1
|
Brunclik SA, Grotemeyer EN, Aghaei Z, Mian MR, Jackson TA. Investigating Ligand Sphere Perturbations on Mn III-Alkylperoxo Complexes. Molecules 2024; 29:1849. [PMID: 38675669 PMCID: PMC11053420 DOI: 10.3390/molecules29081849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Manganese catalysts that activate hydrogen peroxide carry out several different hydrocarbon oxidation reactions with high stereoselectivity. The commonly proposed mechanism for these reactions involves a key manganese(III)-hydroperoxo intermediate, which decays via O-O bond heterolysis to generate a Mn(V)-oxo species that institutes substrate oxidation. Due to the scarcity of characterized MnIII-hydroperoxo complexes, MnIII-alkylperoxo complexes are employed to understand factors that affect the mechanism of the O-O cleavage. Herein, we report a series of novel complexes, including two room-temperature-stable MnIII-alkylperoxo species, supported by a new amide-containing pentadentate ligand (6Medpaq5NO2). We use a combination of spectroscopic methods and density functional theory computations to probe the effects of the electronic changes in the ligand sphere trans to the hydroxo and alkylperoxo units to thermal stability and reactivity. The structural characterizations for both MnII(OTf)(6Medpaq5NO2) and [MnIII(OH)(6Medpaq5NO2)](OTf) were obtained via single-crystal X-ray crystallography. A perturbation to the ligand sphere allowed for a marked increase in reactivity towards an organic substrate, a modest change in the distribution of the O-O cleavage products from homolytic and heterolytic pathways, and little change in thermal stability.
Collapse
Affiliation(s)
- Samuel A. Brunclik
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA; (S.A.B.); (E.N.G.); (Z.A.)
| | - Elizabeth N. Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA; (S.A.B.); (E.N.G.); (Z.A.)
| | - Zahra Aghaei
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA; (S.A.B.); (E.N.G.); (Z.A.)
| | - Mohammad Rasel Mian
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS 66045, USA;
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA; (S.A.B.); (E.N.G.); (Z.A.)
| |
Collapse
|
2
|
Satpathy JK, Yadav R, Bagha UK, Kumar D, Sastri CV, de Visser SP. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)-Oxo Complexes: Insights from Experiment and Theory. Inorg Chem 2024; 63:6752-6766. [PMID: 38551622 DOI: 10.1021/acs.inorgchem.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Sulfur ligation in metalloenzymes often gives the active site unique properties, whether it is the axial cysteinate ligand in the cytochrome P450s or the equatorial sulfur/thiol ligation in nonheme iron enzymes. To understand sulfur ligation to iron complexes and how it affects the structural, spectroscopic, and intrinsic properties of the active species and the catalysis of substrates, we pursued a systematic study and compared sulfur with amine-ligated iron(IV)-oxo complexes. We synthesized and characterized a biomimetic N4S-ligated iron(IV)-oxo complex and compared the obtained results with an analogous N5-ligated iron(IV)-oxo complex. Our work shows that the amine for sulfur replacement in the equatorial ligand framework leads to a rate enhancement for oxygen atom and hydrogen atom transfer reactions. Moreover, the sulfur-ligated iron(IV)-oxo complex reacts through a different reaction mechanism as compared to the N5-ligated iron(IV)-oxo complex, where the former reacts through hydride transfer with the latter reacting via radical pathways. We show that the reactivity differences are caused by a dramatic change in redox potential between the two complexes. Our studies highlight the importance of implementing a sulfur ligand into the equatorial ligand framework of nonheme iron(IV)-oxo complexes and how it affects the physicochemical properties of the oxidant and its reactivity.
Collapse
Affiliation(s)
- Jagnyesh K Satpathy
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Umesh K Bagha
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Devesh Kumar
- Department of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow 226025, UP, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sam P de Visser
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, Assam, India
- The Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
3
|
Gingrich PW, Siegel JB, Tantillo DJ. Assessing Alkene Reactivity toward Cytochrome P450-Mediated Epoxidation through Localized Descriptors and Regression Modeling. J Chem Inf Model 2022; 62:1979-1987. [PMID: 35421306 DOI: 10.1021/acs.jcim.1c01567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prediction of sites of epoxidation by cytochrome P450s during metabolism is particularly important in drug design, as epoxides are capable of alkylating biological macromolecules. Reliable methods are needed to quantitatively predict P450-mediated epoxidation barriers for inclusion in high-throughput screening campaigns alongside protein-ligand docking. Utilizing the fractional occupation number weighted density (FOD) and orbital-weighted Fukui index (fw+) as descriptors of local reactivity and a data set of 36 alkene epoxidation barriers computed with density functional theory (DFT), we developed and validated a multiple linear regression model for the reliable estimation of epoxidation barriers using only substrate structures as input. Using our recommended level of theory (GFN2-xTB//GFN-FF), mean absolute errors in the training and test sets were found to be 0.66 and 0.70 kcal/mol, respectively, with coefficients of determination of ca. 0.80. We demonstrate the utility of this approach on three known substrates of CYP101A1 and further show that this approach is inappropriate for particularly electron-rich alkenes. By employing a modern semiempirical method on force-field-generated geometries, the required descriptors can be calculated on the millisecond timescale per structure, making the approach well suited for incorporation into high-throughput methodologies alongside docking.
Collapse
Affiliation(s)
- Phillip W Gingrich
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
4
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
5
|
Latifi R, Palluccio TD, Ye W, Minnick JL, Glinton KS, Rybak-Akimova EV, de Visser SP, Tahsini L. pH Changes That Induce an Axial Ligand Effect on Nonheme Iron(IV) Oxo Complexes with an Appended Aminopropyl Functionality. Inorg Chem 2021; 60:13821-13832. [PMID: 34291939 DOI: 10.1021/acs.inorgchem.1c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme iron enzymes often utilize a high-valent iron(IV) oxo species for the biosynthesis of natural products, but their high reactivity often precludes structural and functional studies of these complexes. In this work, a combined experimental and computational study is presented on a biomimetic nonheme iron(IV) oxo complex bearing an aminopyridine macrocyclic ligand and its reactivity toward olefin epoxidation upon changes in the identity and coordination ability of the axial ligand. Herein, we show a dramatic effect of the pH on the oxygen-atom-transfer (OAT) reaction with substrates. In particular, these changes have occurred because of protonation of the axial-bound pendant amine group, where its coordination to iron is replaced by a solvent molecule or anionic ligand. This axial ligand effect influences the catalysis, and we observe enhanced cyclooctene epoxidation yields and turnover numbers in the presence of the unbound protonated pendant amine group. Density functional theory studies were performed to support the experiments and highlight that replacement of the pendant amine with a neutral or anionic ligand dramatically lowers the rate-determining barriers of cyclooctene epoxidation. The computational work further establishes that the change in OAT is due to electrostatic interactions of the pendant amine cation that favorably affect the barrier heights.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Taryn D Palluccio
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Wanhua Ye
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jennifer L Minnick
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Kwame S Glinton
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Elena V Rybak-Akimova
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Laleh Tahsini
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
6
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Ali HS, Henchman RH, Visser SP. Mechanism of Oxidative Ring‐Closure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem 2021. [DOI: 10.1002/cctc.202100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Richard H. Henchman
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam P. Visser
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN UK
- Department of Chemical Engineering and Analytical Science The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
8
|
Liu Y, Chen Z, Shao Z, Guo R. Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic. Chem Commun (Camb) 2021; 57:3399-3402. [PMID: 33686388 DOI: 10.1039/d1cc00279a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The catalytic diversity of heme enzymes is a perpetuating pursuit for biomimetic chemistry, but heme nanozymes exhibit catalytic activity only reminiscent of peroxidases. Miraculously, the oxidase-like catalytic function of a heme cofactor is elicited with the help of gold nanoparticles (AuNPs) by maintaining heme with a low-valence state (ferrous) in a confined configuration.
Collapse
Affiliation(s)
- Yan Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | | | | | | |
Collapse
|
9
|
Chowdhury AS, Ali HS, Faponle AS, de Visser SP. How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleT JE. Phys Chem Chem Phys 2021; 22:27178-27190. [PMID: 33226036 DOI: 10.1039/d0cp05169a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytochrome P450 enzymes are versatile biocatalysts found in most forms of life. Generally, the cytochrome P450s react with dioxygen and hence are haem-based mono-oxygenases; however, in specific isozymes, H2O2 rather than O2 is used and these P450s act as peroxygenases. The P450 OleTJE is a peroxygenase that binds long to medium chain fatty acids and converts them to a range of products originating from Cα-hydroxylation, Cβ-hydroxylation, Cα-Cβ desaturation and decarboxylation of the substrate. There is still controversy regarding the details of the reaction mechanism of P450 OleTJE; how the products are formed and whether the product distributions can be influenced by external perturbations. To gain further insights into the structure and reactivity of P450 OleTJE, we set up a range of large active site model complexes as well as full enzymatic structures and did a combination of density functional theory studies and quantum mechanics/molecular mechanics calculations. In particular, the work focused on the mechanisms leading to these products under various reaction conditions. Thus, for a small cluster model, we find a highly selective Cα-hydroxylation pathway that is preferred over Cβ-H hydrogen atom abstraction by at least 10 kcal mol-1. Introduction of polar residues to the model, such as an active site protonated histidine residue or through external electric field effects, lowers the Cβ-H hydrogen atom abstraction barriers are lowered, while a full QM/MM model brings the Cα-H and Cβ-H hydrogen atom abstraction barriers within 1 kcal mol-1. Our studies; therefore, implicate that environmental effects in the second-coordination sphere can direct and guide selectivities in enzymatic reaction mechanisms.
Collapse
Affiliation(s)
- Ahmed Shahria Chowdhury
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | | | | | | |
Collapse
|
10
|
Lee CWZ, Mubarak MQE, Green AP, de Visser SP. How Does Replacement of the Axial Histidine Ligand in Cytochrome c Peroxidase by N δ-Methyl Histidine Affect Its Properties and Functions? A Computational Study. Int J Mol Sci 2020; 21:ijms21197133. [PMID: 32992593 PMCID: PMC7583937 DOI: 10.3390/ijms21197133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Heme peroxidases have important functions in nature related to the detoxification of H2O2. They generally undergo a catalytic cycle where, in the first stage, the iron(III)-heme-H2O2 complex is converted into an iron(IV)-oxo-heme cation radical species called Compound I. Cytochrome c peroxidase Compound I has a unique electronic configuration among heme enzymes where a metal-based biradical is coupled to a protein radical on a nearby Trp residue. Recent work using the engineered Nδ-methyl histidine-ligated cytochrome c peroxidase highlighted changes in spectroscopic and catalytic properties upon axial ligand substitution. To understand the axial ligand effect on structure and reactivity of peroxidases and their axially Nδ-methyl histidine engineered forms, we did a computational study. We created active site cluster models of various sizes as mimics of horseradish peroxidase and cytochrome c peroxidase Compound I. Subsequently, we performed density functional theory studies on the structure and reactivity of these complexes with a model substrate (styrene). Thus, the work shows that the Nδ-methyl histidine group has little effect on the electronic configuration and structure of Compound I and little changes in bond lengths and the same orbital occupation is obtained. However, the Nδ-methyl histidine modification impacts electron transfer processes due to a change in the reduction potential and thereby influences reactivity patterns for oxygen atom transfer. As such, the substitution of the axial histidine by Nδ-methyl histidine in peroxidases slows down oxygen atom transfer to substrates and makes Compound I a weaker oxidant. These studies are in line with experimental work on Nδ-methyl histidine-ligated cytochrome c peroxidases and highlight how the hydrogen bonding network in the second coordination sphere has a major impact on the function and properties of the enzyme.
Collapse
Affiliation(s)
- Calvin W. Z. Lee
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Anthony P. Green
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +44-161-306-4882
| |
Collapse
|
11
|
Kumar R, Pandey B, Sen A, Ansari M, Sharma S, Rajaraman G. Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Ma Z, Nakatani N, Fujii H, Hada M. DFT insight into axial ligand effects on electronic structure and mechanistic reactivity of oxoiron(iv) porphyrin. Phys Chem Chem Phys 2020; 22:12173-12179. [PMID: 32436532 DOI: 10.1039/d0cp01867h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A series of DFT studies on the epoxidation reactions of olefins by oxoiron(iv) porphyrin cation radical complexes are performed in this work, to elucidate the axial ligand effects on the electronic features and reaction mechanism in detail. We analyzed the molecular orbitals, spin populations, and Mulliken charges along the intrinsic reaction coordinate route. From the findings, we confirmed that the interaction between the axial ligand and the oxoiron(iv) porphyrin is strong and the initial changes in the electronic structures occur early during the reaction, which further enhances the reactivity toward olefin epoxidation. More importantly, the patterns of the electron transfer from olefin to oxoiron(iv) porphyrin were impacted by the axial ligand. The pattern of successive electron transfer from Fe-O to porphyrin and then from C[double bond, length as m-dash]C to Fe-O for oxoiron(iv) porphyrin in case of fluorine and acetate axial ligands, whereas the pattern of electron transfer occurs from C[double bond, length as m-dash]C to porphyrin for oxoiron(iv) porphyrin in case of chlorine and nitrate axial ligands during the epoxidation reaction of the olefins. We also determined the intersystem crossing between the quartet and sextet spin states occurring at the second transition state (TS2) by the analysis of the two-dimensional potential energy surface.
Collapse
Affiliation(s)
- Zhifeng Ma
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Naoki Nakatani
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| | - Hiroshi Fujii
- Department of Chemistry, Graduate School of Humanities and Science, Nara Women's University, Kitauoyanishi, Nara, 630-8506, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
13
|
Hunt AP, Samanta S, Dent MR, Milbauer MW, Burstyn JN, Lehnert N. Model Complexes Elucidate the Role of the Proximal Hydrogen-Bonding Network in Cytochrome P450s. Inorg Chem 2020; 59:8034-8043. [DOI: 10.1021/acs.inorgchem.0c00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew P. Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Subhra Samanta
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Matthew R. Dent
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael W. Milbauer
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
14
|
Visser SP. Second‐Coordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry 2020; 26:5308-5327. [DOI: 10.1002/chem.201905119] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sam P. Visser
- The Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
15
|
Mubarak MQE, Visser SP. Computational Study on the Catalytic Reaction Mechanism of Heme Haloperoxidase Enzymes. Isr J Chem 2019. [DOI: 10.1002/ijch.201900099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| | - Sam P. Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
16
|
Shinomiya R, Araki H, Momotake A, Kotani H, Kojima T, Yamamoto Y. Identification of Intermediates in Peroxidase Catalytic Cycle of a DNAzyme Possessing Heme. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryosuke Shinomiya
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Haruka Araki
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Atsuya Momotake
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhiko Yamamoto
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
17
|
Rana A, Amanullah S, Das PK, McQuarters AB, Lehnert N, Dey A. Formally Ferric Heme Carbon Monoxide Adduct. J Am Chem Soc 2019; 141:5073-5077. [PMID: 30866627 DOI: 10.1021/jacs.8b09067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Formally ferric carbonyl adducts are reported in a series of thiolate-bound iron porphyrins. Resonance Raman data indicate the presence of both Fe-S and Fe-CO bonds, and EPR data of this S = 1/2 species indicate a ligand-based electron hole, giving this complex an Fe(II)-thiyl radical electronic ground state. The FTIR data show that the C-O vibrations are substantially higher than in the corresponding ferrous-thiolate CO adducts. DFT calculations reproduce the spectroscopic features and indicate that backbonding to the low lying π* orbitals of the bound CO stabilizes the Fe 3d orbitals resulting in a stabilization of the ferrous-thiyl radical ground state compared to the five-coordinate ferric-thiolate precursor complexes. Access to stable thiyl radicals will help understand these elusive species that are mostly encountered as short-lived reactive reaction intermediates.
Collapse
Affiliation(s)
- Atanu Rana
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata , West Bengal 700032 , India
| | - Sk Amanullah
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata , West Bengal 700032 , India
| | - Pradip K Das
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata , West Bengal 700032 , India
| | - Ashley B McQuarters
- Department of Chemistry , The University of Michigan , 930 N. University , Ann Arbor , Michigan 48109 , United States
| | - Nicolai Lehnert
- Department of Chemistry , The University of Michigan , 930 N. University , Ann Arbor , Michigan 48109 , United States
| | - Abhishek Dey
- Department of Inorganic Chemistry , Indian Association for the Cultivation of Science , Kolkata , West Bengal 700032 , India
| |
Collapse
|
18
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
19
|
Leipzig BK, Rees JA, Kowalska JK, Theisen RM, Kavčič M, Poon PCY, Kaminsky W, DeBeer S, Bill E, Kovacs JA. How Do Ring Size and π-Donating Thiolate Ligands Affect Redox-Active, α-Imino-N-heterocycle Ligand Activation? Inorg Chem 2018; 57:1935-1949. [PMID: 29411979 PMCID: PMC8312276 DOI: 10.1021/acs.inorgchem.7b02748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable effort has been devoted to the development of first-row transition-metal catalysts containing redox-active imino-pyridine ligands that are capable of storing multiple reducing equivalents. This property allows abundant and inexpensive first-row transition metals, which favor sequential one-electron redox processes, to function as competent catalysts in the concerted two-electron reduction of substrates. Herein we report the syntheses and characterization of a series of iron complexes that contain both π-donating thiolate and π-accepting (α-imino)-N-heterocycle redox-active ligands, with progressively larger N-heterocycle rings (imidazole, pyridine, and quinoline). A cooperative interaction between these complementary redox-active ligands is shown to dictate the properties of these complexes. Unusually intense charge-transfer (CT) bands, and intraligand metrical parameters, reminiscent of a reduced (α-imino)-N-heterocycle ligand (L•-), initially suggested that the electron-donating thiolate had reduced the N-heterocycle. Sulfur K-edge X-ray absorption spectroscopic (XAS) data, however, provides evidence for direct communication, via backbonding, between the thiolate sulfur and the formally orthogonal (α-imino)-N-heterocycle ligand π*-orbitals. DFT calculations provide evidence for extensive delocalization of bonds over the sulfur, iron, and (α-imino)-N-heterocycle, and TD-DFT shows that the intense optical CT bands involve transitions between a mixed Fe/S donor, and (α-imino)-N-heterocycle π*-acceptor orbital. The energies and intensities of the optical and S K-edge pre-edge XAS transitions are shown to correlate with N-heterocycle ring size, as do the redox potentials. When the thiolate is replaced with a thioether, or when the low-spin S = 0 Fe(II) is replaced with a high-spin S = 3/2 Co(II), the N-heterocycle ligand metrical parameters and electronic structure do not change relative to the neutral L0 ligand. With respect to the development of future catalysts containing redox-active ligands, the energy cost of storing reducing equivalents is shown to be lowest when a quinoline, as opposed to imidazole or pyridine, is incorporated into the ligand backbone of the corresponding Fe complex.
Collapse
Affiliation(s)
- Benjamin K. Leipzig
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Julian A. Rees
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Joanna K. Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Roslyn M. Theisen
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | | | | | - Werner Kaminsky
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34–36, D–45470 Mülheim an der Ruhr, Germany
| | - Julie A. Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
20
|
David R, Jamet H, Nivière V, Moreau Y, Milet A. Iron Hydroperoxide Intermediate in Superoxide Reductase: Protonation or Dissociation First? MM Dynamics and QM/MM Metadynamics Study. J Chem Theory Comput 2017; 13:2987-3004. [DOI: 10.1021/acs.jctc.7b00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rolf David
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/MCT, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Hélène Jamet
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
| | - Vincent Nivière
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/BioCat, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Yohann Moreau
- Laboratoire
de Chimie et Biologie des Métaux, CEA/DRF/BIG/CBM/MCT, CNRS
UMR 5249, Université Grenoble Alpes, Grenoble, France
| | - Anne Milet
- DCM, Univ. Grenoble Alpes, F-38000 Grenoble, France
- CNRS, DCM, F-38000, Grenoble, France
| |
Collapse
|
21
|
Cantú Reinhard FG, de Visser SP. Oxygen Atom Transfer Using an Iron(IV)-Oxo Embedded in a Tetracyclic N-Heterocyclic Carbene System: How Does the Reactivity Compare to Cytochrome P450 Compound I? Chemistry 2017; 23:2935-2944. [PMID: 28052598 DOI: 10.1002/chem.201605505] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 12/21/2022]
Abstract
N-Heterocyclic carbenes (NHC) are commonly featured as ligands in transition metal catalysis. Recently, a cyclic system containing four NHC groups with a central iron atom was synthesized and its iron(IV)-oxo species, [FeIV (O)(cNHC4 )]2+ , was characterized. This tetracyclic NHC ligand system may give the iron(IV)-oxo species unique catalytic properties as compared to traditional non-heme and heme iron ligand systems. Therefore, we performed a computational study on the structure and reactivity of the [FeIV (O)(cNHC4 )]2+ complex in substrate hydroxylation and epoxidation reactions. The reactivity patterns are compared with cytochrome P450 Compound I and non-heme iron(IV)-oxo models and it is shown that the [FeIV (O)(cNHC4 )]2+ system is an effective oxidant with oxidative power analogous to P450 Compound I. Unfortunately, in polar solvents, a solvent molecule will bind to the sixth ligand position and decrease the catalytic activity of the oxidant. A molecular orbital and valence bond analysis provides insight into the origin of the reactivity differences and makes predictions of how to further exploit these systems in chemical catalysis.
Collapse
Affiliation(s)
- Fabián G Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| |
Collapse
|
22
|
de Visser SP, Stillman MJ. Challenging Density Functional Theory Calculations with Hemes and Porphyrins. Int J Mol Sci 2016; 17:519. [PMID: 27070578 PMCID: PMC4848975 DOI: 10.3390/ijms17040519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
23
|
Quesne MG, Senthilnathan D, Singh D, Kumar D, Maldivi P, Sorokin AB, de Visser SP. Origin of the Enhanced Reactivity of μ-Nitrido-Bridged Diiron(IV)-Oxo Porphyrinoid Complexes over Cytochrome P450 Compound I. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02720] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Matthew G. Quesne
- Manchester
Institute of Biotechnology and School of Chemical Engineering and
Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Dhurairajan Senthilnathan
- Univ. Grenoble Alpes, INAC-SCIB, Reconnaissance
Ionique et Chimie de Coordination, F-38000 Grenoble, France
- Center for
Computational Chemistry, CRD, PRIST University, Vallam, Thanjavur, Tamilnadu 613403, India
| | - Devendra Singh
- Department
of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow, Uttar Pradesh 226025, India
| | - Devesh Kumar
- Department
of Applied Physics, Babasaheb Bhimrao Ambedkar University, School for Physical Sciences, Vidya Vihar, Rae Bareilly Road, Lucknow, Uttar Pradesh 226025, India
| | - Pascale Maldivi
- Univ. Grenoble Alpes, INAC-SCIB, Reconnaissance
Ionique et Chimie de Coordination, F-38000 Grenoble, France
- CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Alexander B. Sorokin
- Institut
de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON),
UMR 5256, CNRS-Université Lyon 1, 2, av. A. Einstein, 69626 Villeurbanne, France
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology and School of Chemical Engineering and
Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
24
|
Oszajca M, Franke A, Brindell M, Stochel G, van Eldik R. Redox cycling in the activation of peroxides by iron porphyrin and manganese complexes. ‘Catching’ catalytic active intermediates. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.01.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Pardillo AD, Morozov AN, Chatfield DC. Proximal Pocket Hydrogen Bonds Significantly Influence the Mechanism of Chloroperoxidase Compound I Formation. J Phys Chem B 2015; 119:12590-602. [DOI: 10.1021/acs.jpcb.5b06324] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Armando D. Pardillo
- Department of Chemistry and
Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| | - Alexander N. Morozov
- Department of Chemistry and
Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| | - David C. Chatfield
- Department of Chemistry and
Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, United States
| |
Collapse
|
26
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Sainna MA, Kumar S, Kumar D, Fornarini S, Crestoni ME, de Visser SP. A comprehensive test set of epoxidation rate constants for iron(iv)-oxo porphyrin cation radical complexes. Chem Sci 2015; 6:1516-1529. [PMID: 29560240 PMCID: PMC5811088 DOI: 10.1039/c4sc02717e] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/08/2014] [Indexed: 12/31/2022] Open
Abstract
Cytochrome P450 enzymes are heme based monoxygenases that catalyse a range of oxygen atom transfer reactions with various substrates, including aliphatic and aromatic hydroxylation as well as epoxidation reactions. The active species is short-lived and difficult to trap and characterize experimentally, moreover, it reacts in a regioselective manner with substrates leading to aliphatic hydroxylation and epoxidation products, but the origin of this regioselectivity is poorly understood. We have synthesized a model complex and studied it with low-pressure Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). A novel approach was devised using the reaction of [FeIII(TPFPP)]+ (TPFPP = meso-tetrakis(pentafluorophenyl)porphinato dianion) with iodosylbenzene as a terminal oxidant which leads to the production of ions corresponding to [FeIV(O)(TPFPP+˙)]+. This species was isolated in the gas-phase and studied in its reactivity with a variety of olefins. Product patterns and rate constants under Ideal Gas conditions were determined by FT-ICR MS. All substrates react with [FeIV(O)(TPFPP+˙)]+ by a more or less efficient oxygen atom transfer process. In addition, substrates with low ionization energies react by a charge-transfer channel, which enabled us to determine the electron affinity of [FeIV(O)(TPFPP+˙)]+ for the first time. Interestingly, no hydrogen atom abstraction pathways are observed for the reaction of [FeIV(O)(TPFPP+˙)]+ with prototypical olefins such as propene, cyclohexene and cyclohexadiene and also no kinetic isotope effect in the reaction rate is found, which suggests that the competition between epoxidation and hydroxylation - in the gas-phase - is in favour of substrate epoxidation. This notion further implies that P450 enzymes will need to adapt their substrate binding pocket, in order to enable favourable aliphatic hydroxylation over double bond epoxidation pathways. The MS studies yield a large test-set of experimental reaction rates of iron(iv)-oxo porphyrin cation radical complexes, so far unprecedented in the gas-phase, providing a benchmark for calibration studies using computational techniques. Preliminary computational results presented here confirm the observed trends excellently and rationalize the reactivities within the framework of thermochemical considerations and valence bond schemes.
Collapse
Affiliation(s)
- Mala A Sainna
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK .
| | - Suresh Kumar
- Department of Applied Physics , School for Physical Sciences , Babasaheb Bhimrao Ambedkar University , Vidya Vihar, Rai Bareilly Road , Lucknow 226 025 , India .
| | - Devesh Kumar
- Department of Applied Physics , School for Physical Sciences , Babasaheb Bhimrao Ambedkar University , Vidya Vihar, Rai Bareilly Road , Lucknow 226 025 , India .
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco , Università di Roma "La Sapienza" , P.le A. Moro 5 , 00185 , Roma , Italy . ;
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco , Università di Roma "La Sapienza" , P.le A. Moro 5 , 00185 , Roma , Italy . ;
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK .
| |
Collapse
|
28
|
Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:1-61. [PMID: 26002730 DOI: 10.1007/978-3-319-16009-2_1] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.
Collapse
|
29
|
Affiliation(s)
- Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California Irvine, Irvine, California 92697-3900
| |
Collapse
|
30
|
de Visser SP, Quesne MG, Martin B, Comba P, Ryde U. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes. Chem Commun (Camb) 2014; 50:262-82. [DOI: 10.1039/c3cc47148a] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Meininger DJ, Caranto JD, Arman HD, Tonzetich ZJ. Studies of iron(III) porphyrinates containing silanethiolate ligands. Inorg Chem 2013; 52:12468-76. [PMID: 24138018 DOI: 10.1021/ic401467k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chemistry of several iron(III) porphyrinates containing silanethiolate ligands is described. The complexes are prepared by protonolysis reactions of silanethiols with the iron(III) precursors, [Fe(OMe)(TPP)] and [Fe(OH)(H2O)(TMP)] (TPP = dianion of meso-tetraphenylporphine; TMP = dianion of meso-tetramesitylporphine). Each of the compounds has been fully characterized in solution and the solid state. The stability of the silanethiolate complexes versus other iron(III) porphyrinate complexes containing sulfur-based ligands allows for an examination of their reactivity with several biologically relevant small molecules including H2S, NO, and 1-methylimidazole. Electrochemically, the silanethiolate complexes display a quasi-reversible one-electron oxidation event at potentials higher than that observed for an analogous arenethiolate complex. The behavior of these complexes versus other sulfur-ligated iron(III) porphyrinates is discussed.
Collapse
Affiliation(s)
- Daniel J Meininger
- Department of Chemistry, University of Texas at San Antonio (UTSA) , San Antonio, Texas 78249, United States
| | | | | | | |
Collapse
|
32
|
Identification of a cyclosporine-specific P450 hydroxylase gene through targeted cytochrome P450 complement (CYPome) disruption in Sebekia benihana. Appl Environ Microbiol 2013; 79:2253-62. [PMID: 23354713 DOI: 10.1128/aem.03722-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It was previously proposed that regio-specific hydroxylation of an immunosuppressive cyclosporine (CsA) at the 4th N-methyl leucine is mediated by cytochrome P450 hydroxylase (CYP) in the rare actinomycete Sebekia benihana. This modification is thought to be the reason for the hair growth-promoting side effect without the immunosuppressive activity of CsA. Through S. benihana genome sequencing and in silico analysis, we identified the complete cytochrome P450 complement (CYPome) of S. benihana, including 21 CYPs and their electron transfer partners, consisting of 7 ferredoxins (FDs) and 4 ferredoxin reductases (FDRs). Using Escherichia coli conjugation-based S. benihana CYPome-targeted disruption, all of the identified CYP, FD, and FDR genes in S. benihana were individually inactivated. Among the 32 S. benihana exconjugant mutants tested, only a single S. benihana CYP mutant, ΔCYP-sb21, failed to exhibit CsA hydroxylation activity. The hydroxylation was restored by CYP-sb21 gene complementation. Since all S. benihana FD and FDR disruption mutants maintained CsA hydroxylation activity, it can be concluded that CYP-sb21, a new member of the bacterial CYP107 family, is the only essential component of the in vivo regio-specific CsA hydroxylation process in S. benihana. Moreover, expression of an extra copy of the CYP-sb21 gene increased CsA hydroxylation in wild-type S. benihana and an NADPH-enriched Streptomyces coelicolor mutant, by 2-fold and 1.5-fold, respectively. These results show for the first time that regio-specific hydroxylation of CsA is carried out by a specific P450 hydroxylase present in S. benihana, and they set the stage for the biotechnological application of regio-specific CsA hydroxylation through heterologous CYP-sb21 expression.
Collapse
|
33
|
Intrinsic properties and reactivities of mononuclear nonheme iron–oxygen complexes bearing the tetramethylcyclam ligand. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.06.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Morozov AN, Chatfield DC. Chloroperoxidase-catalyzed epoxidation of cis-β-methylstyrene: distal pocket flexibility tunes catalytic reactivity. J Phys Chem B 2012; 116:12905-14. [PMID: 23020548 DOI: 10.1021/jp302763h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chloroperoxidase, the most versatile heme protein, has a hybrid active site pocket that shares structural features with peroxidases and cytochrome P450s. The simulation studies presented here show that the enzyme possesses a remarkable ability to efficiently utilize its hybrid structure, assuming structurally different peroxidase-like and P450-like distal pocket faces and thereby enhancing the inherent catalytic capability of the active center. We find that, during epoxidation of cis-β-methylstyrene (CBMS), the native peroxidase-like aspect of the distal pocket is diminished as the polar Glu183 side chain is displaced away from the active center and the distal pocket takes on a more hydrophobic, P450-like, aspect. The P450-like distal pocket provides a significant enthalpic stabilization of ∼4 kcal/mol of the 14 kcal/mol reaction barrier for gas-phase epoxidation of CMBS by an oxyferryl heme-thiolate species. This stabilization comes from breathing of the distal pocket. As until recently the active site of chloroperoxidase was postulated to be inflexible, these results suggest a new conceptual understanding of the enzyme's versatility: catalytic reactivity is tuned by flexibility of the distal pocket.
Collapse
Affiliation(s)
- Alexander N Morozov
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States.
| | | |
Collapse
|
35
|
Gonzalez-Ovalle LE, Quesne MG, Kumar D, Goldberg DP, de Visser SP. Axial and equatorial ligand effects on biomimetic cysteine dioxygenase model complexes. Org Biomol Chem 2012; 10:5401-9. [PMID: 22714822 PMCID: PMC3454459 DOI: 10.1039/c2ob25406a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Density functional theory (DFT) calculations are presented on biomimetic model complexes of cysteine dioxygenase and focus on the effect of axial and equatorial ligand placement. Recent studies by one of us [Y. M. Badiei, M. A. Siegler and D. P. Goldberg, J. Am. Chem. Soc. 2011, 133, 1274] gave evidence of a nonheme iron biomimetic model of cysteine dioxygenase using an i-propyl-bis(imino)pyridine, equatorial tridentate ligand. Addition of thiophenol, an anion - either chloride or triflate - and molecular oxygen, led to several possible stereoisomers of this cysteine dioxygenase biomimetic complex. Moreover, large differences in reactivity using chloride as compared to triflate as the binding anion were observed. Here we present a series of DFT calculations on the origin of these reactivity differences and show that it is caused by the preference of coordination site of anion versus thiophenol binding to the chemical system. Thus, stereochemical interactions of triflate and the bulky iso-propyl substituents of the ligand prevent binding of thiophenol in the trans position using triflate. By contrast, smaller anions, such as chloride, can bind in either cis or trans ligand positions and give isomers with similar stability. Our calculations help to explain the observance of thiophenol dioxygenation by this biomimetic system and gives details of the reactivity differences of ligated chloride versus triflate.
Collapse
Affiliation(s)
- Luis E. Gonzalez-Ovalle
- Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK. Fax: +44 161306 5201
| | - Matthew G. Quesne
- Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK. Fax: +44 161306 5201
| | - Devesh Kumar
- Department of Applied Physics, School of Physical Sciences, Babasaheb, Bhimrao Ambedkar University, Vidya Vihar, Rae Bareilly Road, Lucknow 226-025, India
| | - David P. Goldberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Sam P. de Visser
- Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK. Fax: +44 161306 5201
| |
Collapse
|
36
|
Franke A, Fertinger C, van Eldik R. Axial Ligand and Spin-State Influence on the Formation and Reactivity of Hydroperoxo-Iron(III) Porphyrin Complexes. Chemistry 2012; 18:6935-49. [DOI: 10.1002/chem.201103036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/29/2011] [Indexed: 11/12/2022]
|
37
|
Lehnert N. Elucidating second coordination sphere effects in heme proteins using low-temperature magnetic circular dichroism spectroscopy. J Inorg Biochem 2012; 110:83-93. [PMID: 22516139 DOI: 10.1016/j.jinorgbio.2012.02.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 11/29/2022]
Abstract
This paper reviews recent findings on how the second coordination sphere of heme proteins fine-tunes the properties of the heme active site via hydrogen bonding. This insight is obtained from low-temperature magnetic circular dichroism (MCD) spectroscopy. In the case of high-spin ferric hemes, MCD spectroscopy allows for the identification of a multitude of charge-transfer (CT) transitions. Using optically-detected magnetic saturation curves, out-of-plane polarized CT transitions between the heme and its axial ligand(s) can be identified. In the case of ferric Cytochrome P450cam, the corresponding S(σ)→Fe(III) CT transition can be used as a probe for the {Fe(III)-axial ligand} interaction, indicating that the hydrogen bonding network of the proximal Cys only plays a limited role for fine-tuning the Fe(III)-S(Cys) interaction. In the case of high-spin ferrous hemes with axial His/imidazole coordination, our MCD-spectroscopic investigations have uncovered a direct correlation between the strength of the hydrogen bond to the proximal imidazole ligand and the ground state of the complexes. With neutral imidazole coordination, the doubly occupied d-orbital of high-spin iron(II) is of d(π) character, located orthogonal to the heme plane. As the strength of the hydrogen bond increases, this orbital rotates into the heme plane, changing the ground state of the complex.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
38
|
Perera R, Dawson JH. Modeling heme protein active sites with the his93gly cavity mutant of sperm whale myoglobin: complexes with nitrogen-, oxygen- and sulfur-donor proximal ligands. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent investigations of the His93Gly (H93G) "cavity" mutant of myoglobin as a versatile scaffold for modeling heme states are described. The difference in accessibility of the two sides of the heme in H93G myoglobin makes it possible to generate mixed ligand adducts in the ferric state that are difficult to prepare with heme models in organic solvents. In addition, the protection provided to the heme by the protein environment allows for the preparation of stable oxyferrous and oxo-iron(IV) complexes at near-ambient temperatures with variable ligands trans to the normally reactive dioxygen and oxo substituents. The extensive range of possible complexes that can be generated using the H93G system is illustrated with examples involving imidazole, phenolate, benzoate, thiolate and thiol ligands bound to the proximal side of the heme iron.
Collapse
Affiliation(s)
- Roshan Perera
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
- School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
39
|
Barry SM, Challis GL. Tailoring reactions catalyzed by heme-dependent enzymes: spectroscopic characterization of the L-tryptophan-nitrating cytochrome P450 TxtE. Methods Enzymol 2012; 516:171-94. [PMID: 23034229 DOI: 10.1016/b978-0-12-394291-3.00001-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a truly vast quantity of research articles and textbooks, aimed at a variety of audiences, on cytochromes P450. However, a large amount of specialized terminology has become associated with these enzymes, which can be daunting to those new to the field. The aim of this chapter is to give a brief overview of the functions and importance of cytochromes P450 with particular emphasis on their roles as tailoring enzymes in natural product biosynthetic pathways. Differences between the biosynthetic enzymes and their catabolic counterparts are highlighted. Assays used to investigate substrate binding to cytochromes P450 are described using TxtE, a recently discovered unique nitrating enzyme involved in thaxtomin A biosynthesis, as an example.
Collapse
Affiliation(s)
- Sarah M Barry
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
40
|
Tang H, Guan J, Zhang L, Liu H, Huang X. The effect of the axial ligand on distinct reaction tunneling for methane hydroxylation by nonheme iron(iv)–oxo complexes. Phys Chem Chem Phys 2012; 14:12863-74. [DOI: 10.1039/c2cp42423a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Kumar D, Sastry GN, de Visser SP. Axial Ligand Effect On The Rate Constant of Aromatic Hydroxylation By Iron(IV)–Oxo Complexes Mimicking Cytochrome P450 Enzymes. J Phys Chem B 2011; 116:718-30. [DOI: 10.1021/jp2113522] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Devesh Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareilly Road, Lucknow 226 025, India
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India
| | - G. Narahari Sastry
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India
| | - Sam P. de Visser
- Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
42
|
Kumar D, Sastry GN, de Visser SP. Effect of the axial ligand on substrate sulfoxidation mediated by iron(IV)-oxo porphyrin cation radical oxidants. Chemistry 2011; 17:6196-205. [PMID: 21469227 DOI: 10.1002/chem.201003187] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Indexed: 11/09/2022]
Abstract
Cytochromes P450 catalyze a range of different oxygen-transfer processes including aliphatic and aromatic hydroxylation, epoxidation, and sulfoxidation reactions. Herein, we have investigated substrate sulfoxidation mediated by models of P450 enzymes as well as by biomimetic oxidants using density functional-theory methods and we have rationalized the sulfoxidation reaction barriers and rate constants. We carried out two sets of calculations: first, we calculated the sulfoxidation by an iron(IV)-oxo porphyrin cation radical oxidant [Fe(IV)=O(Por(+.))SH] that mimics the active site of cytochrome P450 enzymes with a range of different substrates, and second, we studied one substrate (dimethyl sulfide) with a selection of different iron(IV)-oxo porphyrin cation radical oxidants [Fe(IV)=O(Por(+.))L] with varying axial ligands L. The study presented herein shows that the barrier height for substrate sulfoxidation correlates linearly with the ionization potential of the substrate, thus reflecting the electron-transfer processes in the rate-determining step of the reaction. Furthermore, the axial ligand of the oxidant influences the pK(a) value of the iron(IV)-oxo group, and, as a consequence, the bond dissociation energy (BDE(OH) value correlates with the barrier height for the reverse sulfoxidation reaction. These studies have generalized substrate-sulfoxidation reactions and have shown how they fundamentally compare with substrate hydroxylation and epoxidation reactions.
Collapse
Affiliation(s)
- Devesh Kumar
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India.
| | | | | |
Collapse
|
43
|
Du J, Sono M, Dawson JH. The H93G Myoglobin Cavity Mutant as a Versatile Scaffold for Modeling Heme Iron Coordination Structures in Protein Active Sites and Their Characterization with Magnetic Circular Dichroism Spectroscopy. Coord Chem Rev 2011; 255:700-716. [PMID: 21423881 PMCID: PMC3060032 DOI: 10.1016/j.ccr.2011.01.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preparation of heme model complexes is a challenging subject of long-standing interest for inorganic chemists. His93Gly sperm whale myoglobin (H93G Mb) has the proximal His replaced with the much smaller non-coordinating Gly. This leaves a cavity on the proximal side of the heme into which a wide variety of exogenous ligands can be delivered. The end result is a remarkably versatile scaffold for the preparation of model heme adducts to mimic the heme iron coordination structure of native heme proteins. In this review, we first summarize the quantitative evidence for differential ligand binding affinities of the proximal and distal pockets of the H93G Mb cavity mutant that facilitates the preparation of mixed-ligand derivatives. Then we review our use of magnetic circular dichroism and electronic absorption spectroscopy to characterize nitrogen-, oxygen-, and sulfur-donor-ligated H93G Mb adducts with an emphasis on species not easily prepared by other heme model system approaches and those that serve as spectroscopic models for native heme proteins.
Collapse
Affiliation(s)
- Jing Du
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 20208
| | - Masanori Sono
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 20208
| | - John H. Dawson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 20208
- School of Medicine, University of South Carolina, Columbia, SC 20208
| |
Collapse
|
44
|
Galinato MGI, Spolitak T, Ballou DP, Lehnert N. Elucidating the role of the proximal cysteine hydrogen-bonding network in ferric cytochrome P450cam and corresponding mutants using magnetic circular dichroism spectroscopy. Biochemistry 2011; 50:1053-69. [PMID: 21158478 DOI: 10.1021/bi101911y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although extensive research has been performed on various cytochrome P450s, especially Cyt P450cam, there is much to be learned about the mechanism of how its functional unit, a heme b ligated by an axial cysteine, is finely tuned for catalysis by its second coordination sphere. Here we study how the hydrogen-bonding network affects the proximal cysteine and the Fe-S(Cys) bond in ferric Cyt P450cam. This is accomplished using low-temperature magnetic circular dichroism (MCD) spectroscopy on wild-type (wt) Cyt P450cam and on the mutants Q360P (pure ferric high-spin at low temperature) and L358P where the "Cys pocket" has been altered (by removing amino acids involved in the hydrogen-bonding network), and Y96W (pure ferric low-spin). The MCD spectrum of Q360P reveals fourteen electronic transitions between 15200 and 31050 cm(-1). Variable-temperature variable-field (VTVH) saturation curves were used to determine the polarizations of these electronic transitions with respect to in-plane (xy) and out-of-plane (z) polarization relative to the heme. The polarizations, oscillator strengths, and TD-DFT calculations were then used to assign the observed electronic transitions. In the lower energy region, prominent bands at 15909 and 16919 cm(-1) correspond to porphyrin (P) → Fe charge transfer (CT) transitions. The band at 17881 cm(-1) has distinct sulfur S(π) → Fe CT contributions. The Q band is observed as a pseudo A-term (derivative shape) at 18604 and 19539 cm(-1). In the case of the Soret band, the negative component of the expected pseudo A-term is split into two features due to mixing with another π → π* and potentially a P → Fe CT excited state. The resulting three features are observed at 23731, 24859, and 25618 cm(-1). Most importantly, the broad, prominent band at 28570 cm(-1) is assigned to the S(σ) → Fe CT transition, whose intensity is generated through a multitude of CT transitions with strong iron character. For wt, Q360P, and L358P, this band occurs at 28724, 28570, and 28620 cm(-1), respectively. The small shift of this feature upon altering the hydrogen bonds to the proximal cysteine indicates that the role of the Cys pocket is not primarily for electronic fine-tuning of the sulfur donor strength but is more for stabilizing the proximal thiolate against external reactants (NO, O(2), H(3)O(+)), and for properly positioning cysteine to coordinate to the iron center. This aspect is discussed in detail.
Collapse
Affiliation(s)
- Mary Grace I Galinato
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
45
|
Biological Outer-Sphere Coordination. MOLECULAR ELECTRONIC STRUCTURES OF TRANSITION METAL COMPLEXES I 2011. [DOI: 10.1007/430_2011_49] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
|
47
|
The CYPome of Sorangium cellulosum So ce56 and Identification of CYP109D1 as a New Fatty Acid Hydroxylase. ACTA ACUST UNITED AC 2010; 17:1295-305. [DOI: 10.1016/j.chembiol.2010.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/13/2010] [Accepted: 10/08/2010] [Indexed: 01/22/2023]
|
48
|
de Visser SP, Latifi R, Tahsini L, Nam W. The Axial Ligand Effect on Aliphatic and Aromatic Hydroxylation by Non-heme Iron(IV)-oxo Biomimetic Complexes. Chem Asian J 2010; 6:493-504. [DOI: 10.1002/asia.201000586] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Indexed: 11/05/2022]
|
49
|
Active transition metal oxo and hydroxo moieties in nature's redox, enzymes and their synthetic models: Structure and reactivity relationships. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2010.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Matsui T, Iwasaki M, Sugiyama R, Unno M, Ikeda-Saito M. Dioxygen activation for the self-degradation of heme: reaction mechanism and regulation of heme oxygenase. Inorg Chem 2010; 49:3602-9. [PMID: 20380462 DOI: 10.1021/ic901869t] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heme oxygenase (HO) catalyzes the regiospecific conversion of heme to biliverdin, CO, and free iron through three successive oxygenation reactions. HO catalysis is unique in that all three O(2) activations are performed by the substrate itself. This Forum Article overviews our current understanding on the structural and biochemical properties of HO catalysis, especially its first and third oxygenation steps. The HO first step, regiospecific hydroxylation of the porphyrin alpha-meso-carbon atom, is of particular interest because of its sharp contrast to O(2) activation by cytochrome P450. HO was proposed to utilize the FeOOH species but not conventional ferryl hemes as a reactive intermediate for self-hydroxylation. We have succeeded in preparing and characterizing the FeOOH species of HO at low temperature, and our analyses of its reaction, together with mutational and crystallographic studies, reveal that protonation of FeOOH by a distal water molecule is critical in promoting the unique self-hydroxylation. The second oxygenation is a rapid, spontaneous autooxidation of the reactive alpha-meso-hydroxyheme in which the HO enzyme does not play a critical role. Further O(2) activation by verdoheme cleaves its porphyrin macrocycle to form biliverdin and free ferrous iron. This third step has been considered to be a major rate-determining step of HO catalysis to regulate the enzyme activity. Our reaction analysis strongly supports the FeOOH verdoheme as the key intermediate of the ring-opening reaction. This mechanism is very similar to that of the first meso-hydroxylation, and the distal water is suggested to enhance the third step as expected from the similarity. The HO mechanistic studies highlight the catalytic importance of the distal hydrogen-bonding network, and this manuscript also involves our attempts to develop HO inhibitors targeting the unique distal structure.
Collapse
Affiliation(s)
- Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira, Aoba, Sendai 980-8577, Japan.
| | | | | | | | | |
Collapse
|