1
|
Reynolds AJ, Leopold KR. Partial Proton Transfer in the Gas Phase: A Spectroscopic and Computational Analysis of the Trifluoroacetic Acid - Trimethylamine Complex. J Phys Chem A 2023; 127:10632-10637. [PMID: 38078922 DOI: 10.1021/acs.jpca.3c06768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The 1:1 complex formed from trifluoroacetic acid (TFA) and trimethylamine (TMA) has been observed in the gas phase by rotational spectroscopy and further investigated by DFT and MP2 methods. Spectra of both the parent form and the -OD isotopologue have been obtained. The complex is structurally similar to a hydrogen bonded system, with the O-H bond directed toward the nitrogen of the TMA. However, both the spectroscopic and computational results indicate that it is intermediate between a hydrogen bonded complex and a proton-transferred ion pair. Two metrics are used to assess the degree of proton transfer from the acid to the base. The first is based on experimental 14N nuclear quadrupole coupling constants. Specifically, the component of the 14N nuclear quadrupole coupling tensor along the c-inertial axis of the complex, χcc, is 31% of the way between that of free TMA (no proton transfer) and that of TMAH+ (complete proton transfer). A second metric, adapted from that of Kurnig and Scheiner [Int. J. Quantum Chem. Quantum Biol. Symp. 1987, 14, 47-56], is based on calculated O-H and H-N distances and corroborates this description. These results indicate that the degree of proton transfer in TFA-TMA is very similar to that in the TMA complex of HNO3, which has been previously studied and for which the proton affinity of the conjugate anion (NO3-) is almost identical to that of CF3COO-. While the solid salt, TMAH+·CF3COO-, is an ionic plastic above 307 K and exhibits free rotation of the ions, no such motion is observed in the cold 1:1 gas phase adduct.
Collapse
Affiliation(s)
- Aaron J Reynolds
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| | - Kenneth R Leopold
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Salvitti G, Baroncelli F, Nicotri C, Evangelisti L, Melandri S, Maris A. How Water Interacts with the NOH Group: The Rotational Spectrum of the 1:1 N,N-diethylhydroxylamine·Water Complex. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238190. [PMID: 36500289 PMCID: PMC9737918 DOI: 10.3390/molecules27238190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
The rotational spectrum of the 1:1 N,N-diethylhydroxylamine-water complex has been investigated using pulsed jet Fourier transform microwave spectroscopy in the 6.5-18.5 GHz frequency region. The most stable conformer has been detected as well as the 13C monosubstituted isotopologues in natural abundance and the 18O enriched water species, allowing to determine the nitrogen nuclear quadrupole coupling constants and the molecular structure in the vibrational ground state. The molecule has a Cs symmetry and the water lies in the bc symmetry plane forming two hydrogen bonds with the NOH frame with length: dHOH·NOH = 1.974 Å and dH2O·HON = 2.096 Å. From symmetry-adapted perturbation theory calculations coupled to atoms in molecule approach, the corresponding interaction energy values are estimated to be 24 and 13 kJ·mol-1, respectively. The great strength of the intermolecular interaction involving the nitrogen atom is in agreement with the high reactivity of hydroxylamine compounds at the nitrogen site.
Collapse
Affiliation(s)
- Giovanna Salvitti
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Filippo Baroncelli
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Chiara Nicotri
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Luca Evangelisti
- Department of Chemistry “G. Ciamician”, Campus of Ravenna, University of Bologna, 48123 Ravenna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace), University of Bologna, 47121 Forlì, Italy
- Interdepartmental Centre for Industrial Agrifood Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | - Sonia Melandri
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace), University of Bologna, 47121 Forlì, Italy
- Interdepartmental Centre for Industrial Agrifood Research (CIRI Agrifood), University of Bologna, 47521 Cesena, Italy
| | - Assimo Maris
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Centre for Industrial Aerospace Research (CIRI Aerospace), University of Bologna, 47121 Forlì, Italy
- Correspondence: ; Tel.: +39-051-2099502
| |
Collapse
|
3
|
Zhang C, Lin X, Tang X, Fittschen C, Hartweg S, Garcia GA, Long B, Zhang W, Nahon L. Vacuum ultraviolet photochemistry of sulfuric acid vapor: a combined experimental and theoretical study. Phys Chem Chem Phys 2022; 24:2015-2021. [PMID: 35018921 DOI: 10.1039/d1cp05237c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a vacuum ultraviolet (VUV) photoionization study of the gas-phase sulfuric acid (H2SO4) molecule in the 11-14 eV energy range by using the method of synchrotron radiation-based double imaging photoelectron photoion coincidence (i2PEPICO) spectroscopy complemented with accurate theoretical calculations. The slow photoelectron spectrum (SPES) of H2SO4 has been acquired and the three electronic states of H2SO4+, X2A, A2A and B2A have been populated and assigned. The adiabatic ionization energy of the H2SO4 molecule towards the X2A cationic ground state is measured at 11.684 ± 0.006 eV, in accordance with high-level calculated findings. With increasing photon energies, the H2SO4+ cation dissociates into HSO3+ and OH fragments and their adiabatic appearance energy is measured at 13.498 ± 0.007 eV. Then, the enthalpies of formation for the species involved in the photoionization and dissociative photoionization have been determined through a thermochemical cycle.
Collapse
Affiliation(s)
- Cuihong Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China. .,Graduate School, University of Science and Technology of China, Hefei, 230026 Anhui, China.,University Lille, CNRS, UMR 8522, PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Xiaoxiao Lin
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China.
| | - Xiaofeng Tang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China.
| | - Christa Fittschen
- University Lille, CNRS, UMR 8522, PC2A - Physicochimie des Processus de Combustion et de l'Atmosphère, F-59000 Lille, France
| | - Sebastian Hartweg
- Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette, France.
| | - Gustavo A Garcia
- Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette, France.
| | - Bo Long
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang, 550025 Guizhou, China
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031 Anhui, China.
| | - Laurent Nahon
- Synchrotron SOLEIL, L'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette, France.
| |
Collapse
|
4
|
Xie F, Mahendiran S, Seifert NA, Xu Y. Modifying conformational distribution of chiral tetrahydro-2-furoic acid through its interaction with water: a rotational spectroscopic and theoretical investigation. Phys Chem Chem Phys 2021; 23:3820-3825. [PMID: 33533340 DOI: 10.1039/d0cp06265k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rotational spectrum of a binary complex formed between tetrahydro-2-furoic acid (THFA) and water was measured using a chirped pulse Fourier transform microwave spectrometer. A comprehensive theoretical conformational search procedure was carried out using CREST, a conformational searching tool, and DFT calculations to aid the spectral assignment and interpretation. The final conformer ensemble is classified into two structural groups: Type 1 conformers showing a classic carboxylic acid monohydrate structure with two strong hydrogen-bonds formed between the COOH group of cis-THFA and water, and the much less stable Type 2 conformers with trans-THFA and weaker intermolecular interactions with water. The 'cis-' and 'trans-' labels refer to the configurations where the carboxylic C[double bond, length as m-dash]O and OH functional groups are on the same or opposite side, respectively. Only the two most stable Type 2 conformers containing trans-THFA I and II were observed experimentally in a neon jet expansion with an abundance ratio of 1 : 1. This relative abundance observation differs greatly from that of the THFA monomer, i.e. with trans-THFA I : trans-THFA II : cis-THFA III of 10 : 1 : 1 in a neon jet expansion, reported previously. The observation indicates a kinetically controlled formation process of different types of the monohydrates in a jet expansion, whereas a thermodynamically controlled process dominates within each type of structures. The relative stability of the THFA ring conformations is altered by interaction with water, showing a noticeable water induced conformational preference.
Collapse
Affiliation(s)
- Fan Xie
- Chemistry Department, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | | | - Nathan A Seifert
- Chemistry Department, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| | - Yunjie Xu
- Chemistry Department, The University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
5
|
Unexpected quenching effect on new particle formation from the atmospheric reaction of methanol with SO 3. Proc Natl Acad Sci U S A 2019; 116:24966-24971. [PMID: 31767772 DOI: 10.1073/pnas.1915459116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the high abundance in the atmosphere, alcohols in general and methanol in particular are believed to play a small role in atmospheric new particle formation (NPF) largely due to the weak binding abilities of alcohols with the major nucleation precursors, e.g., sulfuric acid (SA) and dimethylamine (DMA). Herein, we identify a catalytic reaction that was previously overlooked, namely, the reaction between methanol and SO3, catalyzed by SA, DMA, or water. We found that alcohols can have unexpected quenching effects on the NPF process, particularly in dry and highly polluted regions with high concentrations of alcohols. Specifically, the catalytic reaction between methanol and SO3 can convert methanol into a less-volatile species--methyl hydrogen sulfate (MHS). The latter was initially thought to be a good nucleation agent for NPF. However, our simulation results suggest that the formation of MHS consumes an appreciable amount of atmospheric SO3, disfavoring further reactions of SO3 with H2O. Indeed, we found that MHS formation can cause a reduction of SA concentration up to 87%, whereas the nucleation ability of MHS toward new particles is not as good as that of SA. Hence, a high abundance of methanol in the atmosphere can lower the particle nucleation rate by as much as two orders of magnitude. Such a quenching effect suggests that the recently identified catalytic reactions between alcohols and SO3 need to be considered in atmospheric modeling in order to predict SA concentration from SO2, while also account for their potentially negative effect on NPF.
Collapse
|
6
|
Ungerer MJ, van Sittert CGCE, van der Westhuizen DJ, Krieg HM. Density functional theory study with and without COSMO of H 2 SO 4 reactions in an aqueous environment for metal extraction. J Comput Chem 2019; 40:591-606. [PMID: 30511370 DOI: 10.1002/jcc.25744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/01/2023]
Abstract
In a recent study investigating the suitability of solvent extraction (SX) for the separation of Ta and Nb, it was shown that speciation data would be required to help explain the data obtained. As traditional speciation techniques cannot be readily applied for Ta and Nb, it was decided to determine the suitability of molecular modeling for this purpose. During the SX experiments the aqueous phase consisted of sulfuric acid (H2 SO4 ), water, and metal species. In this study density functional theory (DFT) modeling was used to calculate the formation energy of five possible reactions of H2 SO4 and H2 O. Different functional and basis set combinations were compared as well as the effect of infinite dilution by using the conductor-like screening model (COSMO), which simulates infinite dilution of solvents of varying polarity and includes the short-range interactions of the solute particles. The results obtained were used to determine whether it is possible to predict the reactions and mechanism when H2 SO4 and H2 O interact during SX. According to the results, the deprotonation of H2 SO4 was endothermic in a 1:1 acid-water ratio, while being both exothermic in the 1:5 and 1:10 acid-water ratio forming HSO4 - and SO4 2- respectively. Furthermore, it was seen that the hydration and dehydration of H2 SO4 in a bulk H2 O solution was a continuous process. From the energy calculations it was determined that although the H2 SO4 ●H2 O, HSO4 - ●H2 O, and H2 SO4 ●2H2 O species could form, they would most likely react with H2 O molecules to form HSO4 - , H3 O+ , and H2 O. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Johanna Ungerer
- Chemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | | | | | - Henning Manfred Krieg
- Chemical Resource Beneficiation, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
7
|
Verdes M. A systematic ab initio optimization of monohydrates of HCl•HNO 3•H 2SO 4 aggregates. J Mol Graph Model 2018; 86:256-263. [PMID: 30415121 DOI: 10.1016/j.jmgm.2018.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/03/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
Hydrates of HCl, HNO3 and H2SO4 involved in polar stratospheric clouds capture the attention of researchers due to the mixtures composed with them. The molecular aggregates generated with these strong acids show different behaviors, geometries and nucleation reactions at atmospheric temperatures. Here is presented a systematic ab initio optimization study of monohydrates of HCl•HNO3•H2SO4 using the Density Functional Theory, by means of geometry optimizations carried out with B3LYP hybrid method and aug-cc-pVTZ basis set, a high level of theory, within Gaussian 09 program. This systematic optimization procedure consists to situate systematically the H2O molecule around the cluster in study, on the favorable positions to develop higher quantity of hydrogen bonds as possible, in order to obtain major quantity of different electronic structures of these monohydrates. Applying this systematic optimization methodology over previously optimized complexes of HCl, HNO3 and H2SO4, the present theoretical approach provides thirty-two different optimized electronic structures of monohydrates that were yielded from seven initial groups of (HCl•HNO3•H2SO4)-complex, placing the H2O in eight positions around them. Moreover, their Infrared spectra have been predicted for all (HCl•HNO3•H2SO4)-monohydrates achieved. Likewise, It is shown the outcomes of the electronic energies, relative Gibbs free energies, Infrared spectra, the wavenumbers of hydrogen bonds, inter-monomeric parameters, electronic structures of (HCl•HNO3•H2SO4)-monohydrates. These monohydrates could be considered precursors of the atmospheric heterogeneous nucleation reactions. These results can be useful to experimentalists of Catalysis, Astrophysics, Corrosion of metals and ceramics, aromatic compounds reactions, even environmental pollution and industrial smog.
Collapse
Affiliation(s)
- Marian Verdes
- Autonomous University of Madrid, Sciences Faculty, Applied Physical Chemistry Department, C-14 Avda. Tomas y Valiente, 7, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
8
|
A detailed hydrogen bonding analysis on the compositions of H 2SO 4/HNO 3/H 2O ternary systems: A computational study. J Mol Graph Model 2018; 80:272-281. [PMID: 29414046 DOI: 10.1016/j.jmgm.2017.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/23/2022]
Abstract
Hydrogen bonding properties of H2SO4/HNO3/H2O ternary molecular clusters have been studied by means of structural, energetic, topological, and spectroscopic perspectives. The roles of the hydrogen bonds in the formation of these clusters are considered according to the molecule positions (proton donor or proton acceptor) in the clusters. 33 stable conformers were identified on the potential energy surface. The global minimum one was obtained when HNO3 donates a proton to H2SO4, however, the cooperativity effect contribution was found to be significant for the cluster where HNO3 acts as a proton donor to an H2O molecule.
Collapse
|
9
|
Schnitzler EG, Seifert NA, Kusuma I, Jäger W. Rotational Spectroscopy of p-Toluic Acid and Its 1:1 Complex with Water. J Phys Chem A 2017; 121:8625-8631. [DOI: 10.1021/acs.jpca.7b08984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Nathan A. Seifert
- Department of Chemistry, University of Alberta, Edmonton, AB T6G
2G2, Canada
| | - Ignes Kusuma
- Department of Chemistry, University of Alberta, Edmonton, AB T6G
2G2, Canada
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, AB T6G
2G2, Canada
| |
Collapse
|
10
|
|
11
|
Partanen L, Hänninen V, Halonen L. Effects of Global and Local Anharmonicities on the Thermodynamic Properties of Sulfuric Acid Monohydrate. J Chem Theory Comput 2016; 12:5511-5524. [PMID: 27662456 DOI: 10.1021/acs.jctc.6b00683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use state-of-the-art electronic structure calculation methods and large basis sets to obtain reliable values for the thermodynamic properties of sulfuric acid monohydrate and study the effects of vibrational anharmonicity on these properties. We distinguish between two forms of vibrational anharmonicity: local anharmonicity, which refers to the anharmonicity of the vibrational modes of a given cluster conformer, and global anharmonicity, which originates from accounting for the presence of different conformers in the first place. In our most accurate approach, we solve the nuclear Schrödinger equation variationally for the intermolecular large-amplitude motions, thus quantum-mechanically accounting for the presence of higher-energy conformers for both reactants and products, while using the standard vibrational perturbational approach for the other vibrational modes. This results in a value of -11.0 kJ/mol for the reaction Gibbs free energy at 298.15 K. When standard vibrational perturbational approaches are employed, the effects of local anharmonicity depend heavily on the choice of the electronic structure calculation basis set. In fact, better results can often be achieved by combining a simple harmonic treatment for the vibrational partition function with a statistical mechanical accounting of global anharmonicity. Thus, we recommend that future studies that intend to include anharmonicity start by accounting for the presence of higher-energy conformers and only then consider whether local anharmonicity calculations are feasible and necessary.
Collapse
Affiliation(s)
- Lauri Partanen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki , P.O. Box 55, A.I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Vesa Hänninen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki , P.O. Box 55, A.I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| | - Lauri Halonen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki , P.O. Box 55, A.I. Virtasen aukio 1, FIN-00014 Helsinki, Finland
| |
Collapse
|
12
|
Crystal structure, thermal analysis and IR spectrometric investigation of the tris(2,6-diaminopyridinium) hydrogen sulfate sulfate monohydrate. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.02.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Long B, Tan XF, Wang YB, Li J, Ren DS, Zhang WJ. Theoretical Studies on Reactions of OH with H2SO4…NH3Complex and NH2with H2SO4in the Presence of Water. ChemistrySelect 2016. [DOI: 10.1002/slct.201600194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bo Long
- College of Information Engineering; Guizhou Minzu University; Guiyang 550025 China
| | - Xing-Feng Tan
- College of Information Engineering; Guizhou Minzu University; Guiyang 550025 China
| | - Yi-Bo Wang
- Key Laboratory of Guizhou High Performance Computational Chemistry; Department of Chemistry; Guizhou University; Guiyang 550025 China
| | - Jun Li
- Department of Chemistry & Laboratory of Organic; Optoelectronics and Molecular Engineering of the Ministry of Education; Tsinghua University; Beijing 100084 China
| | - Da-Sen Ren
- College of Information Engineering; Guizhou Minzu University; Guiyang 550025 China
| | - Wei-Jun Zhang
- Laboratory of Atmospheric Physico-Chemistry; Anhui Institute of Optics and Fine Mechanics; Chinese Academy of Sciences; Hefei 230031 China
- Key Laboratory of Atmospheric Composition and Optical Radiation; Anhui Institute of Optics and Fine Mechanics; Chinese Academy of Sciences; Hefei 230031 China
| |
Collapse
|
14
|
Niskanen J, Sahle CJ, Ruotsalainen KO, Müller H, Kavčič M, Žitnik M, Bučar K, Petric M, Hakala M, Huotari S. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid. Sci Rep 2016; 6:21012. [PMID: 26888159 PMCID: PMC4757876 DOI: 10.1038/srep21012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/14/2016] [Indexed: 11/08/2022] Open
Abstract
In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range.
Collapse
Affiliation(s)
- Johannes Niskanen
- University of Helsinki, Department of Physics, Helsinki, FI-00014, Finland
| | - Christoph J. Sahle
- University of Helsinki, Department of Physics, Helsinki, FI-00014, Finland
- European Synchrotron Radiation Facility, ESRF, Grenoble, France
| | | | - Harald Müller
- European Synchrotron Radiation Facility, ESRF, Grenoble, France
| | - Matjaž Kavčič
- Jožef Stefan Institute, Jamova cesta 39, SI-1001 Ljubljana, Slovenia
| | - Matjaž Žitnik
- Jožef Stefan Institute, Jamova cesta 39, SI-1001 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, Ljubljana, Slovenia
| | - Klemen Bučar
- Jožef Stefan Institute, Jamova cesta 39, SI-1001 Ljubljana, Slovenia
| | - Marko Petric
- Jožef Stefan Institute, Jamova cesta 39, SI-1001 Ljubljana, Slovenia
| | - Mikko Hakala
- University of Helsinki, Department of Physics, Helsinki, FI-00014, Finland
| | - Simo Huotari
- University of Helsinki, Department of Physics, Helsinki, FI-00014, Finland
| |
Collapse
|
15
|
Fedorova IV, Krestyaninov MA, Kiselev MG, Safonova LP. Solvent effect on proton transfer in the complexes of N,N-dimethylformamide with sulfuric and phosphoric acid: A DFT investigation. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Kim SK, Lee HM, Kim KS. Disulfuric acid dissociated by two water molecules: ab initio and density functional theory calculations. Phys Chem Chem Phys 2015; 17:28556-64. [PMID: 26400266 DOI: 10.1039/c5cp05201g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have studied geometries, energies and vibrational spectra of disulfuric acid (H2S2O7) and its anion (HS2O7(-)) hydrated by a few water molecules, using density functional theory (M062X) and ab initio theory (SCS-MP2 and CCSD(T)). The most noteworthy result is found in H2S2O7(H2O)2 in which the lowest energy conformer shows deprotonated H2S2O7. Thus, H2S2O7 requires only two water molecules, the fewest number of water molecules for deprotonation among various hydrated monomeric acids reported so far. Even the second deprotonation of the first deprotonated species HS2O7(-) needs only four water molecules. The deprotonation is supported by vibration spectra, in which acid O-H stretching peaks disappear and specific three O-H stretching peaks for H3O(+) (eigen structure) appear. We have also kept track of variations in several geometrical parameters, atomic charges, and hybrid orbital characters upon addition of water. As the number of water molecules added increases, the S-O bond weakens in the case of H2S2O7, but strengthens in the case of HS2O7(-). It implies that the decomposition leading to H2SO4 and SO3 hardly occurs prior to the 2nd deprotonation at low temperatures.
Collapse
Affiliation(s)
- Seong Kyu Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Han Myoung Lee
- Center for Superfunctional Materials, Department of Chemistry, Ulsan Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.
| |
Collapse
|
17
|
Niskanen J, Sahle CJ, Juurinen I, Koskelo J, Lehtola S, Verbeni R, Müller H, Hakala M, Huotari S. Protonation Dynamics and Hydrogen Bonding in Aqueous Sulfuric Acid. J Phys Chem B 2015; 119:11732-9. [DOI: 10.1021/acs.jpcb.5b04371] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes Niskanen
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Christoph J. Sahle
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- ESRF—The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
| | - Iina Juurinen
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Jaakko Koskelo
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Susi Lehtola
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Roberto Verbeni
- ESRF—The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
| | - Harald Müller
- ESRF—The European Synchrotron, CS40220, 38043, Grenoble Cedex 9, France
| | - Mikko Hakala
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Simo Huotari
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
18
|
Verdes M, Paniagua M. Facet shapes and thermo-stabilities of H₂SO₄•HNO₃ hydrates involved in polar stratospheric clouds. J Mol Model 2015; 21:238. [PMID: 26287119 DOI: 10.1007/s00894-015-2782-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/31/2015] [Indexed: 11/24/2022]
Abstract
The nucleation, ice crystal shapes and thermodynamic stability of polar stratospheric clouds particles are interesting concerns owing to their implication in the ozone layer destruction. Some of these particles are formed by conformers of H2O, HNO3, and H2SO4. We carried out calculations using density functional theory (DFT) to obtain optimized structures. Several stable trimers are achieved -divided in two groups, one with HNO3 moiety, second with H2SO4 moiety- after pre-optimization at B3LYP/6-31G and subsequently optimization at B3LYP/aug-cc-pVTZ level of theory. For both most stable conformers five H2O molecules are added to their optimized trimers to calculate hydrated geometries. The OH stretching harmonic frequencies are provided for all aggregates. The zero-point energy correction (ZEPC), relative electronic energies (∆E), relative reaction Gibbs free energies ∆(∆G)k-relative, and cooling constant (K cooling ) are reported at three temperatures: 188 K, 195 K, and 210 K. Shapes given in our calculations are compared with various experimental shapes as well as comparisons with their thermo-stabilities.
Collapse
Affiliation(s)
- Marian Verdes
- Departamento de Química Física Aplicada, Facultad de Ciencias, C-14, Universidad Autónoma de Madrid, Cantoblanco, E-28049, Madrid, Spain,
| | | |
Collapse
|
19
|
Mackenzie RB, Dewberry CT, Leopold KR. Gas phase observation and microwave spectroscopic characterization of formic sulfuric anhydride. Science 2015; 349:58-61. [DOI: 10.1126/science.aaa9704] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rebecca B. Mackenzie
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Christopher T. Dewberry
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Kenneth R. Leopold
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
20
|
Nourry S, Zins EL, Krim L. Formation of HNCO from carbon monoxide and atomic nitrogen in their fundamental states. Investigation of the reaction pathway in conditions relevant to the interstellar medium. Phys Chem Chem Phys 2015; 17:2804-13. [DOI: 10.1039/c4cp03876b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Formation of HNCO from carbon monoxide and atomic nitrogen in their fundamental states.
Collapse
Affiliation(s)
- Sendres Nourry
- Sorbonne Universités
- UPMC Univ. Paris 06
- UMR 8233
- MONARIS
- Paris
| | | | - Lahouari Krim
- Sorbonne Universités
- UPMC Univ. Paris 06
- UMR 8233
- MONARIS
- Paris
| |
Collapse
|
21
|
Potapov A, Asselin P. High-resolution jet spectroscopy of weakly bound binary complexes involving water. INT REV PHYS CHEM 2014. [DOI: 10.1080/0144235x.2014.932578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Verdes M, Paniagua M. Quantum chemical study of atmospheric aggregates: HCl•HNO3•H2SO4. J Mol Model 2014; 20:2232. [PMID: 24844391 DOI: 10.1007/s00894-014-2232-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
HCl, HNO3 and H2SO4 are implicated in atmospheric processes in areas such as polar stratospheric clouds in the stratosphere. Ternary complexes of HCl, HNO3 and H2SO4 were investigated by ab initio calculations at B3LYP level of theory with aug-cc-pVTZ and aug-cc-pVQZ basis sets, taking into account basis set superposition error (BSSE). The results were assessed in terms of structures (five hexagonal cyclic structures and two quasi-pentagonal cyclic structures), inter-monomeric parameters (all ternary complexes built three hydrogen bonds), energetics (seven minima obtained), infrared harmonic vibrational frequencies (red shifting of complexes from monomers), and relative stability of complexes, which were favorable when the temperature decreases under stratospheric conditions, from 298 K to 188 K, and in concrete, at 210 K, 195 K and 188 K.
Collapse
Affiliation(s)
- Marian Verdes
- Departamento de Química Física Aplicada, Facultad de Ciencias, C-14, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain,
| | | |
Collapse
|
23
|
Nakajima M, Endo Y. Spectroscopic characterization of the complex between water and the simplest Criegee intermediate CH2OO. J Chem Phys 2014; 140:134302. [DOI: 10.1063/1.4869696] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Solimannejad M, Rabbani M, Esrafili MD. Toward understanding the role of water molecules in the uptake of nitrosyl hydride by sulfuric acid aerosols: A computational study. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Zhao Y. C-Cl activation by group IV metal oxides in solid argon matrixes: matrix isolation infrared spectroscopy and theoretical investigations of the reactions of MOx (M = Ti, Zr; x = 1, 2) with CH3Cl. J Phys Chem A 2013; 117:5664-74. [PMID: 23763350 DOI: 10.1021/jp4032095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reactions of the ground-state titanium and zirconium monoxide and dioxide molecules with monochloromethane in excess argon matrixes have been investigated in solid argon by infrared absorption spectroscopy and density functional theoretical calculations. The results show that the ground-state MOx (M = Ti, Zr; x = 1, 2) molecules react with CH3Cl to first form the weakly bound MO(CH3Cl) and MO2(CH3Cl) complexes. The MO(CH3Cl) complexes can rearrange to the CH3M(O)Cl isomers with the Cl atom of CH3Cl coordination to the metal center of MO upon UV light irradiation (λ < 300 nm). Theoretical calculations indicate that the electronic state crossings exist from the MO + CH3Cl reaction to the more stable CH3M(O)Cl molecules via the MO(CH3Cl) complexes traversing their corresponding transition states. The MO2(CH3Cl) complexes can isomerize to the more stable CH3OM(O)Cl molecules with the addition of the C-Cl bond of CH3Cl to one of the O═M bonds of MO2 upon annealing after broad-band light irradiation. The C-Cl activation by the MOx mechanism was interpreted by the calculated potential energy profiles.
Collapse
Affiliation(s)
- Yanying Zhao
- Department of Chemistry, State Key Laboratory of Advanced Textiles Materials and Manufacture Technology of the Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
26
|
Oyama T, Nakajima M, Sumiyoshi Y, Endo Y. Pure rotational spectroscopy of the H2O−trans-HOCO complex. J Chem Phys 2013; 138:204318. [DOI: 10.1063/1.4807749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
27
|
Fedorova IV, Safonova LP, Kiselev MG. Quantum chemical calculations of the structure of hydrogen-bonded sulfuric acid-dimethylformamide complexes. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2013. [DOI: 10.1134/s0036024413020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Torrent-Sucarrat M, Francisco JS, Anglada JM. Sulfuric Acid as Autocatalyst in the Formation of Sulfuric Acid. J Am Chem Soc 2012. [DOI: 10.1021/ja307523b] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Miquel Torrent-Sucarrat
- Departament de Química
Biològica i Modelització Molecular, Institut de Quimica Avançada de Catalunya, CSIC, E-08034
Barcelona, Spain
| | - Joseph S. Francisco
- Department
of Chemistry, Purdue University, West Lafayette,
Indiana 47907-2084,
United States
| | - Josep M. Anglada
- Departament de Química
Biològica i Modelització Molecular, Institut de Quimica Avançada de Catalunya, CSIC, E-08034
Barcelona, Spain
| |
Collapse
|
29
|
Temelso B, Phan TN, Shields GC. Computational Study of the Hydration of Sulfuric Acid Dimers: Implications for Acid Dissociation and Aerosol Formation. J Phys Chem A 2012; 116:9745-58. [DOI: 10.1021/jp3054394] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Berhane Temelso
- Dean’s Office, College of Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837,
United States
| | - Thuong Ngoc Phan
- Dean’s Office, College of Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837,
United States
| | - George C. Shields
- Dean’s Office, College of Arts and Sciences,
and Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837,
United States
| |
Collapse
|
30
|
Abstract
The (H2SO4)2, H2SO4-DMF, and (H2SO4)2-DMF complexes have been investigated, using the B3LYP functional with cc-pVQZ basis set. The characteristics of structure and energetics for binary complexes of sulfuric acid with dimethylformamide (DMF) have been obtained for the first time. The H-bond formation both between molecules of sulfuric acid as well as sulfuric acid-DMF were studied, on the basis of Weinhold’s natural bond orbital (NBO) analysis. It was shown that the H-bond formation between sulfuric acid and DMF molecules is stronger than ones for the acids dimer. The value of charge transfer from lone pair (LP) orbitals of DMF oxygen to the antibonding orbital of acid OH-bond significantly exceeds the criterion of H-bond existance (0.01 e). As follows from energy, among the complexes under investigation the most preferable one was found to be (H2SO4)2-DMF in which sulfuric acid molecules are linked with each other by three H-bonds.
Collapse
|
31
|
Kolaski M, Cho SJ. Monohydrated Sulfuric and Phosphoric Acids with Different Hydrogen Atom Orientations: DFT and Ab initio Study. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.6.1998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Partanen L, Hänninen V, Halonen L. Ab Initio Structural and Vibrational Investigation of Sulfuric Acid Monohydrate. J Phys Chem A 2012; 116:2867-79. [DOI: 10.1021/jp210489f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lauri Partanen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014
Finland
| | - Vesa Hänninen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014
Finland
| | - Lauri Halonen
- Laboratory of Physical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtasen aukio 1), FIN-00014
Finland
| |
Collapse
|
33
|
Hazra MK, Sinha A. Formic Acid Catalyzed Hydrolysis of SO3 in the Gas Phase: A Barrierless Mechanism for Sulfuric Acid Production of Potential Atmospheric Importance. J Am Chem Soc 2011; 133:17444-53. [DOI: 10.1021/ja207393v] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Montu K. Hazra
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| | - Amitabha Sinha
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| |
Collapse
|
34
|
Kołaski M, Zakharenko AA, Karthikeyan S, Kim KS. Structures, Energetics, and IR Spectra of Monohydrated Inorganic Acids: Ab initio and DFT Study. J Chem Theory Comput 2011; 7:3447-59. [DOI: 10.1021/ct100428z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maciej Kołaski
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, 790-784 Pohang, South Korea
| | - Aleksey A. Zakharenko
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, 790-784 Pohang, South Korea
| | - S. Karthikeyan
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, 790-784 Pohang, South Korea
| | - Kwang S. Kim
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, 790-784 Pohang, South Korea
| |
Collapse
|
35
|
Affiliation(s)
- Veronica Vaida
- Department of Chemistry and Biochemistry, CIRES, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|
36
|
Affiliation(s)
- Kenneth R. Leopold
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455;
| |
Collapse
|
37
|
Martínez SA, Martins ME, Zinola CF. Spontaneous Deposition of Ag. Influence of Composition of Ag-Containing Solution on the Electrocatalytic Activity of Pt-Modified Surface. Electrocatalysis (N Y) 2011. [DOI: 10.1007/s12678-011-0050-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Long B, Zhang WJ, Tan XF, Long ZW, Wang YB, Ren DS. Theoretical Study on the Gas Phase Reaction of Sulfuric Acid with Hydroxyl Radical in the Presence of Water. J Phys Chem A 2011; 115:1350-7. [DOI: 10.1021/jp107550w] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bo Long
- College of Computer and Information Engineering, Guizhou University for Nationalities, Guiyang, China 550025
| | - Wei-jun Zhang
- Laboratory of Environment Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China 230031
| | - Xing-feng Tan
- College of Photo-Electronics, Chongqing University of Posts and Telecommunications, Chongqing, China 400065
| | - Zheng-wen Long
- Department of Physics, Guizhou University, Guiyang, China 550025
| | - Yi-bo Wang
- Key Laboratory of Guizhou High Performance Computational Chemistry, Department of Chemistry, Guizhou University, Guiyang, China 550025
| | - Da-sen Ren
- College of Computer and Information Engineering, Guizhou University for Nationalities, Guiyang, China 550025
| |
Collapse
|
39
|
Li P, Ma Z, Wang W, Zhai Y, Sun H, Bi S, Bu Y. Theoretical studies on the coupling interactions in H2SO4⋯HOO˙⋯(H2O)n (n = 0–2) clusters: toward understanding the role of water molecules in the uptake of HOO˙ radical by sulfuric acid aerosols. Phys Chem Chem Phys 2011; 13:941-53. [DOI: 10.1039/c0cp00908c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Vaida V, Kjaergaard HG, Feierabend KJ. Hydrated Complexes: Relevance to Atmospheric Chemistry and Climate. INT REV PHYS CHEM 2010. [DOI: 10.1080/0144235031000075780] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Veronica Vaida
- a Department of Chemistry and Biochemistry and CIRES , University of Colorado , Campus Box 215, Boulder , CO , 80309 , USA
| | - Henrik G. Kjaergaard
- b Department of Chemistry , University of Otago , PO Box 56, Dunedin , New Zealand
| | - Karl J. Feierabend
- a Department of Chemistry and Biochemistry and CIRES , University of Colorado , Campus Box 215, Boulder , CO , 80309 , USA
| |
Collapse
|
41
|
Rozenberg M, Loewenschuss A, Nielsen CJ. Spectral shifts of matrix isolated species as criteria for acid–base interactions with solid Xe. Phys Chem Chem Phys 2010; 12:4024-31. [DOI: 10.1039/b922952c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Sedo G, Doran JL, Leopold KR. Partial Proton Transfer in the Nitric Acid Trihydrate Complex. J Phys Chem A 2009; 113:11301-10. [DOI: 10.1021/jp9063033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Galen Sedo
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| | - Jamie L. Doran
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| | - Kenneth R. Leopold
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455
| |
Collapse
|
43
|
Steudel R, Steudel Y. Microsolvation of Thiosulfuric Acid and Its Tautomeric Anions [HSSO3]− and [SSO2(OH)]− Studied by B3LYP-PCM and G3X(MP2) Calculations. J Phys Chem A 2009; 113:9920-33. [DOI: 10.1021/jp905264c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ralf Steudel
- Institut für Chemie, Sekretariat C2, Technische Universität Berlin, D-10623 Berlin, Germany
| | - Yana Steudel
- Institut für Chemie, Sekretariat C2, Technische Universität Berlin, D-10623 Berlin, Germany
| |
Collapse
|
44
|
Rozenberg M, Loewenschuss A. Matrix isolation infrared spectrum of the sulfuric acid-monohydrate complex: new assignments and resolution of the "missing H-Bonded v(OH) band" issue. J Phys Chem A 2009; 113:4963-71. [PMID: 19385678 DOI: 10.1021/jp810389r] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The matrix isolation infrared spectra of "dry" and "wet" vapors of sulfuric acid have been investigated as trapped in solid argon matrices. The availability of a spectrum of trapped anhydrous acid vapor and its comparison with the spectra of trapped water containing vapors of the acid allowed the identification of the hydrogen-bonding shifted hydroxyl bands for both the acid and the water moieties of the monohydrated H(2)SO(4).H(2)O complex. The experimental results are compared to the various theoretically calculated wavenumber values of the acid and its monohydrated complex. The complex stabilization energies, as obtained from calculations and empirical correlations, are compared.
Collapse
Affiliation(s)
- M Rozenberg
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
45
|
Theoretical analysis of the gas-phase hydration of common atmospheric pre-nucleation (HSO4-)(H2O)n and (H3O+)(H2SO4)(H2O)n cluster ions. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Path-integral molecular dynamics simulations of small hydrated sulfuric acid clusters H2SO4·(H2O)n (n=1–6) on semiempirical PM6 potential surfaces. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.theochem.2009.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Zhao J, Khalizov A, Zhang R, McGraw R. Hydrogen-Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors. J Phys Chem A 2009; 113:680-9. [DOI: 10.1021/jp806693r] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Zhao
- Department of Atmospheric Sciences and Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Alexei Khalizov
- Department of Atmospheric Sciences and Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Renyi Zhang
- Department of Atmospheric Sciences and Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Robert McGraw
- Atmospheric Sciences Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973
| |
Collapse
|
48
|
Ouyang B, Howard BJ. The monohydrate and dihydrate of acetic acid: A high-resolution microwave spectroscopic study. Phys Chem Chem Phys 2009; 11:366-73. [DOI: 10.1039/b814562h] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
49
|
Ouyang B, Howard BJ. High-Resolution Microwave Spectroscopic and ab initio Studies of Propanoic Acid and Its Hydrates. J Phys Chem A 2008; 112:8208-14. [DOI: 10.1021/jp802422b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bin Ouyang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Brian J. Howard
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
50
|
Nadykto AB, Yu F. Anomalously Large Difference in Dipole Moment of Isomers with Nearly Identical Thermodynamic Stability. J Phys Chem A 2008; 112:7222-6. [DOI: 10.1021/jp711803r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexey B. Nadykto
- Atmospheric Sciences Research Center, State University of New York at Albany, 251 Fuller Road, Albany, New York 12203
| | - Fangqun Yu
- Atmospheric Sciences Research Center, State University of New York at Albany, 251 Fuller Road, Albany, New York 12203
| |
Collapse
|