1
|
Grifagni D, Doni D, Susini B, Fonseca BM, Louro RO, Costantini P, Ciofi‐Baffoni S. Unraveling the molecular determinants of a rare human mitochondrial disorder caused by the P144L mutation of FDX2. Protein Sci 2024; 33:e5197. [PMID: 39467201 PMCID: PMC11515921 DOI: 10.1002/pro.5197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Episodic mitochondrial myopathy with or without optic atrophy and reversible leukoencephalopathy (MEOAL) is a rare, orphan autosomal recessive disorder caused by mutations in ferredoxin-2 (FDX2), which is a [2Fe-2S] cluster-binding protein participating in the formation of iron-sulfur clusters in mitochondria. In this biosynthetic pathway, FDX2 works as electron donor to promote the assembly of both [2Fe-2S] and [4Fe-4S] clusters. A recently identified missense mutation of MEOAL is the homozygous mutation c.431C>T (p.P144L) described in six patients from two unrelated families. This mutation alters a highly conserved proline residue located in a loop of FDX2 that is distant from the [2Fe-2S] cluster. How this Pro to Leu substitution damages iron-sulfur cluster biosynthesis is unknown. In this work, we have first compared the structural, dynamic, cluster binding and redox properties of WT and P144L [2Fe-2S] FDX2 to have clues on how the pathogenic P144L mutation can perturb the FDX2 function. Then, we have investigated the interaction of both WT and P144L [2Fe-2S] FDX2 with its physiological electron donor, ferredoxin reductase FDXR, comparing their electron transfer efficiency and protein-protein recognition patterns. Overall, the data indicate that the pathogenic P144L mutation negatively affects the FDXR-dependent electron transfer pathway from NADPH to FDX2, thereby reducing the capacity of FDX2 in assembling both [2Fe-2S] and [4Fe-4S] clusters. Our study also provided solid molecular evidences on the functional role of the C-terminal tail of FDX2 in the electron transfer between FDX2 and FDXR.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Davide Doni
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Bianca Susini
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| | - Bruno M. Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | - Ricardo O. Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‐NOVA)Universidade Nova de LisboaOeirasPortugal
| | | | - Simone Ciofi‐Baffoni
- Magnetic Resonance Center CERMUniversity of FlorenceFlorenceItaly
- Department of ChemistryUniversity of FlorenceFlorenceItaly
| |
Collapse
|
2
|
De Santis A, Grifagni D, Orsetti A, Lenci E, Rosato A, D’Onofrio M, Trabocchi A, Ciofi-Baffoni S, Cantini F, Calderone V. A Structural Investigation of the Interaction between a GC-376-Based Peptidomimetic PROTAC and Its Precursor with the Viral Main Protease of Coxsackievirus B3. Biomolecules 2024; 14:1260. [PMID: 39456193 PMCID: PMC11506516 DOI: 10.3390/biom14101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The conservation of the main protease in viral genomes, combined with the absence of a homologous protease in humans, makes this enzyme family an ideal target for developing broad-spectrum antiviral drugs with minimized host toxicity. GC-376, a peptidomimetic 3CL protease inhibitor, has shown significant efficacy against coronaviruses. Recently, a GC-376-based PROTAC was developed to target and induce the proteasome-mediated degradation of the dimeric SARS-CoV-2 3CLPro protein. Extending this approach, the current study investigates the application of the GC-376 PROTAC to the 3CPro protease of enteroviruses, specifically characterizing its interaction with CVB3 3CPro through X-ray crystallography, NMR (Nuclear Magnetic Resonance) and biochemical techniques. The crystal structure of CVB3 3CPro bound to the GC-376 PROTAC precursor was obtained at 1.9 Å resolution. The crystallographic data show that there are some changes between the binding of CVB3 3CPro and SARS-CoV-2 3CLPro, but the overall similarity is strong (RMSD on C-alpha 0.3 Å). The most notable variation is the orientation of the benzyloxycarbonyl group of GC-376 with the S4 subsite of the proteases. NMR backbone assignment of CVB3 3CPro bound and unbound to the GC-376 PROTAC precursor (80% and 97%, respectively) was obtained. This information complemented the investigation, by NMR, of the interaction of CVB3 3CPro with the GC-376 PROTAC, and its precursor allows us to define that the GC-376 PROTAC binds to CVB3 3CPro in a mode very similar to that of the precursor. The NMR relaxation data indicate that a quench of dynamics of a large part of the protein backbone involving the substrate-binding site and surrounding regions occurs upon GC-376 PROTAC precursor binding. This suggests that the substrate cavity, by sampling different backbone conformations in the absence of the substrate, is able to select the suitable one necessary to covalently bind the substrate, this being the latter reaction, which is the fundamental step required to functionally activate the enzymatic reaction. The inhibition activity assay showed inhibition potency in the micromolar range for GC-376 PROTAC and its precursor. Overall, we can conclude that the GC-376 PROTAC fits well within the binding sites of both proteases, demonstrating its potential as a broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Alessia De Santis
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Deborah Grifagni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Andrea Orsetti
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Elena Lenci
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Antonio Rosato
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Mariapina D’Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Andrea Trabocchi
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Francesca Cantini
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Vito Calderone
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| |
Collapse
|
3
|
Kharchenko V, Al-Harthi S, Ejchart A, Jaremko Ł. Pitfalls in measurements of R 1 relaxation rates of protein backbone 15N nuclei. JOURNAL OF BIOMOLECULAR NMR 2024:10.1007/s10858-024-00449-4. [PMID: 39217275 DOI: 10.1007/s10858-024-00449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The dynamics of the backbone and side-chains of protein are routinely studied by interpreting experimentally determined 15N spin relaxation rates. R1(15N), the longitudinal relaxation rate, reports on fast motions and encodes, together with the transverse relaxation R2, structural information about the shape of the molecule and the orientation of the amide bond vectors in the internal diffusion frame. Determining error-free 15N longitudinal relaxation rates remains a challenge for small, disordered, and medium-sized proteins. Here, we show that mono-exponential fitting is sufficient, with no statistical preference for bi-exponential fitting up to 800 MHz. A detailed comparison of the TROSY and HSQC techniques at medium and high fields showed no statistically significant differences. The least error-prone DD/CSA interference removal technique is the selective inversion of amide signals while avoiding water resonance. The exchange of amide with solvent deuterons appears to affect the rate R1 of solvent-exposed amides in all fields tested and in each DD/CSA interference removal technique in a statistically significant manner. In summary, the most accurate R1(15N) rates in proteins are achieved by selective amide inversion, without the addition of D2O. Importantly, at high magnetic fields stronger than 800 MHz, when non-mono-exponential decay is involved, it is advisable to consider elimination of the shortest delays (typically up to 0.32 s) or bi-exponential fitting.
Collapse
Affiliation(s)
- Vladlena Kharchenko
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Samah Al-Harthi
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Łukasz Jaremko
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
4
|
Yu B, Wang X, Tan KN, Iwahara J. Influence of an Intrinsically Disordered Region on Protein Domains Revealed by NMR-Based Electrostatic Potential Measurements. J Am Chem Soc 2024; 146:14922-14926. [PMID: 38771003 PMCID: PMC11227116 DOI: 10.1021/jacs.4c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Many human proteins possess intrinsically disordered regions containing consecutive aspartate or glutamate residues ("D/E repeats"). Approximately half of them are DNA/RNA-binding proteins. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we investigated the electrostatic properties of D/E repeats and their influence on folded domains within the same protein. Local electrostatic potentials were directly measured for the HMGB1 protein, its isolated D/E repeats, and DNA-binding domains by NMR. The data provide quantitative information about the electrostatic interactions between distinct segments of HMGB1. Due to the interactions between the D/E repeats and the DNA-binding domains, local electrostatic potentials of the DNA-binding domains within the full-length HMGB1 protein were largely negative despite the presence of many positively charged residues. Our NMR data on counterions and electrostatic potentials show that the D/E repeats and DNA have similar electrostatic properties and compete for the DNA-binding domains. The competition promotes dissociation of the protein-DNA complex and influences the molecular behavior of the HMGB1 protein. These effects may be general among the DNA/RNA-binding proteins with D/E repeats.
Collapse
Affiliation(s)
- Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | - Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| | | | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555-1068, USA
| |
Collapse
|
5
|
Esposito G, Hunashal Y, Percipalle M, Fogolari F, Venit T, Leonchiks A, Gunsalus KC, Piano F, Percipalle P. Assessing nanobody interaction with SARS-CoV-2 Nsp9. PLoS One 2024; 19:e0303839. [PMID: 38758765 PMCID: PMC11101046 DOI: 10.1371/journal.pone.0303839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
The interaction between SARS-CoV-2 non-structural protein Nsp9 and the nanobody 2NSP90 was investigated by NMR spectroscopy using the paramagnetic perturbation methodology PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation). The Nsp9 monomer is an essential component of the replication and transcription complex (RTC) that reproduces the viral gRNA for subsequent propagation. Therefore preventing Nsp9 recruitment in RTC would represent an efficient antiviral strategy that could be applied to different coronaviruses, given the Nsp9 relative invariance. The NMR results were consistent with a previous characterization suggesting a 4:4 Nsp9-to-nanobody stoichiometry with the occurrence of two epitope pairs on each of the Nsp9 units that establish the inter-dimer contacts of Nsp9 tetramer. The oligomerization state of Nsp9 was also analyzed by molecular dynamics simulations and both dimers and tetramers resulted plausible. A different distribution of the mapped epitopes on the tetramer surface with respect to the former 4:4 complex could also be possible, as well as different stoichiometries of the Nsp9-nanobody assemblies such as the 2:2 stoichiometry suggested by the recent crystal structure of the Nsp9 complex with 2NSP23 (PDB ID: 8dqu), a nanobody exhibiting essentially the same affinity as 2NSP90. The experimental NMR evidence, however, ruled out the occurrence in liquid state of the relevant Nsp9 conformational change observed in the same crystal structure.
Collapse
Affiliation(s)
- Gennaro Esposito
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | | | | | - Federico Fogolari
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
- Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università di Udine, Udine, Italy
| | - Tomas Venit
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | | | - Kristin C. Gunsalus
- Department of Biology and Center Genomics System Biology, NYU, New York, New York, United States of America
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Fabio Piano
- Department of Biology and Center Genomics System Biology, NYU, New York, New York, United States of America
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Piergiorgio Percipalle
- Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
- Center Genomics System Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
6
|
Monteiro da Silva G, Cui JY, Dalgarno DC, Lisi GP, Rubenstein BM. High-throughput prediction of protein conformational distributions with subsampled AlphaFold2. Nat Commun 2024; 15:2464. [PMID: 38538622 PMCID: PMC10973385 DOI: 10.1038/s41467-024-46715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
This paper presents an innovative approach for predicting the relative populations of protein conformations using AlphaFold 2, an AI-powered method that has revolutionized biology by enabling the accurate prediction of protein structures. While AlphaFold 2 has shown exceptional accuracy and speed, it is designed to predict proteins' ground state conformations and is limited in its ability to predict conformational landscapes. Here, we demonstrate how AlphaFold 2 can directly predict the relative populations of different protein conformations by subsampling multiple sequence alignments. We tested our method against nuclear magnetic resonance experiments on two proteins with drastically different amounts of available sequence data, Abl1 kinase and the granulocyte-macrophage colony-stimulating factor, and predicted changes in their relative state populations with more than 80% accuracy. Our subsampling approach worked best when used to qualitatively predict the effects of mutations or evolution on the conformational landscape and well-populated states of proteins. It thus offers a fast and cost-effective way to predict the relative populations of protein conformations at even single-point mutation resolution, making it a useful tool for pharmacology, analysis of experimental results, and predicting evolution.
Collapse
Affiliation(s)
| | - Jennifer Y Cui
- Brown University Department of Molecular and Cell Biology and Biochemistry, Providence, RI, USA
| | | | - George P Lisi
- Brown University Department of Molecular and Cell Biology and Biochemistry, Providence, RI, USA
- Brown University Department of Chemistry, Providence, RI, USA
| | - Brenda M Rubenstein
- Brown University Department of Molecular and Cell Biology and Biochemistry, Providence, RI, USA.
- Brown University Department of Chemistry, Providence, RI, USA.
| |
Collapse
|
7
|
Stief T, Vormann K, Lakomek NA. Sensitivity-enhanced NMR 15N R 1 and R 1ρ relaxation experiments for the investigation of intrinsically disordered proteins at high magnetic fields. Methods 2024; 223:1-15. [PMID: 38242384 DOI: 10.1016/j.ymeth.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
NMR relaxation experiments provide residue-specific insights into the structural dynamics of proteins. Here, we present an optimized set of sensitivity-enhanced 15N R1 and R1ρ relaxation experiments applicable to fully protonated proteins. The NMR pulse sequences are conceptually similar to the set of TROSY-based sequences and their HSQC counterpart (Lakomek et al., J. Biomol. NMR 2012). Instead of the TROSY read-out scheme, a sensitivity-enhanced HSQC read-out scheme is used, with improved and easier optimized water suppression. The presented pulse sequences are applied on the cytoplasmic domain of the SNARE protein Synpatobrevin-2 (Syb-2), which is intrinsically disordered in its monomeric pre-fusion state. A two-fold increase in the obtained signal-to-noise ratio is observed for this intrinsically disordered protein, therefore offering a four-fold reduction of measurement time compared to the TROSY-detected version. The inter-scan recovery delay can be shortened to two seconds. Pulse sequences were tested at 600 MHz and 1200 MHz 1H Larmor frequency, thus applicable over a wide magnetic field range. A comparison between protonated and deuterated protein samples reveals high agreement, indicating that reliable 15N R1 and R1ρ rate constants can be extracted for fully protonated and deuterated samples. The presented pulse sequences will benefit not only for IDPs but also for an entire range of low and medium-sized proteins.
Collapse
Affiliation(s)
- Tobias Stief
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katharina Vormann
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nils-Alexander Lakomek
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany; Institute of Physical Biology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
8
|
Höfurthner T, Toscano G, Kontaxis G, Beier A, Mayer M, Geist L, McConnell DB, Weinstabl H, Lichtenecker R, Konrat R. Synthesis of a 13C-methylene-labeled isoleucine precursor as a useful tool for studying protein side-chain interactions and dynamics. JOURNAL OF BIOMOLECULAR NMR 2024; 78:1-8. [PMID: 37816933 PMCID: PMC10981609 DOI: 10.1007/s10858-023-00427-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
In this study, we present the synthesis and incorporation of a metabolic isoleucine precursor compound for selective methylene labeling. The utility of this novel α-ketoacid isotopologue is shown by incorporation into the protein Brd4-BD1, which regulates gene expression by binding to acetylated histones. High quality single quantum 13C-1 H-HSQC were obtained, as well as triple quantum HTQC spectra, which are superior in terms of significantly increased 13C-T2 times. Additionally, large chemical shift perturbations upon ligand binding were observed. Our study thus proves the great sensitivity of this precursor as a reporter for side-chain dynamic studies and for investigations of CH-π interactions in protein-ligand complexes.
Collapse
Affiliation(s)
- Theresa Höfurthner
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstraße 42, 1090, Vienna, Austria
| | - Giorgia Toscano
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währingerstraße 42, 1090, Vienna, Austria
| | - Georg Kontaxis
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Andreas Beier
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria
| | - Leonhard Geist
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria
| | - Darryl B McConnell
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria
| | - Harald Weinstabl
- Boehringer Ingelheim RCV GmbH & Co. KG, Dr. Boehringer Gasse 5-11, 1121, Vienna, Austria
| | - Roman Lichtenecker
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090, Vienna, Austria.
| | - Robert Konrat
- Christian Doppler Laboratory for High-Content Structural Biology and Biotechnology, Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Structural and Computational Biology, Max Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
| |
Collapse
|
9
|
White SE, Schwartze TA, Mukundan A, Schoenherr C, Singh SP, van Dinther M, Cunningham KT, White MPJ, Campion T, Pritchard J, Hinck CS, Ten Dijke P, Inman G, Maizels RM, Hinck AP. TGM6, a helminth secretory product, mimics TGF-β binding to TβRII to antagonize TGF-β signaling in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573140. [PMID: 38187573 PMCID: PMC10769414 DOI: 10.1101/2023.12.22.573140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The murine helminth parasite Heligmosomoides polygyrus expresses a family of proteins structurally related to TGF-β Mimic 1 (TGM1), a secreted five domain protein that activates the TGF-β pathway and converts naïve T lymphocytes to immunosuppressive Tregs. TGM1 signals through the TGF-β type I and type II receptors, TβRI and TβRII, with domains 1-2 and 3 binding TβRI and TβRII, respectively, and domains 4-5 binding CD44, a co-receptor abundant on T cells. TGM6 is a homologue of TGM1 that is co-expressed with TGM1, but lacks domains 1 and 2. Herein, we show that TGM6 binds TβRII through domain 3, but does not bind TβRI, or other type I or type II receptors of the TGF-β family. In TGF-β reporter assays in fibroblasts, TGM6, but not truncated TGM6 lacking domains 4 and 5, potently inhibits TGF-β- and TGM1-induced signaling, consistent with its ability to bind TβRII but not TβRI or other receptors of the TGF-β family. However, TGM6 does not bind CD44 and is unable to inhibit TGF-β and TGM1 signaling in T cells. To understand how TGM6 binds TβRII, the X-ray crystal structure of the TGM6 domain 3 bound to TβRII was determined at 1.4 Å. This showed that TGM6 domain 3 binds TβRII through an interface remarkably similar to the TGF-β:TβRII interface. These results suggest that TGM6 has adapted its domain structure and sequence to mimic TGF-β binding to TβRII and function as a potent TGF-β and TGM1 antagonist in fibroblasts. The coexpression of TGM6, along with the immunosuppressive TGMs that activate the TGF-β pathway, may prevent tissue damage caused by the parasite as it progresses through its life cycle from the intestinal lumen to submucosal tissues and back again.
Collapse
|
10
|
Singh SP, Smyth DJ, Cunningham K, Mukundan A, Byeon CH, Hinck CS, White MPJ, Ciancia C, Wosowska N, Sanders A, Jin R, Lilla S, Zanivan S, Schoenherr C, Inman G, van Dinther M, ten Dijke P, Hinck AP, Maizels RM. The helminth TGF-β mimic TGM4 is a modular ligand that binds CD44, CD49d and TGF-β receptors to preferentially target myeloid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566701. [PMID: 38014296 PMCID: PMC10680678 DOI: 10.1101/2023.11.13.566701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The murine helminth parasite Heligmosomoides polygyrus expresses a family of modular proteins which, replicating the functional activity of the immunomodulatory cytokine TGF-β, have been named TGM (TGF-β Μimic). Multiple domains bind to different receptors, including TGF-β receptors TβRI (ALK5) and TβRII through domains 1-3, and prototypic family member TGM1 binds the cell surface co-receptor CD44 through domains 4-5. This allows TGM1 to induce T lymphocyte Foxp3 expression, characteristic of regulatory (Treg) cells, and to activate a range of TGF-β-responsive cell types. In contrast, a related protein, TGM4, targets a much more restricted cell repertoire, primarily acting on myeloid cells, with less potent effects on T cells and lacking activity on other TGF-β-responsive cell types. TGM4 binds avidly to myeloid cells by flow cytometry, and can outcompete TGM1 for cell binding. Analysis of receptor binding in comparison to TGM1 reveals a 10-fold higher affinity than TGM1 for TGFβR-I (TβRI), but a 100-fold lower affinity for TβRII through Domain 3. Consequently, TGM4 is more dependent on co-receptor binding; in addition to CD44, TGM4 also engages CD49d (Itga4) through Domains 1-3, as well as CD206 and Neuropilin-1 through Domains 4 and 5. TGM4 was found to effectively modulate macrophage populations, inhibiting lipopolysaccharide-driven inflammatory cytokine production and boosting interleukin (IL)-4-stimulated responses such as Arginase-1 in vitro and in vivo. These results reveal that the modular nature of TGMs has allowed the fine tuning of the binding affinities of the TβR- and co-receptor binding domains to establish cell specificity for TGF-β signalling in a manner that cannot be attained by the mammalian cytokine.
Collapse
Affiliation(s)
- Shashi P. Singh
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Danielle J. Smyth
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Kyle Cunningham
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Ananya Mukundan
- Department of Structural Biology, University of Pittsburgh, USA
| | | | | | - Madeleine P. J. White
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Claire Ciancia
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Nątalia Wosowska
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Anna Sanders
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Regina Jin
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Sara Zanivan
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | | | - Gareth Inman
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
| | - Maarten van Dinther
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, The Netherlands
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, University of Leiden, The Netherlands
| | - Andrew P. Hinck
- Department of Structural Biology, University of Pittsburgh, USA
| | - Rick M. Maizels
- Wellcome Centre of Integrative Parasitology, School of Infection and Immunity, University of Glasgow, G12 8TA, UK
| |
Collapse
|
11
|
Lahfa M, Mouhand A, de Guillen K, Barthe P, Kroj T, Padilla A, Roumestand C. Does a Similar 3D Structure Mean a Similar Folding Pathway? The Presence of a C-Terminal α-Helical Extension in the 3D Structure of MAX60 Drastically Changes the Folding Pathway Described for Other MAX-Effectors from Magnaporthe oryzae. Molecules 2023; 28:6068. [PMID: 37630320 PMCID: PMC10460046 DOI: 10.3390/molecules28166068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Does a similar 3D structure mean a similar folding pathway? This question is particularly meaningful when it concerns proteins sharing a similar 3D structure, but low sequence identity or homology. MAX effectors secreted by the phytopathogenic fungus Magnaporthe oryzae present such characteristics. They share a common 3D structure, a ß-sandwich with the same topology for all the family members, but an extremely low sequence identity/homology. In a previous study, we have investigated the folding of two MAX effectors, AVR-Pia and AVR-Pib, using High-Hydrostatic-Pressure NMR and found that they display a similar folding pathway, with a common folding intermediate. In the present work, we used a similar strategy to investigate the folding conformational landscape of another MAX effector, MAX60, and found a very different folding intermediate. Our analysis strongly supports that the presence of a C-terminal α-helical extension in the 3D structure of MAX60 could be responsible for its different folding pathway.
Collapse
Affiliation(s)
- Mounia Lahfa
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34090 Montpellier, France; (M.L.); (A.M.); (K.d.G.); (P.B.); (A.P.)
| | - Assia Mouhand
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34090 Montpellier, France; (M.L.); (A.M.); (K.d.G.); (P.B.); (A.P.)
| | - Karine de Guillen
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34090 Montpellier, France; (M.L.); (A.M.); (K.d.G.); (P.B.); (A.P.)
| | - Philippe Barthe
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34090 Montpellier, France; (M.L.); (A.M.); (K.d.G.); (P.B.); (A.P.)
| | - Thomas Kroj
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34060 Montpellier, France
| | - André Padilla
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34090 Montpellier, France; (M.L.); (A.M.); (K.d.G.); (P.B.); (A.P.)
| | - Christian Roumestand
- Centre de Biologie Structurale, University of Montpellier, INSERM U1054, CNRS UMR 5048, 34090 Montpellier, France; (M.L.); (A.M.); (K.d.G.); (P.B.); (A.P.)
| |
Collapse
|
12
|
Wang M, Song X, Chen J, Chen X, Zhang X, Yang Y, Liu Z, Yao L. Intracellular environment can change protein conformational dynamics in cells through weak interactions. SCIENCE ADVANCES 2023; 9:eadg9141. [PMID: 37478178 PMCID: PMC10361600 DOI: 10.1126/sciadv.adg9141] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Conformational dynamics is important for protein functions, many of which are performed in cells. How the intracellular environment may affect protein conformational dynamics is largely unknown. Here, loop conformational dynamics is studied for a model protein in Escherichia coli cells by using nuclear magnetic resonance (NMR) spectroscopy. The weak interactions between the protein and surrounding macromolecules in cells hinder the protein rotational diffusion, which extends the dynamic detection timescale up to microseconds by the NMR spin relaxation method. The loop picosecond to microsecond dynamics is confirmed by nanoparticle-assisted spin relaxation and residual dipolar coupling methods. The loop interactions with the intracellular environment are perturbed through point mutation of the loop sequence. For the sequence of the protein that interacts stronger with surrounding macromolecules, the loop becomes more rigid in cells. In contrast, the mutational effect on the loop dynamics in vitro is small. This study provides direct evidence that the intracellular environment can modify protein loop conformational dynamics through weak interactions.
Collapse
Affiliation(s)
- Mengting Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfei Song
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Jingfei Chen
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Xiaoxu Chen
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Zhang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
13
|
Wang J, Koduru T, Harish B, McCallum SA, Larsen KP, Patel KS, Peters EV, Gillilan RE, Puglisi EV, Puglisi JD, Makhatadze G, Royer CA. Pressure pushes tRNA Lys3 into excited conformational states. Proc Natl Acad Sci U S A 2023; 120:e2215556120. [PMID: 37339210 PMCID: PMC10293818 DOI: 10.1073/pnas.2215556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Conformational dynamics play essential roles in RNA function. However, detailed structural characterization of excited states of RNA remains challenging. Here, we apply high hydrostatic pressure (HP) to populate excited conformational states of tRNALys3, and structurally characterize them using a combination of HP 2D-NMR, HP-SAXS (HP-small-angle X-ray scattering), and computational modeling. HP-NMR revealed that pressure disrupts the interactions of the imino protons of the uridine and guanosine U-A and G-C base pairs of tRNALys3. HP-SAXS profiles showed a change in shape, but no change in overall extension of the transfer RNA (tRNA) at HP. Configurations extracted from computational ensemble modeling of HP-SAXS profiles were consistent with the NMR results, exhibiting significant disruptions to the acceptor stem, the anticodon stem, and the D-stem regions at HP. We propose that initiation of reverse transcription of HIV RNA could make use of one or more of these excited states.
Collapse
Affiliation(s)
- Jinqiu Wang
- Graduate Program in Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Tejaswi Koduru
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Kevin P. Larsen
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Karishma S. Patel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Edgar V. Peters
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY12180
| | | | - Elisabetta V. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - Joseph D. Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA94305
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| | - Catherine A. Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY12180
| |
Collapse
|
14
|
Becette OB, Marino JP, Brinson RG. Structural Fingerprinting of Antisense Oligonucleotide Therapeutics by Solution NMR Spectroscopy. Pharm Res 2023; 40:1373-1382. [PMID: 36195820 DOI: 10.1007/s11095-022-03403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/21/2022] [Indexed: 10/10/2022]
Abstract
PURPOSE Antisense oligonucleotide (ASO) therapeutics are an emerging class of biopharmaceuticals to treat and prevent diseases, particularly those involving "undruggable" protein targets. Impurities generated throughout the ASO drug manufacturing and formulation pipeline can be detrimental to drug safety and efficacy. Therefore, analytical techniques are needed to rigorously characterize these molecules for quality assurance purposes. METHODS We demonstrate 1D and 2D nuclear magnetic resonance (NMR) spectroscopy methods that can generate high-resolution structural "fingerprints" of ASOs. RESULTS AND CONCLUSIONS 1D 1H and 31P measurements are shown to provide rapid initial assessment of the ASO integrity. In particular, a well-resolved pair of 31P signals arising from the 5´-end of the phosphorodiamidate morpholino oligomer (PMO) are sensitive to complex formation and oligomerization state. 2D 1H-1H, 1H-13C, and 1H-15 N experiments, although less sensitive, are further shown to enable resonance assignment, which will allow the tracking of structural changes at high-resolution during the drug development and manufacturing processes. We further anticipate that the described NMR approaches will be broadly applicable to fully formulated ASO therapeutics, including modalities other than PMOs.
Collapse
Affiliation(s)
- Owen B Becette
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland, 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland, 20850, USA
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland, 20850, USA.
| |
Collapse
|
15
|
Manu VS, Olivieri C, Veglia G. Water irradiation devoid pulses enhance the sensitivity of 1H, 1H nuclear Overhauser effects. JOURNAL OF BIOMOLECULAR NMR 2023; 77:1-14. [PMID: 36534224 PMCID: PMC11457533 DOI: 10.1007/s10858-022-00407-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 05/03/2023]
Abstract
The nuclear Overhauser effect (NOE) is one of NMR spectroscopy's most important and versatile parameters. NOE is routinely utilized to determine the structures of medium-to-large size biomolecules and characterize protein-protein, protein-RNA, protein-DNA, and protein-ligand interactions in aqueous solutions. Typical [1H,1H] NOESY pulse sequences incorporate water suppression schemes to reduce the water signal that dominates 1H-detected spectra and minimize NOE intensity losses due to unwanted polarization exchange between water and labile protons. However, at high- and ultra-high magnetic fields, the excitation of the water signal during the execution of the NOESY pulse sequences may cause significant attenuation of NOE cross-peak intensities. Using an evolutionary algorithm coupled with artificial intelligence, we recently designed high-fidelity pulses [Water irrAdiation DEvoid (WADE) pulses] that elude water excitation and irradiate broader bandwidths relative to commonly used pulses. Here, we demonstrate that WADE pulses, implemented into the 2D [1H,1H] NOESY experiments, increase the intensity of the NOE cross-peaks for labile and, to a lesser extent, non-exchangeable protons. We applied the new 2D [1H,1H] WADE-NOESY pulse sequence to two well-folded, medium-size proteins, i.e., the K48C mutant of ubiquitin and the Raf kinase inhibitor protein. We observed a net increase of the NOE intensities varying from 30 to 170% compared to the commonly used NOESY experiments. The new WADE pulses can be easily engineered into 2D and 3D homo- and hetero-nuclear NOESY pulse sequences to boost their sensitivity.
Collapse
Affiliation(s)
- V S Manu
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, 312 Church St. SE, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 6-155 Jackson Hall, 312 Church St. SE, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, 139 Smith Hall, Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Rangadurai AK, Toyama Y, Kay LE. Sometimes pulses just have to be perfect - An example based on the measurement of amide proton transverse relaxation rates in proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107412. [PMID: 36907132 DOI: 10.1016/j.jmr.2023.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The measurement of spin relaxation rates provides a unique avenue for quantifying dynamic processes in biomolecules. In order to simplify analysis of the measurements so that a few key intuitive parameters can be extracted, it is often the case that experiments are designed to eliminate interference effects between different classes of spin relaxation. One example emerges in the measurement of amide proton (1HN) transverse relaxation rates in 15N labeled proteins, where 15N inversion pulses are applied during a relaxation element to eliminate cross-correlated spin relaxation between 1HN-15N dipole-1HN CSA interactions. We show that unless these pulses are essentially perfect, significant oscillations in magnetization decay profiles can be obtained, due to the excitation of multiple-quantum coherences, leading potentially to errors in measured R2 rates. With the recent development of experiments for quantifying electrostatic potentials via amide proton relaxation rates, the need for highly accurate measurement schemes becomes critical. Straightforward modifications to existing pulse sequences are suggested to achieve this goal.
Collapse
Affiliation(s)
- Atul Kaushik Rangadurai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| | - Yuki Toyama
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
17
|
Cai M, Tugarinov V, Chaitanya Chiliveri S, Huang Y, Schwieters CD, Mizuuchi K, Clore GM. Interaction of the bacterial division regulator MinE with lipid bicelles studied by NMR spectroscopy. J Biol Chem 2023; 299:103037. [PMID: 36806683 PMCID: PMC10031476 DOI: 10.1016/j.jbc.2023.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded β-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles D Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Grifagni D, Silva JM, Cantini F, Piccioli M, Banci L. Relaxation-based NMR assignment: Spotlights on ligand binding sites in human CISD3. J Inorg Biochem 2023; 239:112089. [PMID: 36502664 DOI: 10.1016/j.jinorgbio.2022.112089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
CISD3 is a mitochondrial protein belonging to the NEET proteins family, bearing two [Fe2S2] clusters coordinated by CDGSH domains. At variance with the other proteins of the NEET family, very little is known about its structure-function relationships. NMR is the only technique to obtain information at the atomic level in solution on the residues involved in intermolecular interactions; however, in paramagnetic proteins this is limited by the broadening of signals of residues around the paramagnetic center. Tailored experiments can revive signals of the cluster surrounding; however, signals identification without specific residue assignment remains useless. Here, we show how paramagnetic relaxation can drive the signal assignment of residues in the proximity of the paramagnetic center(s). This allowed us to identify the potential key players of the biological function of the CISD3 protein.
Collapse
Affiliation(s)
- Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - José M Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Lucia Banci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
19
|
Solomon TL, Delaglio F, Giddens JP, Marino JP, Yu YB, Taraban MB, Brinson RG. Correlated analytical and functional evaluation of higher order structure perturbations from oxidation of NISTmAb. MAbs 2023; 15:2160227. [PMID: 36683157 PMCID: PMC9872951 DOI: 10.1080/19420862.2022.2160227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The clinical efficacy and safety of protein-based drugs such as monoclonal antibodies (mAbs) rely on the integrity of the protein higher order structure (HOS) during product development, manufacturing, storage, and patient administration. As mAb-based drugs are becoming more prevalent in the treatment of many illnesses, the need to establish metrics for quality attributes of mAb therapeutics through high-resolution techniques is also becoming evident. To this end, here we used a forced degradation method, time-dependent oxidation by hydrogen peroxide, on the model biotherapeutic NISTmAb and evaluated the effects on HOS with orthogonal analytical methods and a functional assay. To monitor the oxidation process, the experimental workflow involved incubation of NISTmAb with hydrogen peroxide in a benchtop nuclear magnetic resonance spectrometer (NMR) that followed the reaction kinetics, in real-time through the water proton transverse relaxation rate R2(1H2O). Aliquots taken at defined time points were further analyzed by high-field 2D 1H-13C methyl correlation fingerprint spectra in parallel with other analytical techniques, including thermal unfolding, size-exclusion chromatography, and surface plasmon resonance, to assess changes in stability, heterogeneity, and binding affinities. The complementary measurement outputs from the different techniques demonstrate the utility of combining NMR with other analytical tools to monitor oxidation kinetics and extract the resulting structural changes in mAbs that are functionally relevant, allowing rigorous assessment of HOS attributes relevant to the efficacy and safety of mAb-based drug products.
Collapse
Affiliation(s)
- Tsega L. Solomon
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - John P. Giddens
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - John P. Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States
| | - Yihua Bruce Yu
- Bio- and Nano-Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States
| | - Marc B. Taraban
- Bio- and Nano-Technology Center, University of Maryland School of Pharmacy, and Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States
| | - Robert G. Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, United States,CONTACT Robert G. Brinson Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology, 9600 Gudelsky Drive Rockville, Rockville, Maryland20850, United States
| |
Collapse
|
20
|
Ma J, Pathirana C, Liu DQ, Miller SA. NMR spectroscopy as a characterization tool enabling biologics formulation development. J Pharm Biomed Anal 2023; 223:115110. [DOI: 10.1016/j.jpba.2022.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022]
|
21
|
Haller JD, Bodor A, Luy B. Pure shift amide detection in conventional and TROSY-type experiments of 13C, 15N-labeled proteins. JOURNAL OF BIOMOLECULAR NMR 2022; 76:213-221. [PMID: 36399207 PMCID: PMC9712348 DOI: 10.1007/s10858-022-00406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Large coupling networks in uniformly 13C,15N-labeled biomolecules induce broad multiplets that even in flexible proteins are frequently not recognized as such. The reason is that given multiplets typically consist of a large number of individual resonances that result in a single broad line, in which individual components are no longer resolved. We here introduce a real-time pure shift acquisition scheme for the detection of amide protons which is based on 13C-BIRDr,X. As a result the full homo- and heteronuclear coupling network can be suppressed at low power leading to real singlets at substantially improved resolution and uncompromised sensitivity. The method is tested on a small globular and an intrinsically disordered protein (IDP) where the average spectral resolution is increased by a factor of ~ 2 and higher. Equally important, the approach works without saturation of water magnetization for solvent suppression and exchanging amide protons are not affected by saturation transfer.
Collapse
Affiliation(s)
- Jens D. Haller
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Hermann-Von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andrea Bodor
- Institute of Chemistry, Analytical and BioNMR Laboratory, ELTE –Eötvös Loránd University, Pázmány Péter Sétány 1/A, 1117 Budapest, Hungary
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4 – Magnetic Resonance, Karlsruhe Institute of Technology (KIT), Hermann-Von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
22
|
Diaz-Parga P, Gould A, de Alba E. Natural and engineered inflammasome adapter proteins reveal optimum linker length for self-assembly. J Biol Chem 2022; 298:102501. [PMID: 36116550 PMCID: PMC9640978 DOI: 10.1016/j.jbc.2022.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The inflammasome is a multiprotein complex that triggers the activation of proinflammatory cytokines. The adapter ASC and its isoform ASCb mediate inflammasome assembly via self-association and oligomerization with other inflammasome proteins by homotypic interactions of their two identical Death Domains, PYD and CARD, connected by a linker of different length: 23 (ASC) and 4 (ASCb) amino acids long. However, ASC is a more potent inflammasome activator compared to ASCb. Thus, adapter isoforms might be involved in the regulation of the inflammatory response. As previously reported, ASC's faster and less polydisperse self-association compared to ASCb points to interdomain flexibility resulting from the linker length as a key factor in inflammasome regulation. To test the influence of linker length in self-association, we have engineered the isoform ASC3X with identical PYD and CARD connected by a 69 amino acid-long linker (i.e., three-times longer than ASC's linker). Real-time NMR and dynamic light scattering data indicate that ASC3X polymerization is less effective and more polydisperse compared to ASC or ASCb. However, transmission electron micrographs show that ASC3X can polymerize into filaments. Comparative interdomain dynamics of the three isoforms obtained from NMR relaxation data reveal that ASCb tumbles as a rod, whereas the PYD and CARD of ASC and ASC3X tumble independently with marginally higher interdomain flexibility in ASC3X. Altogether, our data suggest that ASC's linker length is optimized for self-association by allowing enough flexibility to favor intermolecular homotypic interactions but simultaneously keeping both domains sufficiently close for essential participation in filament formation.
Collapse
Affiliation(s)
- Pedro Diaz-Parga
- Department of Bioengineering, School of Engineering, University of California Merced, California, USA; Quantitative Systems Biology PhD Program, University of California Merced, California, USA
| | - Andrea Gould
- Department of Bioengineering, School of Engineering, University of California Merced, California, USA
| | - Eva de Alba
- Department of Bioengineering, School of Engineering, University of California Merced, California, USA.
| |
Collapse
|
23
|
Ghasriani H, Ahmadi S, Hodgson DJ, Aubin Y. Backbone and side-chain resonance assignments of the NISTmAb-scFv and antigen-binding study. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:391-398. [PMID: 36083574 PMCID: PMC9510101 DOI: 10.1007/s12104-022-10109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 06/02/2023]
Abstract
Monoclonal antibodies (mAbs) therapeutics are the largest and fastest growing class of biologic drugs, amongst which, the vast majority are immunoglobulin G1 (IgG1). Their antigen binding abilities are used for the treatment of immunologic diseases, cancer therapy, reversal of drug effects, and targeting viruses and bacteria. The high importance of therapeutic mAbs and their derivatives has called for the generation of well-characterized standards for method development and calibration. One such standard, the NISTmAb RM 8621 based on the antibody motavizumab, has been developed by the National Institute of Standards and Technologies (NIST) in the US. Here, we present the resonance assignment of the single chain variable fragment, NISTmAb-scFv, that was engineered by linking the variable domains of the heavy and light chains of the NISTmAb. Also, addition of a peptide, corresponding to the target antigen of motavizumab, to samples of NISTmAb-scFv has induced chemical shift perturbations on residues lining the antigen binding interface thereby indicating proper folding of the NISTmAb-scFv.
Collapse
Affiliation(s)
- Houman Ghasriani
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Sara Ahmadi
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Derek J Hodgson
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Yves Aubin
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
24
|
Manu VS, Olivieri C, Pavuluri K, Veglia G. Design and applications of water irradiation devoid RF pulses for ultra-high field biomolecular NMR spectroscopy. Phys Chem Chem Phys 2022; 24:18477-18481. [PMID: 35895081 PMCID: PMC9578148 DOI: 10.1039/d2cp01744j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water suppression is of paramount importance for many biological and analytical NMR spectroscopy applications. Here, we report the design of a new set of binomial-like radio frequency (RF) pulses that elude water irradiation while exciting or refocusing the remainder of the 1H spectrum. These pulses were generated using a combination of an evolutionary algorithm and artificial intelligence. They display higher sensitivity relative to classical water suppression schemes and tunable water selectivity to avoid suppressing 1H resonances near the water signal. The broad bandwidth excitation obtained with these RF pulses makes them suitable for several NMR applications at high and ultra-high-field magnetic fields.
Collapse
Affiliation(s)
- V S Manu
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 312 Church St. SE, Minneapolis, MN, 55455, USA.
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 312 Church St. SE, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
25
|
Hunashal Y, Percipalle M, Molnár T, Kardos J, Percipalle P, Esposito G. Approaching Protein Aggregation and Structural Dynamics by Equilibrium and Nonequilibrium Paramagnetic Perturbation. Anal Chem 2022; 94:10949-10958. [PMID: 35877130 DOI: 10.1021/acs.analchem.2c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PENELOP (Paramagnetic Equilibrium vs Nonequilibrium magnetization Enhancement or LOss Perturbation) is the presented nuclear magnetic resonance (NMR) approach to identify at once the location of proteins' exposed surface, hindered accessibility, and exchange processes occurring on a μs-ms time scale. In addition to mapping the protein surface accessibility, the application of this method under specific conditions makes it possible to distinguish conformational mobility and chemical exchange processes, thereby providing an alternative to characterization by more demanding techniques (transverse relaxation dispersion, saturation transfer, and high-pressure NMR). Moreover, its high sensitivity enables studying samples at low, physiologically more relevant concentrations. Association, dynamics, and oligomerization are addressed by PENELOP for a component of SARS-CoV-2 replication transcription complex and an amyloidogenic protein.
Collapse
Affiliation(s)
- Yamanappa Hunashal
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Dipartimento di Area Medica, Universita' di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Mathias Percipalle
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Department of Chemistry and Magnetic Resonance Center, University of Florence, 50019 Florence, Italy
| | - Tamás Molnár
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Jòzsef Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest 1117, Hungary
| | - Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,Department of Molecular Bioscience, The Wenner Gren Institute Stockholm University, Stockholm SE-106 91, Sweden
| | - Gennaro Esposito
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.,INBB, Viale Medaglie d'Oro 305, Roma 00136, Italy
| |
Collapse
|
26
|
Mukundan A, Byeon CH, Hinck CS, Cunningham K, Campion T, Smyth DJ, Maizels RM, Hinck AP. Convergent evolution of a parasite-encoded complement control protein-scaffold to mimic binding of mammalian TGF-β to its receptors, TβRI and TβRII. J Biol Chem 2022; 298:101994. [PMID: 35500648 PMCID: PMC9163516 DOI: 10.1016/j.jbc.2022.101994] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/02/2022] Open
Abstract
The mouse intestinal helminth Heligmosomoides polygyrus modulates host immune responses by secreting a transforming growth factor (TGF)-β mimic (TGM), to expand the population of Foxp3+ Tregs. TGM comprises five complement control protein (CCP)-like domains, designated D1-D5. Though lacking homology to TGF-β, TGM binds directly to the TGF-β receptors TβRI and TβRII and stimulates the differentiation of naïve T-cells into Tregs. However, the molecular determinants of binding are unclear. Here, we used surface plasmon resonance, isothermal calorimetry, NMR spectroscopy, and mutagenesis to investigate how TGM binds the TGF-β receptors. We demonstrate that binding is modular, with D1-D2 binding to TβRI and D3 binding to TβRII. D1-D2 and D3 were further shown to compete with TGF-β(TβRII)2 and TGF-β for binding to TβRI and TβRII, respectively. The solution structure of TGM-D3 revealed that TGM adopts a CCP-like fold but is also modified to allow the C-terminal strand to diverge, leading to an expansion of the domain and opening potential interaction surfaces. TGM-D3 also incorporates a long structurally ordered hypervariable loop, adding further potential interaction sites. Through NMR shift perturbations and binding studies of TGM-D3 and TβRII variants, TGM-D3 was shown to occupy the same site of TβRII as bound by TGF-β using both a novel interaction surface and the hypervariable loop. These results, together with the identification of other secreted CCP-like proteins with immunomodulatory activity in H. polygyrus, suggest that TGM is part of a larger family of evolutionarily plastic parasite effector molecules that mediate novel interactions with their host.
Collapse
Affiliation(s)
- Ananya Mukundan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania USA
| | - Chang-Hyeock Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania USA
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania USA
| | - Kyle Cunningham
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tiffany Campion
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Danielle J Smyth
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania USA.
| |
Collapse
|
27
|
Pleiotrophin Interaction with Synthetic Glycosaminoglycan Mimetics. Pharmaceuticals (Basel) 2022; 15:ph15050496. [PMID: 35631323 PMCID: PMC9147657 DOI: 10.3390/ph15050496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022] Open
Abstract
Chondroitin sulfate (CS) E is the natural ligand for pleiotrophin (PTN) in the central nervous system (CNS) of the embryo. Some structures of PTN in solution have been solved, but no precise location of the binding site has been reported yet. Using 15N-labelled PTN and HSQC NMR experiments, we studied the interactions with a synthetic CS-E tetrasaccharide corresponding to the minimum binding sequence. The results agree with the data for larger GAG (glycosaminoglycans) sequences and confirm our hypothesis that a synthetic tetrasaccharide is long enough to fully interact with PTN. We hypothesize that the central region of PTN is an intrinsically disordered region (IDR) and could modify its properties upon binding. The second tetrasaccharide has two benzyl groups and shows similar effects on PTN. Finally, the last measured compound aggregated but beforehand, showed a behavior compatible with a slow exchange in the NMR time scale. We propose the same binding site and mode for the tetrasaccharides with and without benzyl groups.
Collapse
|
28
|
Bonn SM, Fushman D. Backbone NMR resonance assignment of the intrinsically disordered UBact protein from Nitrospira nitrosa. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:129-134. [PMID: 35107780 PMCID: PMC9081246 DOI: 10.1007/s12104-022-10070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin signaling in eukaryotes is responsible for a variety of cellular outcomes, most notably proteasomal degradation. A recent bioinformatic study has revealed the existence of a new proteasomal operon in certain gram-negative bacteria phyla. This operon contains genes similar to those included in the prokaryotic ubiquitin-like protein (Pup) proteasomal operon, but do not themselves contain Pup. Instead, they encode for a protein termed UBact with 30% sequence similarity to Pup. Here, we report the near-complete NMR assignment of the backbone and partial assignment of the side chain chemical shifts of the UBact protein from Nitrospira nitrosa. The 1H-15N HSQC spectrum shows a narrow spread of proton NMR signals, characteristic of an intrinsically disordered protein. This chemical shift assignment will facilitate further NMR studies to explore the role of UBact in this new putative proteasomal operon.
Collapse
Affiliation(s)
- Steven M Bonn
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
29
|
Kauffmann AD, Kennedy SD, Moss WN, Kierzek E, Kierzek R, Turner DH. Nuclear magnetic resonance reveals a two hairpin equilibrium near the 3'-splice site of influenza A segment 7 mRNA that can be shifted by oligonucleotides. RNA (NEW YORK, N.Y.) 2022; 28:508-522. [PMID: 34983822 PMCID: PMC8925974 DOI: 10.1261/rna.078951.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Influenza A kills hundreds of thousands of people globally every year and has the potential to generate more severe pandemics. Influenza A's RNA genome and transcriptome provide many potential therapeutic targets. Here, nuclear magnetic resonance (NMR) experiments suggest that one such target could be a hairpin loop of 8 nucleotides in a pseudoknot that sequesters a 3' splice site in canonical pairs until a conformational change releases it into a dynamic 2 × 2-nt internal loop. NMR experiments reveal that the hairpin loop is dynamic and able to bind oligonucleotides as short as pentamers. A 3D NMR structure of the complex contains 4 and likely 5 bp between pentamer and loop. Moreover, a hairpin sequence was discovered that mimics the equilibrium of the influenza hairpin between its structure in the pseudoknot and upon release of the splice site. Oligonucleotide binding shifts the equilibrium completely to the hairpin secondary structure required for pseudoknot folding. The results suggest this hairpin can be used to screen for compounds that stabilize the pseudoknot and potentially reduce splicing.
Collapse
Affiliation(s)
- Andrew D Kauffmann
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Scott D Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Walter N Moss
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Douglas H Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
30
|
Lee K, Park SH, Lee JH. Selective detection of protein acetylation by NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107169. [PMID: 35255256 DOI: 10.1016/j.jmr.2022.107169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Selective detection of biomolecules and their modifications in cells is essential for understanding cell functions and diseases. We have developed an NMR pulse sequence, Ac-FIND (Acetylation-FIltered aNd eDited), which uses isotope editing/filtering techniques for selective detection of protein acetylation. Acetylation of the N-terminus and lysine side chains by N-succinimidyl acetate was selectively observed for intrinsically disordered α-synuclein and well-ordered ubiquitin. Furthermore, when nonacetylated 13C/15N-enriched α-synuclein was introduced into live HEK293 cells, intracellular N-terminal acetylation of α-synuclein was detected by the appearance of a single peak using Ac-FIND. This work demonstrates the utility of NMR to detect a specific protein modification both in vitro and in live cells.
Collapse
Affiliation(s)
- Kyungryun Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sho Hee Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jung Ho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea; Advanced Institutes of Convergence Technology, Suwon, Gyeonggi-do 16229, South Korea.
| |
Collapse
|
31
|
Secondary structure prediction for RNA sequences including N 6-methyladenosine. Nat Commun 2022; 13:1271. [PMID: 35277476 PMCID: PMC8917230 DOI: 10.1038/s41467-022-28817-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/10/2022] [Indexed: 01/22/2023] Open
Abstract
There is increasing interest in the roles of covalently modified nucleotides in RNA. There has been, however, an inability to account for modifications in secondary structure prediction because of a lack of software and thermodynamic parameters. We report the solution for these issues for N6-methyladenosine (m6A), allowing secondary structure prediction for an alphabet of A, C, G, U, and m6A. The RNAstructure software now works with user-defined nucleotide alphabets of any size. We also report a set of nearest neighbor parameters for helices and loops containing m6A, using experiments. Interestingly, N6-methylation decreases folding stability for adenosines in the middle of a helix, has little effect on folding stability for adenosines at the ends of helices, and increases folding stability for unpaired adenosines stacked on a helix. We demonstrate predictions for an N6-methylation-activated protein recognition site from MALAT1 and human transcriptome-wide effects of N6-methylation on the probability of adenosine being buried in a helix. RNA folding free energy nearest neighbor parameters were determined for sequences with the nucleotide m6A. The RNAstructure software package can accommodate modified nucleotides, enabling secondary structure prediction of sequences with m6A.
Collapse
|
32
|
Cantarutti C, Hunashal Y, La Rosa C, Condorelli M, Giorgetti S, Bellotti V, Fogolari F, Esposito G. The corona of protein-gold nanoparticle systems: the role of ionic strength. Phys Chem Chem Phys 2021; 24:1630-1637. [PMID: 34951613 DOI: 10.1039/d1cp04574a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The nature of the nanoparticle-protein corona is emerging as a key aspect in determining the impact of nanomaterials on proteins and in general on the biological response. We previously demonstrated that citrate-stabilized gold nanoparticles (Cit-AuNPs) interact with β2-microglobulin (β2m) preserving the protein native structure. Moreover, Cit-AuNPs are able to hinder in vitro fibrillogenesis of a β2m pathologic variant, namely D76N, by reducing the oligomeric association of the protein in solution. Here, we clarify the characteristics of the interaction between β2m and Cit-AuNPs by means of different techniques, i.e. surface enhanced Raman spectroscopy, NMR and quartz crystal microbalance with dissipation monitoring. All the results obtained clearly show that by simply changing the ionic strength of the medium it is possible to switch from a labile and transient nature of the protein-NP adduct featuring the so-called soft corona, to a more "hard" interaction with a layer of proteins having a longer residence time on the NP surface. This confirms that the interaction between β2m and Cit-AuNPs is dominated by electrostatic forces which can be tuned by modifying the ionic strength.
Collapse
Affiliation(s)
| | - Yamanappa Hunashal
- DAME, Università di Udine, 33100 Udine, Italy.,Science Division, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Carmelo La Rosa
- Dip. Scienze Chimiche, Università di Catania, 95125 Catania, Italy
| | | | - Sofia Giorgetti
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy
| | - Vittorio Bellotti
- Dipartimento di Medicina Molecolare, Università di Pavia, 27100 Pavia, Italy.,Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, UK
| | - Federico Fogolari
- DMIF, Università di Udine, 33100 Udine, Italy.,INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| | - Gennaro Esposito
- Science Division, New York University Abu Dhabi, Abu Dhabi, UAE. .,INBB, Viale Medaglie d'Oro 305, 00136 Roma, Italy
| |
Collapse
|
33
|
Ortlieb LO, Caruso ÍP, Mebus-Antunes NC, Da Poian AT, Petronilho EDC, Figueroa-Villar JD, Nascimento CJ, Almeida FCL. Searching for drug leads targeted to the hydrophobic cleft of dengue virus capsid protein. J Enzyme Inhib Med Chem 2021; 37:287-298. [PMID: 34894959 PMCID: PMC8667904 DOI: 10.1080/14756366.2021.2004591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We synthesised and screened 18 aromatic derivatives of guanylhydrazones and oximes aromatic for their capacity to bind to dengue virus capsid protein (DENVC). The intended therapeutic target was the hydrophobic cleft of DENVC, which is a region responsible for its anchoring in lipid droplets in the infected cells. The inhibition of this process completely suppresses virus infectivity. Using NMR, we describe five compounds able to bind to the α1-α2 interface in the hydrophobic cleft. Saturation transfer difference experiments showed that the aromatic protons of the ligands are important for the interaction with DENVC. Fluorescence binding isotherms indicated that the selected compounds bind at micromolar affinities, possibly leading to binding-induced conformational changes. NMR-derived docking calculations of ligands showed that they position similarly in the hydrophobic cleft. Cytotoxicity experiments and calculations of in silico drug properties suggest that these compounds may be promising candidates in the search for antivirals targeting DENVC.
Collapse
Affiliation(s)
- Liliane O Ortlieb
- Department of Chemistry, Military Institute of Engineering (IME), Rio de Janeiro, Brazil.,Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Ícaro P Caruso
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Multiuser Center for Biomolecular Innovation (CMIB) and Department of Physics, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Nathane C Mebus-Antunes
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Andrea T Da Poian
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elaine da C Petronilho
- Department of Chemistry, Military Institute of Engineering (IME), Rio de Janeiro, Brazil
| | | | - Claudia J Nascimento
- Department of Natural Sciences, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry Leopoldo de Meis (IBqM) and National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Maddur AA, Voehler M, Panizzi P, Meiler J, Bock PE, Verhamme IM. Mapping of the fibrinogen-binding site on the staphylocoagulase C-terminal repeat region. J Biol Chem 2021; 298:101493. [PMID: 34915025 PMCID: PMC8761706 DOI: 10.1016/j.jbc.2021.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/12/2023] Open
Abstract
Fibrin (Fbn) deposits are a hallmark of staphylocoagulase (SC)-positive endocarditis. Binding of the N terminus of Staphylococcus aureus SC to host prothrombin triggers formation of an active SC·prothrombin∗ complex that cleaves host fibrinogen to Fbn. In addition, the C-terminal domain of the prototypical SC contains one pseudorepeat (PR) and seven repeats (R1 → R7) that bind fibrinogen/Fbn fragment D (frag D) by a mechanism that is unclear. Here, we define affinities and stoichiometries of frag D binding to C-terminal SC constructs, using fluorescence equilibrium binding, NMR titration, alanine scanning, and native PAGE. We found that constructs containing the PR and single repeats bound frag D with KD ∼50 to 130 nM and a 1:1 stoichiometry, indicating a conserved binding site bridging the PR and each repeat. NMR titration of PR-R7 with frag D revealed that residues 22 to 49, bridging PR and R7, constituted the minimal peptide (MP) for binding, corroborated by alanine scanning, and binding of labeled MP to frag D. MP alignment with the PR-R and inter-repeat junctions identified critical conserved residues. Full-length PR-(R1 → R7) bound frag D with KD ∼20 nM and a stoichiometry of 1:5, whereas constructs containing the PR and various three repeats competed with PR-(R1 → R7) for frag D binding, with a 1:3 stoichiometry. These findings are consistent with binding at PR-R and R-R junctions with modest inter-repeat sequence variability. CD of PR-R7 and PR-(R1 → R7) suggested a disordered flexible structure, allowing binding of multiple fibrin(ogen) molecules. Taken together, these results provide insights into pathogen localization on host fibrin networks.
Collapse
Affiliation(s)
- Ashoka A. Maddur
- FUJIFILM Diosynth Biotechnologies, College Station, Texas, USA,For correspondence: Ingrid M. Verhamme; Ashoka A. Maddur
| | - Markus Voehler
- Vanderbilt Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Peter Panizzi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA,Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Paul E. Bock
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ingrid M. Verhamme
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA,For correspondence: Ingrid M. Verhamme; Ashoka A. Maddur
| |
Collapse
|
35
|
Zhang R, Isozumi N, Mori M, Okuta R, Singkaravanit-Ogawa S, Imamura T, Kurita JI, Gan P, Shirasu K, Ohki S, Takano Y. Fungal effector SIB1 of Colletotrichum orbiculare has unique structural features and can suppress plant immunity in Nicotiana benthamiana. J Biol Chem 2021; 297:101370. [PMID: 34756891 PMCID: PMC8633582 DOI: 10.1016/j.jbc.2021.101370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection; however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species triggered by two different pathogen-associated molecular patterns, chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five β-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel β-barrel structure. However, the β-strands were found to display a unique topology, one pair of these β-strands formed a parallel β-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress pathogen-associated molecular pattern-triggered immunity in N. benthamiana.
Collapse
Affiliation(s)
- Ru Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Noriyoshi Isozumi
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan
| | - Masashi Mori
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan.
| | - Ryuta Okuta
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Tomohiro Imamura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Ishikawa, Japan.
| | | |
Collapse
|
36
|
Wang X, Yu B, Iwahara J. Hindered Rotations of Protein Asparagine/Glutamine Side-Chain NH 2 Groups: Impact of Hydrogen Bonding with DNA. J Phys Chem Lett 2021; 12:11378-11382. [PMID: 34784468 PMCID: PMC8643942 DOI: 10.1021/acs.jpclett.1c03467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hindered rotation about an sp2 C-N bond is known to occur in arginine (Arg), asparagine (Asn), and glutamine (Gln) side chains of proteins. However, very little is known about the rotational dynamics of Asn and Gln side-chain NH2 groups. Here, using a unique NMR method, we quantitatively characterized the hindered rotations of protein Asn/Gln side-chain NH2 groups. This NMR method yields simple NH2-selective spectra that allow for an accurate determination of the kinetic rate constants for the hindered rotations. Through the NMR measurements at different temperatures, we investigated the energy barriers that restrict the C-N bond rotations of protein side-chain NH2 groups. Through a comparison of the kinetic data for the free and DNA-bound states of the Antp homeodomain, we also examined the impact of hydrogen bonding on the hindered rotations of the side-chain NH2 groups. Our data suggest that the hydrogen bonding increases the energy barriers by 1-6 kJ/mol.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Binhan Yu
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
37
|
Bush JA, Aikawa H, Fuerst R, Li Y, Ursu A, Meyer SM, Benhamou RI, Chen JL, Khan T, Wagner-Griffin S, Van Meter MJ, Tong Y, Olafson H, McKee KK, Childs-Disney JL, Gendron TF, Zhang Y, Coyne AN, Wang ET, Yildirim I, Wang KW, Petrucelli L, Rothstein JD, Disney MD. Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G 4C 2) repeat expansion in vitro and in vivo ALS models. Sci Transl Med 2021; 13:eabd5991. [PMID: 34705518 DOI: 10.1126/scitranslmed.abd5991] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jessica A Bush
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Haruo Aikawa
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Rita Fuerst
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yue Li
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrei Ursu
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Samantha M Meyer
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Raphael I Benhamou
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Jonathan L Chen
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Tanya Khan
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Sarah Wagner-Griffin
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Montina J Van Meter
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Yuquan Tong
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Hailey Olafson
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kendra K McKee
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jessica L Childs-Disney
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Yongjie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Alyssa N Coyne
- Robert Packard Center for ALS Research, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Eric T Wang
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Kye Won Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jeffrey D Rothstein
- Robert Packard Center for ALS Research, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Matthew D Disney
- Department of Chemistry, Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
38
|
Wernersson S, Carlström G, Jakobsson A, Akke M. Rapid measurement of heteronuclear transverse relaxation rates using non-uniformly sampled R1ρ accordion experiments. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:571-587. [PMID: 37905216 PMCID: PMC10539792 DOI: 10.5194/mr-2-571-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 11/01/2023]
Abstract
Multidimensional, heteronuclear NMR relaxation methods are used extensively to characterize the dynamics of biological macromolecules. Acquisition of relaxation datasets on proteins typically requires significant measurement time, often several days. Accordion spectroscopy offers a powerful means to shorten relaxation rate measurements by encoding the "relaxation dimension" into the indirect evolution period in multidimensional experiments. Time savings can also be achieved by non-uniform sampling (NUS) of multidimensional NMR data, which is used increasingly to improve spectral resolution or increase sensitivity per unit time. However, NUS is not commonly implemented in relaxation experiments, because most reconstruction algorithms are inherently nonlinear, leading to problems when estimating signal intensities, relaxation rate constants and their error bounds. We have previously shown how to avoid these shortcomings by combining accordion spectroscopy with NUS, followed by data reconstruction using sparse exponential mode analysis, thereby achieving a dramatic decrease in the total length of longitudinal relaxation experiments. Here, we present the corresponding transverse relaxation experiment, taking into account the special considerations required for its successful implementation in the framework of the accordion-NUS approach. We attain the highest possible precision in the relaxation rate constants by optimizing the NUS scheme with respect to the Cramér-Rao lower bound of the variance of the estimated parameter, given the total number of sampling points and the spectrum-specific signal characteristics. The resulting accordion-NUS R 1 ρ relaxation experiment achieves comparable precision in the parameter estimates compared to conventional CPMG (Carr-Purcell-Meiboom-Gill) R 2 or spin-lock R 1 ρ experiments while saving an order of magnitude in experiment time.
Collapse
Affiliation(s)
- Sven Wernersson
- Biophysical Chemistry, Center for Molecular Protein Science,
Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Göran Carlström
- Centre for Analysis and Synthesis, Department of Chemistry, Lund
University, P.O. Box 124, 22100 Lund, Sweden
| | - Andreas Jakobsson
- Department of Mathematical Statistics, Lund University, P.O. Box 118,
22100 Lund, Sweden
| | - Mikael Akke
- Biophysical Chemistry, Center for Molecular Protein Science,
Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
39
|
Palanikumar L, Karpauskaite L, Al-Sayegh M, Chehade I, Alam M, Hassan S, Maity D, Ali L, Kalmouni M, Hunashal Y, Ahmed J, Houhou T, Karapetyan S, Falls Z, Samudrala R, Pasricha R, Esposito G, Afzal AJ, Hamilton AD, Kumar S, Magzoub M. Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat Commun 2021; 12:3962. [PMID: 34172723 PMCID: PMC8233319 DOI: 10.1038/s41467-021-23985-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Missense mutations in p53 are severely deleterious and occur in over 50% of all human cancers. The majority of these mutations are located in the inherently unstable DNA-binding domain (DBD), many of which destabilize the domain further and expose its aggregation-prone hydrophobic core, prompting self-assembly of mutant p53 into inactive cytosolic amyloid-like aggregates. Screening an oligopyridylamide library, previously shown to inhibit amyloid formation associated with Alzheimer's disease and type II diabetes, identified a tripyridylamide, ADH-6, that abrogates self-assembly of the aggregation-nucleating subdomain of mutant p53 DBD. Moreover, ADH-6 targets and dissociates mutant p53 aggregates in human cancer cells, which restores p53's transcriptional activity, leading to cell cycle arrest and apoptosis. Notably, ADH-6 treatment effectively shrinks xenografts harboring mutant p53, while exhibiting no toxicity to healthy tissue, thereby substantially prolonging survival. This study demonstrates the successful application of a bona fide small-molecule amyloid inhibitor as a potent anticancer agent.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Laura Karpauskaite
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Maheen Alam
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sarah Hassan
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Debabrata Maity
- Department of Chemistry, New York University, New York, NY, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Yamanappa Hunashal
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,DAME, Università di Udine, Udine, Italy
| | - Jemil Ahmed
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA
| | - Tatiana Houhou
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Shake Karapetyan
- Physics Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Zackary Falls
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Gennaro Esposito
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,INBB, Rome, Italy
| | - Ahmed J Afzal
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | | | - Sunil Kumar
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA.
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
40
|
Marincin K, Pal I, Frueh D. Using delayed decoupling to attenuate residual signals in editing filters. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:475-487. [PMID: 34661195 PMCID: PMC8516316 DOI: 10.5194/mr-2-475-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Isotope filtering methods are instrumental in biomolecular nuclear magnetic resonance (NMR) studies as they isolate signals of chemical moieties of interest within complex molecular assemblies. However, isotope filters suppress undesired signals of isotopically enriched molecules through scalar couplings, and variations in scalar couplings lead to imperfect suppressions, as occurs for aliphatic and aromatic moieties in proteins. Here, we show that signals that have escaped traditional filters can be attenuated with mitigated sensitivity losses for the desired signals of unlabeled moieties. The method uses a shared evolution between the detection and preceding preparation period to establish non-observable antiphase coherences and eliminates them through composite pulse decoupling. We demonstrate the method by isolating signals of an unlabeled post-translational modification tethered to an isotopically enriched protein.
Collapse
Affiliation(s)
- Kenneth A. Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
| | - Indrani Pal
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
- current address: Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins
School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Structure of Nanobody Nb23. Molecules 2021; 26:molecules26123567. [PMID: 34207949 PMCID: PMC8230604 DOI: 10.3390/molecules26123567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Nanobodies, or VHHs, are derived from heavy chain-only antibodies (hcAbs) found in camelids. They overcome some of the inherent limitations of monoclonal antibodies (mAbs) and derivatives thereof, due to their smaller molecular size and higher stability, and thus present an alternative to mAbs for therapeutic use. Two nanobodies, Nb23 and Nb24, have been shown to similarly inhibit the self-aggregation of very amyloidogenic variants of β2-microglobulin. Here, the structure of Nb23 was modeled with the Chemical-Shift (CS)-Rosetta server using chemical shift assignments from nuclear magnetic resonance (NMR) spectroscopy experiments, and used as prior knowledge in PONDEROSA restrained modeling based on experimentally assessed internuclear distances. Further validation was comparatively obtained with the results of molecular dynamics trajectories calculated from the resulting best energy-minimized Nb23 conformers. Methods: 2D and 3D NMR spectroscopy experiments were carried out to determine the assignment of the backbone and side chain hydrogen, nitrogen and carbon resonances to extract chemical shifts and interproton separations for restrained modeling. Results: The solution structure of isolated Nb23 nanobody was determined. Conclusions: The structural analysis indicated that isolated Nb23 has a dynamic CDR3 loop distributed over different orientations with respect to Nb24, which could determine differences in target antigen affinity or complex lability.
Collapse
|
42
|
Kim MJ, Ko YJ, Yun JH, Lee W. Solution structure of the Myb domain of Terfa derived from Zebrafish interacting with both human and plant telomeric DNA. Biochem Biophys Res Commun 2021; 559:252-258. [PMID: 33984809 DOI: 10.1016/j.bbrc.2021.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Telomeric repeat binding factor a (Terfa) derived from zebrafish is a homologous protein with human telomeric repeat binding factor 2 (TRF2). Terfa is known as a senescence-associated biomarker in various research through the zebrafish animal model. In addition, according to the findings so far, it has been confirmed that human or plant telomere binding proteins bind to telomeric DNA specialized for each species, but, in our result, Terfa shows it strongly binds to both human or plant type telomeric DNA. Here we characterized the DNA binding properties and demonstrate the solution structure of Terfa and identified residues participating in the interaction with both human and plant telomeric DNA. In DNA recognition of human and plant telomere binding proteins, the N-terminal loop and the α-helix 3 part of Myb domain were bound majorly, whereas, in the case of Terfa, the N-terminal loop, the α-helix 1-2 loop, and α-helix 2 of the Myb domain were dominantly bound. Therefore, when Terfa recognizes DNA, it was found that the binding module differs from previously known telomere binding proteins. The comparison of the structure of the telomere binding proteins provides an opportunity to understand more specifically how the structural properties of each telomere binding protein are associated with telomeric DNA binding from an evolutionary point of view.
Collapse
Affiliation(s)
- Min-Jung Kim
- PCG-Biotech, Ltd., Yonsei Engineering Research Park, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Yoon-Joo Ko
- Nuclear Magnetic Resonance Laboratory, National Center for Inter-University Research Facilities, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Ji-Hye Yun
- PCG-Biotech, Ltd., Yonsei Engineering Research Park, Yonsei University, Seoul, 120-749, Republic of Korea.
| | - Weontae Lee
- PCG-Biotech, Ltd., Yonsei Engineering Research Park, Yonsei University, Seoul, 120-749, Republic of Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Republic of Korea.
| |
Collapse
|
43
|
Robertson A, Ying J, Bax A. Four-dimensional NOE-NOE spectroscopy of SARS-CoV-2 Main Protease to facilitate resonance assignment and structural analysis. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:129-138. [PMID: 37904772 PMCID: PMC10539749 DOI: 10.5194/mr-2-129-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 11/01/2023]
Abstract
Resonance assignment and structural studies of larger proteins by nuclear magnetic resonance (NMR) can be challenging when exchange broadening, multiple stable conformations, and 1 H back-exchange of the fully deuterated chain pose problems. These difficulties arise for the SARS-CoV-2 Main Protease, a homodimer of 2 × 306 residues. We demonstrate that the combination of four-dimensional (4D) TROSY-NOESY-TROSY spectroscopy and 4D NOESY-NOESY-TROSY spectroscopy provides an effective tool for delineating the 1 H-1 H dipolar relaxation network. In combination with detailed structural information obtained from prior X-ray crystallography work, such data are particularly useful for extending and validating resonance assignments as well as for probing structural features.
Collapse
Affiliation(s)
- Angus J. Robertson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. J Biol Chem 2021; 296:100499. [PMID: 33667547 PMCID: PMC8042448 DOI: 10.1016/j.jbc.2021.100499] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Human PrP (huPrP) is a high-affinity receptor for oligomeric amyloid β (Aβ) protein aggregates. Binding of Aβ oligomers to membrane-anchored huPrP has been suggested to trigger neurotoxic cell signaling in Alzheimer’s disease, while an N-terminal soluble fragment of huPrP can sequester Aβ oligomers and reduce their toxicity. Synthetic oligomeric Aβ species are known to be heterogeneous, dynamic, and transient, rendering their structural investigation particularly challenging. Here, using huPrP to preserve Aβ oligomers by coprecipitating them into large heteroassemblies, we investigated the conformations of Aβ(1–42) oligomers and huPrP in the complex by solid-state MAS NMR spectroscopy. The disordered N-terminal region of huPrP becomes immobilized in the complex and therefore visible in dipolar spectra without adopting chemical shifts characteristic of a regular secondary structure. Most of the well-defined C-terminal part of huPrP is part of the rigid complex, and solid-state NMR spectra suggest a loss in regular secondary structure in the two C-terminal α-helices. For Aβ(1–42) oligomers in complex with huPrP, secondary chemical shifts reveal substantial β-strand content. Importantly, not all Aβ(1–42) molecules within the complex have identical conformations. Comparison with the chemical shifts of synthetic Aβ fibrils suggests that the Aβ oligomer preparation represents a heterogeneous mixture of β-strand-rich assemblies, of which some have the potential to evolve and elongate into different fibril polymorphs, reflecting a general propensity of Aβ to adopt variable β-strand-rich conformers. Taken together, our results reveal structural changes in huPrP upon binding to Aβ oligomers that suggest a role of the C terminus of huPrP in cell signaling. Trapping Aβ(1–42) oligomers by binding to huPrP has proved to be a useful tool for studying the structure of these highly heterogeneous β-strand-rich assemblies.
Collapse
|
45
|
Wang Y, An L, Yang Y, Yao L. Generating Five Independent Molecular Alignments for Simultaneous Protein Structure and Dynamics Determination Using Nuclear Magnetic Resonance Spectroscopy. Anal Chem 2020; 92:15263-15269. [PMID: 33166130 DOI: 10.1021/acs.analchem.0c02882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Residual dipolar couplings (RDCs) are commonly used in NMR for protein structure and dynamics studies, but it is challenging to generate five independent RDC data sets (required for simultaneous structure and dynamics determination) for most protein molecules in the magnetic field. In this work, a reporter protein with a lanthanide tag is introduced to create five independent alignments. This reporter protein is then attached to target proteins where five independent sets of RDCs are also obtained for the target proteins. The fitting of RDCs provides important information about the structure and dynamics of the target proteins. The method is simple and effective and, in principle, can be used to generate complete sets of RDCs for different protein molecules.
Collapse
Affiliation(s)
| | - Liaoyuan An
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | |
Collapse
|
46
|
Kharchenko V, Nowakowski M, Jaremko M, Ejchart A, Jaremko Ł. Dynamic 15N{ 1H} NOE measurements: a tool for studying protein dynamics. JOURNAL OF BIOMOLECULAR NMR 2020; 74:707-716. [PMID: 32918646 PMCID: PMC7701129 DOI: 10.1007/s10858-020-00346-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Intramolecular motions in proteins are one of the important factors that determine their biological activity and interactions with molecules of biological importance. Magnetic relaxation of 15N amide nuclei allows one to monitor motions of protein backbone over a wide range of time scales. 15N{1H} nuclear Overhauser effect is essential for the identification of fast backbone motions in proteins. Therefore, exact measurements of NOE values and their accuracies are critical for determining the picosecond time scale of protein backbone. Measurement of dynamic NOE allows for the determination of NOE values and their probable errors defined by any sound criterion of nonlinear regression methods. The dynamic NOE measurements can be readily applied for non-deuterated or deuterated proteins in both HSQC and TROSY-type experiments. Comparison of the dynamic NOE method with commonly implied steady-state NOE is presented in measurements performed at three magnetic field strengths. It is also shown that improperly set NOE measurement cannot be restored with correction factors reported in the literature.
Collapse
Affiliation(s)
- Vladlena Kharchenko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Michal Nowakowski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Andrzej Ejchart
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Łukasz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
47
|
Insights into a Protein-Nanoparticle System by Paramagnetic Perturbation NMR Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25215187. [PMID: 33171781 PMCID: PMC7664681 DOI: 10.3390/molecules25215187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/12/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022]
Abstract
Background: The interaction between proteins and nanoparticles is a very relevant subject because of the potential applications in medicine and material science in general. Further interest derives from the amyloidogenic character of the considered protein, β2-microglobulin (β2m), which may be regarded as a paradigmatic system for possible therapeutic strategies. Previous evidence showed in fact that gold nanoparticles (AuNPs) are able to inhibit β2m fibril formation in vitro. Methods: NMR (Nuclear Magnetic Resonance) and ESR (Electron Spin Resonance) spectroscopy are employed to characterize the paramagnetic perturbation of the extrinsic nitroxide probe Tempol on β2m in the absence and presence of AuNPs to determine the surface accessibility properties and the occurrence of chemical or conformational exchange, based on measurements conducted under magnetization equilibrium and non-equilibrium conditions. Results: The nitroxide perturbation analysis successfully identifies the protein regions where protein-protein or protein-AuNPs interactions hinder accessibility or/and establish exchange contacts. These information give interesting clues to recognize the fibrillation interface of β2m and hypothesize a mechanism for AuNPs fibrillogenesis inhibition. Conclusions: The presented approach can be advantageously applied to the characterization of the interface in protein-protein and protein-nanoparticles interactions.
Collapse
|
48
|
Brinson RG, Elliott KW, Arbogast LW, Sheen DA, Giddens JP, Marino JP, Delaglio F. Principal component analysis for automated classification of 2D spectra and interferograms of protein therapeutics: influence of noise, reconstruction details, and data preparation. JOURNAL OF BIOMOLECULAR NMR 2020; 74:643-656. [PMID: 32700053 DOI: 10.1007/s10858-020-00332-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Protein therapeutics have numerous critical quality attributes (CQA) that must be evaluated to ensure safety and efficacy, including the requirement to adopt and retain the correct three-dimensional fold without forming unintended aggregates. Therefore, the ability to monitor protein higher order structure (HOS) can be valuable throughout the lifecycle of a protein therapeutic, from development to manufacture. 2D NMR has been introduced as a robust and precise tool to assess the HOS of a protein biotherapeutic. A common use case is to decide whether two groups of spectra are substantially different, as an indicator of difference in HOS. We demonstrate a quantitative use of principal component analysis (PCA) scores to perform this decision-making, and demonstrate the effect of acquisition and processing details on class separation using samples of NISTmAb monoclonal antibody Reference Material subjected to two different oxidative stress protocols. The work introduces an approach to computing similarity from PCA scores based upon the technique of histogram intersection, a method originally developed for retrieval of images from large databases. Results show that class separation can be robust with respect to random noise, reconstruction method, and analysis region selection. By contrast, details such as baseline distortion can have a pronounced effect, and so must be controlled carefully. Since the classification approach can be performed without the need to identify peaks, results suggest that it is possible to use even more efficient measurement strategies that do not produce spectra that can be analyzed visually, but nevertheless allow useful decision-making that is objective and automated.
Collapse
Affiliation(s)
- Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - K Wade Elliott
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Luke W Arbogast
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - David A Sheen
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - John P Giddens
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Frank Delaglio
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
49
|
Sensitivity enhancement of homonuclear multidimensional NMR correlations for labile sites in proteins, polysaccharides, and nucleic acids. Nat Commun 2020; 11:5317. [PMID: 33087707 PMCID: PMC7577996 DOI: 10.1038/s41467-020-19108-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/17/2020] [Indexed: 12/02/2022] Open
Abstract
Multidimensional TOCSY and NOESY are central experiments in chemical and biophysical NMR. Limited efficiencies are an intrinsic downside of these methods, particularly when targeting labile sites. This study demonstrates that the decoherence imparted on these protons through solvent exchanges can, when suitably manipulated, lead to dramatic sensitivity gains per unit time in the acquisition of these experiments. To achieve this, a priori selected frequencies are encoded according to Hadamard recipes, while concurrently subject to looped selective inversion or selective saturation procedures. Suitable processing then leads to protein, oligosaccharide and nucleic acid cross-peak enhancements of ≈200–1000% per scan, in measurements that are ≈10-fold faster than conventional counterparts. The extent of these gains will depend on the solvent exchange and relaxation rates of the targeted sites; these gains also benefit considerably from the spectral resolution provided by ultrahigh fields, as corroborated by NMR experiments at 600 MHz and 1 GHz. The mechanisms underlying these experiments’ enhanced efficiencies are analyzed on the basis of three-way polarization transfer interplays between the water, labile and non-labile protons, and the experimental results are rationalized using both analytical and numerical derivations. Limitations as well as further extensions of the proposed methods, are also discussed. Here, the authors present an approach that enhances the sensitivity of basic 2D biomolecular NMR experiments like NOESY and TOCSY, when carried out in polysaccharides, proteins and nucleic acids. This method combines principles associated to quantum Anti-Zeno Effects and advanced data acquisition methods based on Hadamard multiplexing.
Collapse
|
50
|
Brown JB, Summers HR, Brown LA, Marchant J, Canova PN, O'Hern CT, Abbott ST, Nyaunu C, Maxwell S, Johnson T, Moser MB, Ablan SD, Carter H, Freed EO, Summers MF. Structural and Mechanistic Studies of the Rare Myristoylation Signal of the Feline Immunodeficiency Virus. J Mol Biol 2020; 432:4076-4091. [PMID: 32442659 PMCID: PMC7316625 DOI: 10.1016/j.jmb.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
All retroviruses encode a Gag polyprotein containing an N-terminal matrix domain (MA) that anchors Gag to the plasma membrane and recruits envelope glycoproteins to virus assembly sites. Membrane binding by the Gag protein of HIV-1 and most other lentiviruses is dependent on N-terminal myristoylation of MA by host N-myristoyltransferase enzymes (NMTs), which recognize a six-residue "myristoylation signal" with consensus sequence: M1GXXX[ST]. For unknown reasons, the feline immunodeficiency virus (FIV), which infects both domestic and wild cats, encodes a non-consensus myristoylation sequence not utilized by its host or by other mammals (most commonly: M1GNGQG). To explore the evolutionary basis for this sequence, we compared the structure, dynamics, and myristoylation properties of native FIV MA with a mutant protein containing a consensus feline myristoylation motif (MANOS) and examined the impact of MA mutations on virus assembly and ability to support spreading infection. Unexpectedly, myristoylation efficiency of MANOS in Escherichia coli by co-expressed mammalian NMT was reduced by ~70% compared to the wild-type protein. NMR studies revealed that residues of the N-terminal myristoylation signal are fully exposed and mobile in the native protein but partially sequestered in the MANOS chimera, suggesting that the unusual FIV sequence is conserved to promote exposure and efficient myristoylation of the MA N terminus. In contrast, virus assembly studies indicate that the MANOS mutation does not affect virus assembly, but does prevent virus spread, in feline kidney cells. Our findings indicate that residues of the FIV myristoylation sequence play roles in replication beyond NMT recognition and Gag-membrane binding.
Collapse
Affiliation(s)
- Janae B Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Holly R Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Lola A Brown
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Paige N Canova
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Colin T O'Hern
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Sophia T Abbott
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Constance Nyaunu
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Simon Maxwell
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Talayah Johnson
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Morgan B Moser
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Sherimay D Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA
| | - Hannah Carter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute at Fredrick, Fredrick, MD 21702-1201, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|