that the simulation allows this flexibility. The coupled conformational change is promoted by changes in the electron distribution of the substrate that take place as the proton transfers occur.
Collapse
Affiliation(s)
| | - Mireia Garcia-Viloca
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona (SPAIN)
- Departament de Química, Universitat Autònoma de Barcelona , Barcelona (SPAIN)
| | - Sudeep Bhattacharyya
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minneasota 55455-0431
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minneasota 55455-0431
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minneasota 55455-0431
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, València (SPAIN)
| |
Collapse
|
22
|
Bowman AL, Grant IM, Mulholland AJ. QM/MM simulations predict a covalent intermediate in the hen egg white lysozyme reaction with its natural substrate. Chem Commun (Camb) 2008:4425-7. [PMID: 18802578 DOI: 10.1039/b810099c] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations indicate that the reaction of native HEWL with its natural substrate involves a covalent intermediate, in contrast to the 'textbook' mechanism for this seminal enzyme.
Collapse
Affiliation(s)
- Anna L Bowman
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK BS8 1TS
| | | | | |
Collapse
|
23
|
Arantes GM, Ribeiro MCC. A microscopic view of substitution reactions solvated by ionic liquids. J Chem Phys 2008; 128:114503. [DOI: 10.1063/1.2890042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Wong KY, Gao J. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations. Biochemistry 2007; 46:13352-69. [PMID: 17966992 DOI: 10.1021/bi700460c] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations employing combined quantum mechanical and molecular mechanical (QM/MM) potentials have been carried out to investigate the reaction mechanism of the hydrolysis of paraoxon by phosphotriesterase (PTE). We used a dual-level QM/MM approach that synthesizes accurate results from high-level electronic structure calculations with computational efficiency of semiempirical QM/MM potentials for free energy simulations. In particular, the intrinsic (gas-phase) energies of the active site in the QM region are determined by using density functional theory (B3LYP) and second-order Møller-Plesset perturbation theory (MP2) and the molecular dynamics free energy simulations are performed by using the mixed AM1:CHARMM potential. The simulation results suggest a revised mechanism for the phosphotriester hydrolysis mechanism by PTE. The reaction free energy profile is mirrored by structural motions of the binuclear metal center in the active site. The two zinc ions occupy a compact conformation with an average zinc-zinc distance of 3.5 +/- 0.1 A in the Michaelis complex, whereas it is elongated to 5.3 +/- 0.3 A at the transition state and product state. The substrate is loosely bound to the more exposed zinc ion (Znbeta2+) at an average distance of 3.8 A +/- 0.3 A. The P=O bond of the substrate paraoxon is activated by adopting a tight coordination to the Znbeta2+, releasing the coordinate to the bridging hydroxide ion and increasing its nucleophilicity. It was also found that a water molecule enters into the binding pocket of the loosely bound binuclear center, originally occupied by the nucleophilic hydroxide ion. We suggest that the proton of this water molecule is taken up by His254 at low pH or released to the solvent at high pH, resulting in a hydroxide ion that pulls the Znbeta2+ ion closer to form the compact configuration and restores the resting state of the enzyme.
Collapse
Affiliation(s)
- Kin-Yiu Wong
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Smith Hall, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
25
|
Bowman AL, Ridder L, Rietjens IMCM, Vervoort J, Mulholland AJ. Molecular Determinants of Xenobiotic Metabolism: QM/MM Simulation of the Conversion of 1-Chloro-2,4-dinitrobenzene Catalyzed by M1-1 Glutathione S-Transferase. Biochemistry 2007; 46:6353-63. [PMID: 17480056 DOI: 10.1021/bi0622827] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modeling methods allow the identification and analysis of determinants of reactivity and specificity in enzymes. The reaction between glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) is widely used as a standard activity assay for glutathione S-transferases (GSTs). It is important to understand the causes of differences between catalytic GST isoenzymes and the effects of mutations and genetic polymorphisms. Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations have been performed here to investigate the addition of the glutathione anion to CDNB in the wild-type M1-1 GST isoenzyme from rat and in three single point mutant (Tyr6Phe, Tyr115Phe, and Met108Ala) M1-1 GST enzymes. We have developed a specifically parameterized QM/MM method (AM1-SRP/CHARMM22) to model this reaction by fitting to experimental heats of formation and ionization potentials. Free energy profiles were obtained from molecular dynamics simulations of the reaction using umbrella sampling and weighted histogram analysis techniques. The reaction in solution has also been simulated and is compared to the enzymatic reaction. The free energies are in excellent agreement with experimental results. Overall the results of the present study show that QM/MM reaction pathway analysis provides detailed insight into the chemistry of GST and can be used to obtain mechanistic insight into the effects of specific mutations on this catalytic process.
Collapse
Affiliation(s)
- Anna L Bowman
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, UK
| | | | | | | | | |
Collapse
|
26
|
Masgrau L, Ranaghan KE, Scrutton NS, Mulholland AJ, Sutcliffe MJ. Tunneling and Classical Paths for Proton Transfer in an Enzyme Reaction Dominated by Tunneling: Oxidation of Tryptamine by Aromatic Amine Dehydrogenase. J Phys Chem B 2007; 111:3032-47. [PMID: 17388439 DOI: 10.1021/jp067898k] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton tunneling dominates the oxidative deamination of tryptamine catalyzed by the enzyme aromatic amine dehydrogenase. For reaction with the fast substrate tryptamine, a H/D kinetic isotope effect (KIE) of 55 +/- 6 has been reported-one of the largest observed in an enzyme reaction. We present here a computational analysis of this proton-transfer reaction, applying combined quantum mechanics/molecular mechanics (QM/MM) methods (PM3-SRP//PM3/CHARMM22). In particular, we extend our previous computational study (Masgrau et al. Science 2006, 312, 237) by using improved energy corrections, high-level QM/MM methods, and an ensemble of paths to estimate the tunneling contributions. We have carried out QM/MM molecular dynamics simulations and variational transition state theory calculations with small-curvature tunneling corrections. The results provide detailed insight into the processes involved in the reaction. Transfer to the O2 oxygen of the catalytic base, Asp128beta, is found to be the favored reaction both thermodynamically and kinetically, even though O1 is closer in the reactant complex. Comparison of quantum and classical models of proton transfer allows estimation of the contribution of hydrogen tunneling in lowering the barrier to reaction in the enzyme. A reduction of the activation free energy due to tunneling of 3.1 kcal mol-1 is found, which represents a rate enhancement due to tunneling by 2 orders of magnitude. The calculated KIE of 30 is significantly elevated over the semiclassical limit, in agreement with the experimental observations; a semiclassical value of 6 is obtained when tunneling is omitted. A polarization of the C-H bond to be broken is observed due to the close proximity of the catalytic aspartate and the (formally) positively charged imine nitrogen. A comparison is also made with the related quinoprotein methylamine dehydrogenase (MADH)-the much lower KIE of 11 that we obtain for the MADH/methylamine system is found to arise from a more endothermic potential energy surface for the MADH reaction.
Collapse
Affiliation(s)
- Laura Masgrau
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science, and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG. Modeling the kinetics of bimolecular reactions. Chem Rev 2007; 106:4518-84. [PMID: 17091928 DOI: 10.1021/cr050205w] [Citation(s) in RCA: 393] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonio Fernandez-Ramos
- Departamento de Quimica Fisica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
28
|
Arantes GM. Free-energy profiles for catalysis by dual-specificity phosphatases. Biochem J 2006; 399:343-50. [PMID: 16784417 PMCID: PMC1609924 DOI: 10.1042/bj20060637] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 11/17/2022]
Abstract
PTPs (protein tyrosine phosphatases) are fundamental enzymes for cell signalling and have been linked to the pathogenesis of several diseases, including cancer. Hence, PTPs are potential drug targets and inhibitors have been designed as possible therapeutic agents for Type II diabetes and obesity. However, a complete understanding of the detailed catalytic mechanism in PTPs is still lacking. Free-energy profiles, obtained by computer simulations of catalysis by a dual-specificity PTP, are shown in the present study and are used to shed light on the catalytic mechanism. A highly accurate hybrid potential of quantum mechanics/molecular mechanics calibrated specifically for PTP reactions was used. Reactions of alkyl and aryl substrates, with different protonation states and PTP active-site mutations, were simulated. Calculated reaction barriers agree well with experimental rate measurements. Results show the PTP substrate reacts as a bi-anion, with an ionized nucleophile. This protonation state has been a matter of debate in the literature. The inactivity of Cys-->Ser active-site mutants is also not fully understood. It is shown that mutants are inactive because the serine nucleophile is protonated. Results also clarify the interpretation of experimental data, particularly kinetic isotope effects. The simulated mechanisms presented here are better examples of the catalysis carried out by PTPs.
Collapse
Key Words
- computer simulation
- enzyme mechanism
- hybrid potential
- phosphate ester
- protein phosphatase
- ds-ptp, dual-specificity protein tyrosine phosphatase
- kie, kinetic isotope effect
- lm-ptp, low-molecular-mass protein tyrosine phosphatase
- mc, michaelis complex
- ph, phenyl
- ptp, protein tyrosine phosphatase
- qm/mm, quantum mechanical/molecular mechanical
- rmsd, root mean squared deviation
- ts, transition state
- vhr, vaccinia vh1-related
- wt, wild-type
Collapse
Affiliation(s)
- Guilherme M Arantes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
29
|
Ruiz-Pernía JJ, Silla E, Tuñón I, Martí S. Hybrid Quantum Mechanics/Molecular Mechanics Simulations with Two-Dimensional Interpolated Corrections: Application to Enzymatic Processes. J Phys Chem B 2006; 110:17663-70. [PMID: 16942112 DOI: 10.1021/jp063520a] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid quantum mechanics/molecular mechanics (QM/MM) techniques are widely used to study chemical reactions in large systems. Because of the computational cost associated with the high dimensionality of these systems, the quantum description is usually restricted to low-level methods, such as semiempirical Hamiltonians. In some cases, the description obtained at this computational level is quite poor and corrections must be considered. We here propose a simple but efficient way to include higher-level corrections to be used in potential energy surface explorations and in the calculation of potentials of mean force. We evaluate a correction energy term as the difference between a high-level and a low-level calculation on the QM subsystem, employing either the polarized or the gas-phase wave function, obtained as a function of two geometrical coordinates relevant in the process considered. Through the use of two-dimensional bicubic splines this correction energy is included in the simulations, ensuring the continuity and derivability of the energy function. We have tested the proposed scheme with two prototypical examples: the chorismate to prephenate rearrangement catalyzed by Bacillus subtilis chorismate mutase and the catechol methylation catalyzed by catechol O-methyltransferase. In both cases the use of interpolated corrections clearly improves the energetic and geometric descriptions of the reaction.
Collapse
Affiliation(s)
- J Javier Ruiz-Pernía
- Departament de Química Física/IcMol, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
30
|
Pu J, Gao J, Truhlar DG. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem Rev 2006; 106:3140-69. [PMID: 16895322 PMCID: PMC4478620 DOI: 10.1021/cr050308e] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingzhi Pu
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Jiali Gao
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| | - Donald G. Truhlar
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431
| |
Collapse
|
31
|
Thomas A, Field MJ. A Comparative QM/MM Simulation Study of the Reaction Mechanisms of Human andPlasmodiumfalciparumHG(X)PRTases. J Am Chem Soc 2006; 128:10096-102. [PMID: 16881638 DOI: 10.1021/ja060823+] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
QM/MM hybrid potential free-energy simulations are performed to compare the reaction mechanisms of human hypoxanthine guanine phosphoribosyl transferase (HGPRTase) and the corresponding enyzme from Plasmodium falciparum (Pf), hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRTase). These enzymes share 44% of sequence identity but display very different affinities for xanthine. The calculations show that in both enzymes phosphoribosyl transfer proceeds via a dissociative mechanism from an anionic form of the substrate. Nevertheless, there are significant differences in the geometries of critical structures along the reaction paths which it may be possible to exploit for the design of specific inhibitors against the Pf enzyme.
Collapse
Affiliation(s)
- Aline Thomas
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale--Jean-Pierre Ebel (CEA/CNRS/UJF), 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France.
| | | |
Collapse
|
32
|
Arantes GM, Loos M. Specific parametrisation of a hybrid potential to simulate reactions in phosphatases. Phys Chem Chem Phys 2005; 8:347-53. [PMID: 16482277 DOI: 10.1039/b511805k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphatases are key biomolecules because they regulate many cellular processes. These enzymes have been studied for many years, but there are still doubts about the catalytic mechanism. Computer simulations can be used to shed light on these questions. Here we develop a new and specific parametrisation, and present extensive tests of a hybrid potential that can be used to reliably simulate reactions catalysed by phosphatases. High level ab initio data for phosphate ester thiolysis and alcoholysis is used in the training set. The parametrised quantum mechanical Hamiltonian reproduces ab initio energies with a root mean-squared deviation of 3 kcal mol(-1) for species along the pathway of various phosphate ester reactions. Preliminary results for simulation with the calibrated hybrid potential of catalysis by the phosphatase VHR indicate the calculated reaction barriers are in very good agreement with experiment.
Collapse
Affiliation(s)
- Guilherme Menegon Arantes
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, São Paulo, SP 05508-900, Brasil.
| | | |
Collapse
|
33
|
FTIR-ATR chamber for observation of efflorescence and deliquescence processes of NaClO4 aerosol particles on ZnSe substrate. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/bf03182662] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Friesner RA, Guallar V. AB INITIO QUANTUM CHEMICAL AND MIXED QUANTUM MECHANICS/MOLECULAR MECHANICS (QM/MM) METHODS FOR STUDYING ENZYMATIC CATALYSIS. Annu Rev Phys Chem 2005; 56:389-427. [PMID: 15796706 DOI: 10.1146/annurev.physchem.55.091602.094410] [Citation(s) in RCA: 445] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe large scale ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic reactions. First, technical aspects of the methodology are reviewed, including the hybrid density functional theory (DFT) methods that are typically employed for the QM aspect of the calculations, and various approaches to defining the interface between the QM and MM regions in QM/MM approaches. The modeling of the enzymatic catalytic cycle for three examples--methane monooxygenase, cytochrome P450, and triose phosphate isomerase--are discussed in some depth, followed by a brief summary of other systems that have been investigated by ab initio methods over the past several years. Finally, a discussion of the qualitative and quantitative conclusions concerning enzymatic catalysis that are available from modern ab initio approaches is presented, followed by a conclusion briefly summarizing future prospects.
Collapse
Affiliation(s)
- Richard A Friesner
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | | |
Collapse
|
35
|
Tyagi R, Lee YT, Guddat LW, Duggleby RG. Probing the mechanism of the bifunctional enzyme ketol-acid reductoisomerase by site-directed mutagenesis of the active site. FEBS J 2005; 272:593-602. [PMID: 15654896 DOI: 10.1111/j.1742-4658.2004.04506.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ketol-acid reductoisomerase (EC 1.1.1.86) is involved in the biosynthesis of the branched-chain amino acids. It is a bifunctional enzyme that catalyzes two quite different reactions at a common active site; an isomerization consisting of an alkyl migration, followed by an NADPH-dependent reduction of a 2-ketoacid. The 2-ketoacid formed by the alkyl migration is not released. Using the pure recombinant Escherichia coli enzyme, we show that the isomerization reaction has a highly unfavourable equilibrium constant. The reductase activity is shown to be relatively nonspecific and is capable of utilizing a variety of 2-ketoacids. The active site of the enzyme contains eight conserved polar amino acids and we have mutated each of these in order to dissect their contributions to the isomerase and reductase activities. Several mutations result in loss of the isomerase activity with retention of reductase activity. However, none of the 17 mutants examined have the isomerase activity only. We suggest a reason for this, involving direct reduction of a transition state formed during the isomerization, which is necessitated by the unfavourable equilibrium position of the isomerization. Our mechanism explains why the two activities must occur in a single active site without release of a 2-ketoacid and provides a rationale for the requirement for NADPH by the isomerase.
Collapse
Affiliation(s)
- Rajiv Tyagi
- Department of Biochemistry and Molecular Biology, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
36
|
Tubert-Brohman I, Guimarães CRW, Repasky MP, Jorgensen WL. Extension of the PDDG/PM3 and PDDG/MNDO semiempirical molecular orbital methods to the halogens. J Comput Chem 2004; 25:138-50. [PMID: 14635001 DOI: 10.1002/jcc.10356] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The new semiempirical methods, PDDG/PM3 and PDDG/MNDO, have been parameterized for halogens. For comparison, the original MNDO and PM3 were also reoptimized for the halogens using the same training set; these modified methods are referred to as MNDO' and PM3'. For 442 halogen-containing molecules, the smallest mean absolute error (MAE) in heats of formation is obtained with PDDG/PM3 (5.6 kcal/mol), followed by PM3' (6.1 kcal/mol), PDDG/MNDO (6.6 kcal/mol), PM3 (8.1 kcal/mol), MNDO' (8.5 kcal/mol), AM1 (11.1 kcal/mol), and MNDO (14.0 kcal/mol). For normal-valent halogen-containing molecules, the PDDG methods also provide improved heats of formation over MNDO/d. Hypervalent compounds were not included in the training set and improvements over the standard NDDO methods with sp basis sets were not obtained. For small haloalkanes, the PDDG methods yield more accurate heats of formation than are obtained from density functional theory (DFT) with the B3LYP and B3PW91 functionals using large basis sets. PDDG/PM3 and PM3' also give improved binding energies over the standard NDDO methods for complexes involving halide anions, and they are competitive with B3LYP/6-311++G(d,p) results including thermal corrections. Among the semiempirical methods studied, PDDG/PM3 also generates the best agreement with high-level ab initio G2 and CCSD(T) intrinsic activation energies for S(N)2 reactions involving methyl halides and halide anions. Finally, the MAEs in ionization potentials, dipole moments, and molecular geometries show that the parameter sets for the PDDG and reoptimized NDDO methods reduce the MAEs in heats of formation without compromising the other important QM observables.
Collapse
Affiliation(s)
- Ivan Tubert-Brohman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The combination of quantum mechanics and molecular mechanics (QM/MM) methods is one of the most promising approaches to study the structure, function and properties of proteins. The number of QM/MM applications on metalloproteins is steadily increasing, especially studies with density functional methods on redox-active metal centres. Recent developments include new parameterised methods to treat covalent bonds between the quantum and classical systems, methods to obtain free energy from QM/MM results, and the combination of quantum chemistry and protein crystallography.
Collapse
Affiliation(s)
- Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, PO Box 124 S-221 00, Lund, Sweden.
| |
Collapse
|
38
|
Thomas A, Field MJ. Reaction mechanism of the HGXPRTase from Plasmodium falciparum: a hybrid potential quantum mechanical/molecular mechanical study. J Am Chem Soc 2002; 124:12432-8. [PMID: 12381183 DOI: 10.1021/ja0206846] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parasites lack the ability to synthesize purines de novo. Instead, they use an enzyme, hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase), to salvage host purine and to construct their own nucleotides. In this paper, we investigate the reaction mechanism of the HGXPRTase from Plasmodium falciparum using free-energy simulations and a hybrid potential QM/MM description of the enzyme. The possibility of both dissociative and associative nucleophilic substitutions is discussed, as contradictory hypotheses have been postulated on the basis of crystallographic data and kinetic isotope effect experiments. The preferred pathway is predicted to be stepwise with a rapid proton transfer from the hypoxanthine to the protein followed by a rate-limiting glycosyl transfer. This latter step has a D(N)A(N) mechanism with a transition state in which the pyrophosphate leaving group is more closely bound than the attacking hypoxanthine nucleophile. The energy barrier is comparable to the experimentally observed one.
Collapse
Affiliation(s)
- Aline Thomas
- Laboratoire de Dynamique Moléculaire Institut de Biologie Structurale Jean-Pierre Ebel, 41, rue Jules Horowitz, F-38027 Grenoble Cedex 01, France.
| | | |
Collapse
|
39
|
Zhang X, Zhang Y, Li Q. Ab initio studies on the chain of contact ion pairs of magnesium sulfate in supersaturated state of aqueous solution. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00260-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Ridder L, Rietjens IMCM, Vervoort J, Mulholland AJ. Quantum mechanical/molecular mechanical free energy simulations of the glutathione S-transferase (M1-1) reaction with phenanthrene 9,10-oxide. J Am Chem Soc 2002; 124:9926-36. [PMID: 12175255 DOI: 10.1021/ja0256360] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutathione S-transferases (GSTs) play an important role in the detoxification of xenobiotics in mammals. They catalyze the conjugation of glutathione to a wide range of electrophilic compounds. Phenanthrene 9,10-oxide is a model substrate for GSTs, representing an important group of epoxide substrates. In the present study, combined quantum mechanical/molecular mechanical (QM/MM) simulations of the conjugation of glutathione to phenanthrene 9,10-oxide, catalyzed by the M1-1 isoenzyme from rat, have been carried out to obtain insight into details of the reaction mechanism and the role of solvent present in the highly solvent accessible active site. Reaction-specific AM1 parameters for sulfur have been developed to obtain an accurate modeling of the reaction, and QM/MM solvent interactions in the model have been calibrated. Free energy profiles for the formation of two diastereomeric products were obtained from molecular dynamics simulations of the enzyme, using umbrella sampling and weighted histogram analysis techniques. The barriers (20 kcal/mol) are in good agreement with the overall experimental rate constant and with the formation of equal amounts of the two diastereomeric products, as experimentally observed. Along the reaction pathway, desolvation of the thiolate sulfur of glutathione is observed, in agreement with solvent isotope experiments, as well as increased solvation of the epoxide oxygen of phenanthrene 9,10-oxide, illustrating an important stabilizing role for active site solvent molecules. Important active site interactions have been identified and analyzed. The catalytic effect of Tyr115 through a direct hydrogen bond with the epoxide oxygen of the substrate, which was proposed on the basis of the crystal structure of the (9S,10S) product complex, is supported by the simulations. The indirect interaction through a mediating water molecule, observed in the crystal structure of the (9R,10R) product complex, cannot be confirmed to play a role in the conjugation step. A selection of mutations is modeled. The Asn8Asp mutation, representing one of the differences between the M1-1 and M2-2 isoenzymes, is identified as a possible factor contributing to the difference in the ratio of product formation by these two isoenzymes. The QM/MM reaction pathway simulations provide new and detailed insight into the reaction mechanism of this important class of detoxifying enzymes and illustrate the potential of QM/MM modeling to complement experimental data on enzyme reaction mechanisms.
Collapse
Affiliation(s)
- Lars Ridder
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | | | | | | |
Collapse
|
41
|
Abstract
This review discusses methods for the incorporation of quantum mechanical effects into enzyme kinetics simulations in which the enzyme is an explicit part of the model. We emphasize three aspects: (a) use of quantum mechanical electronic structure methods such as molecular orbital theory and density functional theory, usually in conjunction with molecular mechanics; (b) treating vibrational motions quantum mechanically, either in an instantaneous harmonic approximation, or by path integrals, or by a three-dimensional wave function coupled to classical nuclear motion; (c) incorporation of multidimensional tunneling approximations into reaction rate calculations.
Collapse
Affiliation(s)
- Jiali Gao
- Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, Minnesota 55455-0431, USA.
| | | |
Collapse
|
42
|
Abstract
Elucidating how enzymes enhance the rates of the reactions that they catalyze is a major goal of contemporary biochemistry, and it is an area in which computational and theoretical techniques can make a major contribution. This article outlines some of the processes that need to be investigated if enzyme catalysis is to be understood, reviews the current state-of-the-art in enzyme simulation work, and highlights challenges for the future.
Collapse
Affiliation(s)
- Martin J Field
- Laboratoire de Dynamique Moléculaire, Institut de Biologie Structurale, Grenoble, France.
| |
Collapse
|
43
|
Dumas R, Biou V, Halgand F, Douce R, Duggleby RG. Enzymology, structure, and dynamics of acetohydroxy acid isomeroreductase. Acc Chem Res 2001; 34:399-408. [PMID: 11352718 DOI: 10.1021/ar000082w] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetohydroxy acid isomeroreductase is a key enzyme involved in the biosynthetic pathway of the amino acids isoleucine, valine, and leucine. This enzyme is of great interest in agrochemical research because it is present only in plants and microorganisms, making it a potential target for specific herbicides and fungicides. Moreover, it catalyzes an unusual two-step reaction that is of great fundamental interest. With a view to characterizing both the mechanism of inhibition by potential herbicides and the complex reaction mechanism, various techniques of enzymology, molecular biology, mass spectrometry, X-ray crystallography, and theoretical simulation have been used. The results and conclusions of these studies are described briefly in this paper.
Collapse
Affiliation(s)
- R Dumas
- Laboratoire Mixte CNRS/INRA/Aventis, Aventis CropScience, 14-20 rue Pierre Baizet, 69263 Lyon, France.
| | | | | | | | | |
Collapse
|
44
|
Gogonea V, Suárez D, van der Vaart A, Merz KM. New developments in applying quantum mechanics to proteins. Curr Opin Struct Biol 2001; 11:217-23. [PMID: 11297931 DOI: 10.1016/s0959-440x(00)00193-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Algorithmic improvements of quantum mechanical methodologies have increased our ability to study the electronic structure of fragments of a biomolecule (e.g. an enzyme active site) or entire biomolecules. Three main strategies have emerged as ways in which quantum mechanics can be applied to biomolecules. The supermolecule approach continues to be utilized, but it is slowly being replaced by the so-called coupled quantum mechanical/molecular mechanical methodologies. An exciting new direction is the continued development and application of linear-scaling quantum mechanical approaches to biomolecular systems.
Collapse
Affiliation(s)
- V Gogonea
- Department of Chemistry, 152 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
45
|
Metzler DE, Metzler CM, Sauke DJ. Enzymatic Addition, Elimination, Condensation, and Isomerization. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|