1
|
Khatua S, Taraphder S. In the footsteps of an inhibitor unbinding from the active site of human carbonic anhydrase II. J Biomol Struct Dyn 2022; 41:3187-3204. [PMID: 35257634 DOI: 10.1080/07391102.2022.2048075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The crystal structure of human carbonic anhydrase (HCA) II bound to an inhibitor molecule, 6-hydroxy-2-thioxocoumarin (FC5), shows FC5 to be located in a hydrophobic pocket at the active site. The present work employs classical molecular dynamics (MD) simulation to follow the FC5 molecule for 1 μs as it unbinds from its binding location, adopts the path of substrate/product diffusion (path 1) to leave the active site at around 75 ns. It is then found to undergo repeated binding and unbinding at different locations on the surface of the enzyme in water. Several transient excursions through different regions of the enzyme are also observed prior to its exit from the active site. These transient paths are combined with functionally relevant cavities/channels to enlist five additional pathways (path 2-6). Pathways 1-6 are subsequently explored using steered MD and umbrella sampling simulations. A free energy barrier of 0.969 kcal mol-1 is encountered along path 1, while barriers in the range of 0.57-2.84 kcal mol-1 are obtained along paths 2, 4 and 5. We also analyze in detail the interaction between FC5 and the enzyme along each path as the former leaves the active site of HCA II. Our results indicate path 1 to be the major exit pathway for FC5, although competing contributions may also come from the paths 2, 4 and 5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Satyajit Khatua
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| | - Srabani Taraphder
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
2
|
Bertalan É, Lesca E, Schertler GFX, Bondar AN. C-Graphs Tool with Graphical User Interface to Dissect Conserved Hydrogen-Bond Networks: Applications to Visual Rhodopsins. J Chem Inf Model 2021; 61:5692-5707. [PMID: 34670076 DOI: 10.1021/acs.jcim.1c00827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic hydrogen-bond networks provide proteins with structural plasticity required to translate signals such as ligand binding into a cellular response or to transport ions and larger solutes across membranes and, thus, are of central interest to understand protein reaction mechanisms. Here, we present C-Graphs, an efficient tool with graphical user interface that analyzes data sets of static protein structures or of independent numerical simulations to identify conserved, vs unique, hydrogen bonds and hydrogen-bond networks. For static structures, which may belong to the same protein or to proteins with different sequences, C-Graphs uses a clustering algorithm to identify sites of the hydrogen-bond network where waters are conserved among the structures. Using C-Graphs, we identify an internal protein-water hydrogen-bond network common to static structures of visual rhodopsins and adenosine A2A G protein-coupled receptors (GPCRs). Molecular dynamics simulations of a visual rhodopsin indicate that the conserved hydrogen-bond network from static structure can recruit dynamic hydrogen bonds and extend throughout most of the receptor. We release with this work the code for C-Graphs and its graphical user interface.
Collapse
Affiliation(s)
- Éva Bertalan
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - Elena Lesca
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, ETH Zürich, 5303 Villigen-PSI, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Gebhard F X Schertler
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, ETH Zürich, 5303 Villigen-PSI, Switzerland.,Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Ana-Nicoleta Bondar
- Theoretical Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.,Faculty of Physics, University of Bucharest, Strada Atomiştilor Nr. 405, Măgurele 077125, Romania.,Computational Biomedicine, IAS-5/INM-9, Institute for Neuroscience and Medicine and Institute for Advanced Simulations, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
3
|
Pereira CS, Silveira RL, Skaf MS. QM/MM Simulations of Enzymatic Hydrolysis of Cellulose: Probing the Viability of an Endocyclic Mechanism for an Inverting Cellulase. J Chem Inf Model 2021; 61:1902-1912. [PMID: 33760586 PMCID: PMC8154253 DOI: 10.1021/acs.jcim.0c01380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Glycoside hydrolases
(GH) cleave carbohydrate glycosidic bonds
and play pivotal roles in living organisms and in many industrial
processes. Unlike acid-catalyzed hydrolysis of carbohydrates in solution,
which can occur either via cyclic or acyclic oxocarbenium-like transition
states, it is widely accepted that GH-catalyzed hydrolysis proceeds
via a general acid mechanism involving a cyclic oxocarbenium-like
transition state with protonation of the glycosidic oxygen. The GH45
subfamily C inverting endoglucanase from Phanerochaete chrysosporium (PcCel45A) defies the classical inverting mechanism as its crystal
structure conspicuously lacks a general Asp or Glu base residue. Instead,
PcCel45A has an Asn residue, a notoriously weak base in solution,
as one of its catalytic residues at position 92. Moreover, unlike
other inverting GHs, the relative position of the catalytic residues
in PcCel45A impairs the proton abstraction from the nucleophilic water
that attacks the anomeric carbon, a key step in the classical mechanism.
Here, we investigate the viability of an endocyclic mechanism for
PcCel45A using hybrid quantum mechanics/molecular mechanics (QM/MM)
simulations, with the QM region treated with the self-consistent-charge
density-functional tight-binding level of theory. In this mechanism,
an acyclic oxocarbenium-like transition state is stabilized leading
to the opening of the glucopyranose ring and formation of an unstable
acyclic hemiacetal that can be readily decomposed into hydrolysis
product. In silico characterization of the Michaelis
complex shows that PcCel45A significantly restrains the sugar ring
to the 4C1 chair conformation at the −1
subsite of the substrate binding cleft, in contrast to the classical
exocyclic mechanism in which ring puckering is critical. We also show
that PcCel45A provides an environment where the catalytic Asn92 residue
in its standard amide form participates in a cooperative hydrogen
bond network resulting in its increased nucleophilicity due to an
increased negative charge on the oxygen atom. Our results for PcCel45A
suggest that carbohydrate hydrolysis catalyzed by GHs may take an
alternative route from the classical mechanism.
Collapse
Affiliation(s)
- Caroline S Pereira
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas-Unicamp, Campinas 13084-862, Sao Paulo, Brazil
| | - Rodrigo L Silveira
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas-Unicamp, Campinas 13084-862, Sao Paulo, Brazil.,Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Rio de Janeiro, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas-Unicamp, Campinas 13084-862, Sao Paulo, Brazil
| |
Collapse
|
4
|
Sen S, Risbud SH, Bartl MH. Thermodynamic and Kinetic Transitions of Liquids in Nanoconfinement. Acc Chem Res 2020; 53:2869-2878. [PMID: 33186005 DOI: 10.1021/acs.accounts.0c00502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Core principles of chemistry are ubiquitously invoked to shed light on the nature of molecular level interactions in nanoconfined fluids, which play a pivotal role in a wide range of processes in geochemistry, biology, and engineering. A detailed understanding of the physicochemical processes involved in the flow, structural transitions, and freezing or melting behavior of fluids confined within nanometer-sized pores of solid materials is thus of enormous importance for both basic research and technological applications.This Account provides a perspective on new insights into the thermodynamic and kinetic transitions of nanoconfined fluids in their stable and metastable forms. After briefly introducing the unique properties of mesoporous silicas from the SBA, MCM, and FDU families that serve as the confinement matrices, combining highly ordered single and bimodal mesopore architectures with tunable pore sizes in the ∼2-15 nm range and narrow size distributions, recent studies on melting/freezing behavior of water confined in these host matrices are reviewed. While differential scanning calorimetry (DSC) reveals a linear relationship between melting point depression and pore size (independent of the pore shape), as predicted by the Gibbs-Thomson relation, variable temperature 2H wide-line nuclear magnetic resonance (NMR) spectroscopy studies confirm the core-shell model of water and give evidence for a layer-by-layer freezing mechanism, which gives rise to an apparent fragile-to-strong transition in the solidification dynamics.In contrast to the freezing/melting behavior of water, the effect of nanoconfinement on the glass transition of supercooled liquids is nonuniversal and the glass transition temperature Tg can either increase or decrease with the dimensionality and extent of confinement. This nonuniversal behavior is exemplified by the two glass-forming molecular liquids, glycerol and ortho-terphenyl (OTP). While glycerol shows an increase in Tg and a pronounced slowdown of the rotational dynamics of the constituent molecules due to a change in the molecular packing between the bulk and the confined liquid, OTP displays a linear and confining-media-dependent depression of Tg with increased confinement that is strongly influenced by the pore-liquid interface characteristics.This Account concludes with a focus on recent experimental evidence of extreme spatial and dynamical heterogeneity in both freezing and glass transition processes. This discovery was enabled by the unique mesoporous structures of SBA-16 and FDU-5, possessing bimodal architectures with two interconnected pore types of different size and shape (spherical and cylindrical). For the very first time, two melting points for water and two glass transitions for supercooled OTP, corresponding to a specific pore type, were observed. Collectively, these observations strongly suggest a close mechanistic connection between the local fluctuations in the structure and dynamics of nanoconfined liquids. While the findings reviewed in this Account provide new insights into thermodynamic and kinetic transitions of fluids, there remain many unanswered questions regarding the effects of nanoconfinement on the fundamental properties of fluids, which offer exciting future opportunities in chemical research.
Collapse
Affiliation(s)
- Sabyasachi Sen
- Department of Materials Science & Engineering, University of California at Davis, Davis, California 95616, United States
| | - Subhash H. Risbud
- Department of Materials Science & Engineering, University of California at Davis, Davis, California 95616, United States
| | - Michael H. Bartl
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Lazaratos M, Karathanou K, Bondar AN. Graphs of dynamic H-bond networks: from model proteins to protein complexes in cell signaling. Curr Opin Struct Biol 2020; 64:79-87. [DOI: 10.1016/j.sbi.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
|
6
|
Kalita S, Shaik S, Kisan HK, Dubey KD. A Paradigm Shift in the Catalytic Cycle of P450: The Preparatory Choreography during O 2 Binding and Origins of the Necessity for Two Protonation Pathways. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02775] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Surajit Kalita
- Department of Chemistry and Center for Informatics, Shiv Nadar University, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - Hemanta K. Kisan
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry and Center for Informatics, Shiv Nadar University, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
7
|
Liang X, Cao T, Wang L, Zheng C, Zhao Y, Zhang F, Wen C, Feng L, Wan C. From an organic ligand to a metal–organic coordination polymer, and to a metal–organic coordination polymer–cocrystal composite: a continuous promotion of the proton conductivity of crystalline materials. CrystEngComm 2020. [DOI: 10.1039/c9ce01716j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new strategy was proposed to increase proton conductivities in metal–organic coordination polymers (MOCPs) commencing from organic ligands, i.e. coordination inducement and MOCP–cocrystal composite formation.
Collapse
Affiliation(s)
- Xiaoqiang Liang
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- PR China
| | - Tingting Cao
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- PR China
| | - Li Wang
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- PR China
| | - Changzheng Zheng
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- PR China
| | - Yamei Zhao
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- PR China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials
- Heilongjiang Province and College of Chemistry and Chemical Engineering
- Harbin Normal University
- Harbin 150025
- PR China
| | - Chen Wen
- Beijing Spacecrafts
- Beijing 100094
- PR China
| | - Lei Feng
- Beijing Spacecrafts
- Beijing 100094
- PR China
| | | |
Collapse
|
8
|
Effect of nano-confinement on the structure and properties of water clusters: An ab initio study. J CHEM SCI 2019. [DOI: 10.1007/s12039-019-1697-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Zahler CT, Shaw BF. What Are We Missing by Not Measuring the Net Charge of Proteins? Chemistry 2019; 25:7581-7590. [PMID: 30779227 DOI: 10.1002/chem.201900178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Indexed: 12/21/2022]
Abstract
The net electrostatic charge (Z) of a folded protein in solution represents a bird's eye view of its surface potentials-including contributions from tightly bound metal, solvent, buffer, and cosolvent ions-and remains one of its most enigmatic properties. Few tools are available to the average biochemist to rapidly and accurately measure Z at pH≠pI. Tools that have been developed more recently seem to go unnoticed. Most scientists are content with this void and estimate the net charge of a protein from its amino acid sequence, using textbook values of pKa . Thus, Z remains unmeasured for nearly all folded proteins at pH≠pI. When marveling at all that has been learned from accurately measuring the other fundamental property of a protein-its mass-one wonders: what are we missing by not measuring the net charge of folded, solvated proteins? A few big questions immediately emerge in bioinorganic chemistry. When a single electron is transferred to a metalloprotein, does the net charge of the protein change by approximately one elementary unit of charge or does charge regulation dominate, that is, do the pKa values of most ionizable residues (or just a few residues) adjust in response to (or in concert with) electron transfer? Would the free energy of charge regulation (ΔΔGz ) account for most of the outer sphere reorganization energy associated with electron transfer? Or would ΔΔGz contribute more to the redox potential? And what about metal binding itself? When an apo-metalloprotein, bearing minimal net negative charge (e.g., Z=-2.0) binds one or more metal cations, is the net charge abolished or inverted to positive? Or do metalloproteins regulate net charge when coordinating metal ions? The author's group has recently dusted off a relatively obscure tool-the "protein charge ladder"-and used it to begin to answer these basic questions.
Collapse
Affiliation(s)
- Collin T Zahler
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| |
Collapse
|
10
|
Spinello A, Martini S, Berti F, Pennati M, Pavlin M, Sgrignani J, Grazioso G, Colombo G, Zaffaroni N, Magistrato A. Rational design of allosteric modulators of the aromatase enzyme: An unprecedented therapeutic strategy to fight breast cancer. Eur J Med Chem 2019; 168:253-262. [DOI: 10.1016/j.ejmech.2019.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
|
11
|
Spinello A, Pavlin M, Casalino L, Magistrato A. A Dehydrogenase Dual Hydrogen Abstraction Mechanism Promotes Estrogen Biosynthesis: Can We Expand the Functional Annotation of the Aromatase Enzyme? Chemistry 2018; 24:10840-10849. [DOI: 10.1002/chem.201802025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Angelo Spinello
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Matic Pavlin
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Lorenzo Casalino
- International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos, c/o International School for Advanced Studies (SISSA); via Bonomea 265 34136 Trieste Italy
| |
Collapse
|
12
|
Structure of cytochrome P450 2B4 with an acetate ligand and an active site hydrogen bond network similar to oxyferrous P450cam. J Inorg Biochem 2018; 185:17-25. [PMID: 29730233 DOI: 10.1016/j.jinorgbio.2018.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 02/03/2023]
|
13
|
Ghane T, Gorriz RF, Wrzalek S, Volkenandt S, Dalatieh F, Reidelbach M, Imhof P. Hydrogen-Bonded Network and Water Dynamics in the D-channel of Cytochrome c Oxidase. J Membr Biol 2018; 251:299-314. [PMID: 29435610 DOI: 10.1007/s00232-018-0019-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Proton transfer in cytochrome c oxidase (CcO) from the cellular inside to the binuclear redox centre as well as proton pumping through the membrane takes place through proton entrance via two distinct pathways, the D- and K-channel. Both channels show a dependence of their hydration level on the protonation states of their key residues, K362 for the K-channel, and E286 or D132 for the D-channel. In the oxidative half of CcO's catalytic cycle the D-channel is the proton-conducting path. For this channel, an interplay of protonation state of the D-channel residues with the water and hydrogen-bond dynamics has been observed in molecular dynamics simulations of the CcO protein, embedded in a lipid bi-layer, modelled in different protonation states. Protonation of residue E286 at the end of the D-channel results in a hydrogen-bonded network pointing from E286 to N139, that is against proton transport, and favouring N139 conformations which correspond to a closed asparagine gate (formed by residues N121 and N139). Consequently, the hydration level is lower than with unprotonated E286. In those models, the Asn gate is predominantly open, allowing water molecules to pass and thus increase the hydration level. The hydrogen-bonded network in these states exhibits longer life times of the Asn residues with water than other models and shows the D-channel to be traversable from the entrance, D132, to exit, E286. The D-channel can thus be regarded as auto-regulated with respect to proton transport, allowing proton passage only when required, that is the proton is located at the lower part of the D-channel (D132 to Asn gate) and not at the exit (E286).
Collapse
Affiliation(s)
- Tahereh Ghane
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Rene F Gorriz
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Sandro Wrzalek
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Senta Volkenandt
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ferand Dalatieh
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.,R Institute GmbH, Dortustraße 48, 14467, Potsdam, Germany
| | - Marco Reidelbach
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Petra Imhof
- Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| |
Collapse
|
14
|
Zhang X, Jiang Y, Mao Q, Tan H, Li X, Chen G, Jia Z. Distal Proton Shuttle Mechanism of Ribosome Catalysed Peptide Bond Formation-A Theoretical Study. Molecules 2017; 22:molecules22040571. [PMID: 28362358 PMCID: PMC6154465 DOI: 10.3390/molecules22040571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 03/28/2017] [Indexed: 12/02/2022] Open
Abstract
In this work, we have investigated a novel distal proton shuttle mechanism of ribosome catalyzed peptide bond formation reaction. The reaction was found to follow a two-step mechanism. A distal water molecule located about 6.1 Å away from the attacking amine plays as a proton acceptor and results in a charge-separated intermediate that is stabilized by the N terminus of L27 and the A-site A76 5′-phosphate. The ribose A2451 bridges the proton shuttle pathway, thus plays critical role in the reaction. The calculated 27.64 kcal·mol−1 free energy barrier of the distal proton shuttle mechanism is lower than that of eight-membered ring transition state. The distal proton shuttle mechanism studied in this work can provide new insights into the important biological peptide synthesis process.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yafei Jiang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Qiuyun Mao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Hongwei Tan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Xichen Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guangju Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7N 3L6, Canada .
| |
Collapse
|
15
|
Pearl NM, Wilcoxen J, Im S, Kunz R, Darty J, Britt RD, Ragsdale SW, Waskell L. Protonation of the Hydroperoxo Intermediate of Cytochrome P450 2B4 Is Slower in the Presence of Cytochrome P450 Reductase Than in the Presence of Cytochrome b5. Biochemistry 2016; 55:6558-6567. [PMID: 27797496 DOI: 10.1021/acs.biochem.6b00996] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microsomal cytochromes P450 (P450) require two electrons and two protons for the oxidation of substrates. Although the two electrons can be provided by cytochrome P450 reductase, the second electron can also be donated by cytochrome b5 (b5). The steady-state activity of P450 2B4 is increased up to 10-fold by b5. To improve our understanding of the molecular basis of the stimulatory effect of b5 and to test the hypothesis that b5 stimulates catalysis by more rapid protonation of the anionic ferric hydroperoxo heme intermediate of P450 (Fe3+OOH)- and subsequent formation of the active oxidizing species (Fe+4═O POR•+), we have freeze-quenched the reaction mixture during a single turnover following reduction of oxyferrous P450 2B4 by each of its redox partners, b5 and P450 reductase. The electron paramagnetic resonance spectra of the freeze-quenched reaction mixtures lacked evidence of a hydroperoxo intermediate when b5 was the reductant presumably because hydroperoxo protonation and catalysis occurred within the dead time of the instrument. However, when P450 reductase was the reductant, a hydroperoxo P450 intermediate was observed. The effect of b5 on the enzymatic efficiency in D2O and the kinetic solvent isotope effect under steady-state conditions are both consistent with the ability of b5 to promote rapid protonation of the hydroperoxo species and more efficient catalysis. In summary, by binding to the proximal surface of P450, b5 stimulates the activity of P450 2B4 by enhancing the rate of protonation of the hydroperoxo intermediate and formation of Compound I, the active oxidizing species, which allows less time for side product formation.
Collapse
Affiliation(s)
- Naw May Pearl
- Department of Anesthesiology, University of Michigan Medical School , Ann Arbor, Michigan 48109-0112, United States
| | - Jarett Wilcoxen
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| | - Sangchoul Im
- Department of Anesthesiology, University of Michigan Medical School , Ann Arbor, Michigan 48109-0112, United States
| | - Ryan Kunz
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - Joseph Darty
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis , Davis, California 95616, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109-0600, United States
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan Medical School , Ann Arbor, Michigan 48109-0112, United States
| |
Collapse
|
16
|
Duan L, Jogl G, Cane DE. The Cytochrome P450-Catalyzed Oxidative Rearrangement in the Final Step of Pentalenolactone Biosynthesis: Substrate Structure Determines Mechanism. J Am Chem Soc 2016; 138:12678-89. [PMID: 27588339 PMCID: PMC5042876 DOI: 10.1021/jacs.6b08610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The final step in the biosynthesis of the sesquiterpenoid antibiotic pentalenolactone (1) is the highly unusual cytochrome P450-catalyzed, oxidative rearrangement of pentalenolactone F (2), involving the transient generation and rearrangement of a neopentyl cation. In Streptomyces arenae this reaction is catalyzed by CYP161C2 (PntM), with highly conserved orthologs being present in at least 10 other Actinomycetes. Crystal structures of substrate-free PntM, as well as PntM with bound substrate 2, product 1, and substrate analogue 6,7-dihydropentalenolactone F (7) revealed interactions of bound ligand with three residues, F232, M77, and M81 that are unique to PntM and its orthologs and absent from essentially all other P450s. Site-directed mutagenesis, ligand-binding measurements, steady-state kinetics, and reaction product profiles established there is no special stabilization of reactive cationic intermediates by these side chains. Reduced substrate analogue 7 did not undergo either oxidative rearrangement or simple hydroxylation, suggesting that the C1 carbocation is not anchimerically stabilized by the 6,7-double bond of 2. The crystal structures also revealed plausible proton relay networks likely involved in the generation of the key characteristic P450 oxidizing species, Compound I, and in mediating stereospecific deprotonation of H-3re of the substrate. We conclude that the unusual carbocation intermediate results from outer shell electron transfer from the transiently generated C1 radical to the tightly paired heme-•Fe(3+)-OH radical species. The oxidative electron transfer is kinetically dominant as a result of the unusually strong steric barrier to oxygen rebound to the neopentyl center C-1si, which is flanked on each neighboring carbon by syn-axial substituents.
Collapse
Affiliation(s)
- Lian Duan
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
17
|
Blasic JR, Worcester DL, Gawrisch K, Gurnev P, Mihailescu M. Pore hydration states of KcsA potassium channels in membranes. J Biol Chem 2015; 290:26765-75. [PMID: 26370089 DOI: 10.1074/jbc.m115.661819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 12/30/2022] Open
Abstract
Water-filled hydrophobic cavities in channel proteins serve as gateways for transfer of ions across membranes, but their properties are largely unknown. We determined water distributions along the conduction pores in two tetrameric channels embedded in lipid bilayers using neutron diffraction: potassium channel KcsA and the transmembrane domain of M2 protein of influenza A virus. For the KcsA channel in the closed state, the distribution of water is peaked in the middle of the membrane, showing water in the central cavity adjacent to the selectivity filter. This water is displaced by the channel blocker tetrabutyl-ammonium. The amount of water associated with the channel was quantified, using neutron diffraction and solid state NMR. In contrast, the M2 proton channel shows a V-shaped water profile across the membrane, with a narrow constriction at the center, like the hourglass shape of its internal surface. These two types of water distribution are therefore very different in their connectivity to the bulk water. The water and protein profiles determined here provide important evidence concerning conformation and hydration of channels in membranes and the potential role of pore hydration in channel gating.
Collapse
Affiliation(s)
- Joseph R Blasic
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850
| | - David L Worcester
- the Department of Physiology and Biophysics, University of California, Irvine, California 92697, the National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland 20899
| | - Klaus Gawrisch
- the Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892
| | - Philip Gurnev
- the Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, and From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850
| | - Mihaela Mihailescu
- From the Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850,
| |
Collapse
|
18
|
Faponle AS, Quesne MG, Sastri CV, Banse F, de Visser SP. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere. Chemistry 2015; 21:1221-36. [PMID: 25399782 PMCID: PMC4316188 DOI: 10.1002/chem.201404918] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/06/2022]
Abstract
Heme and nonheme monoxygenases and dioxygenases catalyze important oxygen atom transfer reactions to substrates in the body. It is now well established that the cytochrome P450 enzymes react through the formation of a high-valent iron(IV)-oxo heme cation radical. Its precursor in the catalytic cycle, the iron(III)-hydroperoxo complex, was tested for catalytic activity and found to be a sluggish oxidant of hydroxylation, epoxidation and sulfoxidation reactions. In a recent twist of events, evidence has emerged of several nonheme iron(III)-hydroperoxo complexes that appear to react with substrates via oxygen atom transfer processes. Although it was not clear from these studies whether the iron(III)-hydroperoxo reacted directly with substrates or that an initial O-O bond cleavage preceded the reaction. Clearly, the catalytic activity of heme and nonheme iron(III)-hydroperoxo complexes is substantially different, but the origins of this are still poorly understood and warrant a detailed analysis. In this work, an extensive computational analysis of aromatic hydroxylation by biomimetic nonheme and heme iron systems is presented, starting from an iron(III)-hydroperoxo complex with pentadentate ligand system (L5(2)). Direct C-O bond formation by an iron(III)-hydroperoxo complex is investigated, as well as the initial heterolytic and homolytic bond cleavage of the hydroperoxo group. The calculations show that [(L5(2))Fe(III)(OOH)](2+) should be able to initiate an aromatic hydroxylation process, although a low-energy homolytic cleavage pathway is only slightly higher in energy. A detailed valence bond and thermochemical analysis rationalizes the differences in chemical reactivity of heme and nonheme iron(III)-hydroperoxo and show that the main reason for this particular nonheme complex to be reactive comes from the fact that they homolytically split the O-O bond, whereas a heterolytic O-O bond breaking in heme iron(III)-hydroperoxo is found.
Collapse
Affiliation(s)
- Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Matthew G Quesne
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati781039, Assam (India)
| | - Frédéric Banse
- Institut de Chimie Moleculaire et des Materiaux d'Orsay, Laboratoire de Chimie Inorganique, Université Paris-Sud11 91405 Orsay Cedex (France) E-mail:
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester131 Princess Street, Manchester M1 7DN (UK) E-mail:
| |
Collapse
|
19
|
Velez-Vega C, McKay DJJ, Aravamuthan V, Pearlstein R, Duca JS. Time-averaged distributions of solute and solvent motions: exploring proton wires of GFP and PfM2DH. J Chem Inf Model 2014; 54:3344-61. [PMID: 25405925 DOI: 10.1021/ci500571h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton translocation pathways of selected variants of the green fluorescent protein (GFP) and Pseudomonas fluorescens mannitol 2-dehydrogenase (PfM2DH) were investigated via an explicit solvent molecular dynamics-based analysis protocol that allows for direct quantitative relationship between a crystal structure and its time-averaged solute-solvent structure obtained from simulation. Our study of GFP is in good agreement with previous research suggesting that the proton released from the chromophore upon photoexcitation can diffuse through an extended internal hydrogen bonding network that allows for the proton to exit to bulk or be recaptured by the anionic chromophore. Conversely for PfM2DH, we identified the most probable ionization states of key residues along the proton escape channel from the catalytic site to bulk solvent, wherein the solute and high-density solvent crystal structures of binary and ternary complexes were properly reproduced. Furthermore, we proposed a plausible mechanism for this proton translocation process that is consistent with the state-dependent structural shifts observed in our analysis. The time-averaged structures generated from our analyses facilitate validation of MD simulation results and provide a comprehensive profile of the dynamic all-occupancy solvation network within and around a flexible solute, from which detailed hydrogen-bonding networks can be inferred. In this way, potential drawbacks arising from the elucidation of these networks by examination of static crystal structures or via alternate rigid-protein solvation analysis procedures can be overcome. Complementary studies aimed at the effective use of our methodology for alternate implementations (e.g., ligand design) are currently underway.
Collapse
Affiliation(s)
- Camilo Velez-Vega
- Computer-Aided Drug Discovery, Global Discovery Chemistry, Novartis Institutes for BioMedical Research , 100 Technology Square, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
20
|
Lian P, Wei D. An application of QM/MM simulation: the second protonation of cytochrome P450. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 827:311-24. [PMID: 25387972 DOI: 10.1007/978-94-017-9245-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The multiscale model strategy, hybrid quantum mechanics and molecular mechanics (QM/MM), has become more and more prevalent in the theoretical study of enzymatic reactions. It combines both the efficiency of the Newtonian molecular calculations and the accuracy of the quantum mechanical methods. Simulation using QM/MM multiscale model may be one of the most promising approaches that could further narrow the gap between the theoretical models and the real problems. It is capable of dealing with not only the conformational changes of biomacromolecules, but also the catalytic reactions. Herein, we reviewed some of our recent work to demonstrate the application of the QM/MM simulations in exploring the enzymatic reactions.
Collapse
Affiliation(s)
- Peng Lian
- State Key Laboratory of Microbial Metabolism, College of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
21
|
Bhattacharyya A, Harms K, Chattopadhyay S. Formation of T4(1) water tapes interconnected via centrosymmetric nickel(II) Schiff base complex to produce a 3D architecture. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Krámos B, Oláh J. Enolization as an Alternative Proton Delivery Pathway in Human Aromatase (P450 19A1). J Phys Chem B 2014; 118:390-405. [DOI: 10.1021/jp407365x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Balázs Krámos
- Department of Inorganic and
Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| | - Julianna Oláh
- Department of Inorganic and
Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, H-1111 Budapest, Hungary
| |
Collapse
|
23
|
Lian P, Li J, Wang DQ, Wei DQ. Car–Parrinello Molecular Dynamics/Molecular Mechanics (CPMD/MM) Simulation Study of Coupling and Uncoupling Mechanisms of Cytochrome P450cam. J Phys Chem B 2013; 117:7849-56. [DOI: 10.1021/jp312107r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Lian
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Jue Li
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Dong-Qi Wang
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093
Zurich, Switzerland
| | - Dong-Qing Wei
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
24
|
Liang X, Zhang F, Feng W, Zou X, Zhao C, Na H, Liu C, Sun F, Zhu G. From metal–organic framework (MOF) to MOF–polymer composite membrane: enhancement of low-humidity proton conductivity. Chem Sci 2013. [DOI: 10.1039/c2sc21927a] [Citation(s) in RCA: 290] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Camara-Artigas A, Bacarizo J, Andujar-Sanchez M, Ortiz-Salmeron E, Mesa-Valle C, Cuadri C, Martin-Garcia JM, Martinez-Rodriguez S, Mazzuca-Sobczuk T, Ibañez MJ, Allen JP. pH-dependent structural conformations of B-phycoerythrin from Porphyridium cruentum. FEBS J 2012; 279:3680-3691. [PMID: 22863205 DOI: 10.1111/j.1742-4658.2012.08730.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/22/2012] [Accepted: 07/25/2012] [Indexed: 11/26/2022]
Abstract
B-phycoerythrin from the red alga Porphyridium cruentum was crystallized using the technique of capillary counter-diffusion. Crystals belonging to the space group R3 with almost identical unit cell constants and diffracting to 1.85 and 1.70 Å were obtained at pH values of 5 and 8, respectively. The most important difference between structures is the presence of the residue His88α in two different conformations at pH 8. This residue is placed next to the chromophore phycoerythrobilin PEB82α and the new conformation results in the relocation of the hydrogen-bond network and hydration around PEB82α, which probably contributes to the observed pH dependence of the optical spectrum associated with this chromophore. Comparison with the structures of B-phycoerythrin from other red algae shows differences in the conformation of the A-ring of the chromophore PEB139α. This conformational difference in B-phycoerythrin from P. cruentum enables the formation of several hydrogen bonds that connect PEB139α with the chromophore PEB158β at the (αβ)(3) hexamer association interface. The possible influence of these structural differences on the optical spectrum and the ability of the protein to perform energy transfer are discussed, with the two pH-dependent conformations of His88α and PEB82α being proposed as representing critical structural features that are correlated with the pH dependence of the optical spectrum and transient optical states during energy transfer.
Collapse
Affiliation(s)
- Ana Camara-Artigas
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Julio Bacarizo
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Montserrat Andujar-Sanchez
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Emilia Ortiz-Salmeron
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Concepcion Mesa-Valle
- Department of Applied Biology, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Celia Cuadri
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Jose M Martin-Garcia
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain.,Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA
| | - Sergio Martinez-Rodriguez
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Tania Mazzuca-Sobczuk
- Department of Chemical Engineering, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - Maria J Ibañez
- Department of Chemical Engineering, Agrifood Campus of International Excellence (CeiA3), University of Almería, Spain
| | - James P Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
26
|
Modeling the structure and proton transfer pathways of the mutant His-107-Tyr of human carbonic anhydrase II. J Mol Model 2012; 19:289-98. [PMID: 22878862 DOI: 10.1007/s00894-012-1549-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022]
Abstract
We present molecular modeling of the structure and possible proton transfer pathways from the surface of the protein to the zinc-bound water molecule in the active site of the mutant His-107-Tyr of human carbonic anhydrase II (HCAII). No high-resolution structure or crystal structure is available till now for this particular mutant due to its lack of stability at physiological temperature. Our analysis utilizes as starting point a series of structures derived from high-resolution crystal structure of the wild type protein. While many of the structures investigated do not reveal a complete path between the zinc bound water and His-64, several others do indicate the presence of a transient connection even when His-64 is present in its outward conformation. Mutation at the residue 107 also reveals the formation of a new path into the active site. Competing contributions from His-64 sidechain rotation from its outward conformation are also evaluated in terms of optimal path analysis. No indication of a lower catalytic efficiency of the mutant is evident from our results under the condition of thermal stability of the mutant.
Collapse
|
27
|
Bhowmik P, Jana S, Jana PP, Harms K, Chattopadhyay S. Unique example of a T3(2)4(2)3(2)6(2) water tape containing acetate–water hybrid hexamer in a heterometallic schiff base complex host. INORG CHEM COMMUN 2012. [DOI: 10.1016/j.inoche.2012.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Water molecule encapsulated in carbon nanotube model systems: effect of confinement and curvature. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1205-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
29
|
Kaila VRI, Hummer G. Energetics and dynamics of proton transfer reactions along short water wires. Phys Chem Chem Phys 2011; 13:13207-15. [PMID: 21701719 PMCID: PMC3470879 DOI: 10.1039/c1cp21112a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proton transfer (pT) reactions in biochemical processes are often mediated by chains of hydrogen-bonded water molecules. We use hybrid density functional calculations to study pT along quasi one-dimensional water arrays that connect an imidazolium-imidazole proton donor-acceptor pair. We characterize the structures of intermediates and transition states, the energetics, and the dynamics of the pT reactions, including vibrational contributions to kinetic isotope effects. In molecular dynamics simulations of pT transition paths, we find that for short water chains with four water molecules, the pT reactions are semi-concerted. The formation of a high-energy hydronium intermediate next to the proton-donating group is avoided by a simultaneous transfer of a proton from the donor to the first water molecule, and from the first water molecule into the water chain. Lowering the dielectric constant of the environment and increasing the water chain length both reduce the barrier for pT. We study the effect of the driving force on the energetics of the pT reaction by changing the proton affinity of the donor and acceptor groups through halogen and methyl substitutions. We find that the barrier of the pT reaction depends linearly on the proton affinity of the donor but is nearly independent of the proton affinity of the acceptor, corresponding to Brønsted slopes of one and zero, respectively.
Collapse
Affiliation(s)
- Ville R. I. Kaila
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, 20892 Maryland, USA. Fax: 301-496-0825; Tel: 301-402-6290
| | - Gerhard Hummer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, 20892 Maryland, USA. Fax: 301-496-0825; Tel: 301-402-6290
| |
Collapse
|
30
|
Wolf S, Freier E, Potschies M, Hofmann E, Gerwert K. Directional proton transfer in membrane proteins achieved through protonated protein-bound water molecules: a proton diode. Angew Chem Int Ed Engl 2011; 49:6889-93. [PMID: 20680951 DOI: 10.1002/anie.201001243] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Steffen Wolf
- Lehrstuhl für Biophysik, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
31
|
Bach RD. The rate-limiting step in P450 hydroxylation of hydrocarbons a direct comparison of the "somersault" versus the "consensus" mechanism involving compound I. J Phys Chem A 2010; 114:9319-32. [PMID: 20690650 DOI: 10.1021/jp1045518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Model theoretical quantum mechanical (QM) calculations are described for the P-450 hydroxylation of methane, isobutane, and camphor that compare the concerted somersault H-abstraction mechanism with the oxidation step involving Cpd I. Special emphasis has been placed on maintaining a balanced basis set in the oxidation step. QM calculations, employing the 6-311+G(d,p) basis set on the Fe atom and all of the key surrounding atoms involved in the C-H abstraction step, reaffirm a mechanism involving rearrangement of the iron hydroperoxide group (FeO-OH --> FeO...HO(*)) in concert with hydrogen abstraction from the C-H bond of the substrate by the incipient bound hydroxyl radical HO(*). The barrier for the somersault rearrangement of model Cpd 0 (FeO-OH) is calculated to be 21.4 kcal/mol in the absence of substrate. The overall activation energy for the oxidation of camphor involving the somersault motion of the FeO-OH group of P450 model porphyrin iron(III) hydroperoxide [Por(SH)Fe(III)-OOH(-)] --> [Por(SH)Fe(III)-O....HO(-)] in concert with hydrogen abstraction is DeltaE(++) = 12.4 kcal/mol. The corresponding abstraction of the hydrogen atom from the C-H bond of camphor by Cpd I has an activation barrier of 17.6 kcal/mol. Arguments are presented that the somersault rearrangement is induced by steric compression at the active site. Kinetic isotope effect data are discussed that provides compelling evidence for a rate-limiting step involving C-H bond cleavage.
Collapse
Affiliation(s)
- Robert D Bach
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA.
| |
Collapse
|
32
|
Wolf S, Freier E, Potschies M, Hofmann E, Gerwert K. Gerichteter Protonentransfer in Membranproteinen mittels protonierter proteingebundener Wassermoleküle: eine Protonendiode. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Coupling and uncoupling mechanisms in the methoxythreonine mutant of cytochrome P450cam: a quantum mechanical/molecular mechanical study. J Biol Inorg Chem 2010; 15:361-72. [PMID: 20225401 PMCID: PMC2830628 DOI: 10.1007/s00775-009-0608-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Thr252 residue plays a vital role in the catalytic cycle of cytochrome P450cam during the formation of the active species (Compound I) from its precursor (Compound 0). We investigate the effect of replacing Thr252 by methoxythreonine (MeO-Thr) on this protonation reaction (coupling) and on the competing formation of the ferric resting state and H2O2 (uncoupling) by combined quantum mechanical/molecular mechanical (QM/MM) methods. For each reaction, two possible mechanisms are studied, and for each of these the residues Asp251 and Glu366 are considered as proton sources. The computed QM/MM barriers indicate that uncoupling is unfavorable in the case of the Thr252MeO-Thr mutant, whereas there are two energetically feasible proton transfer pathways for coupling. The corresponding rate-limiting barriers for the formation of Compound I are higher in the mutant than in the wild-type enzyme. These findings are consistent with the experimental observations that the Thr252MeO-Thr mutant forms the alcohol product exclusively (via Compound I), but at lower reaction rates compared with the wild-type enzyme.
Collapse
|
34
|
Saeed MA, Wong BM, Fronczek FR, Venkatraman R, Hossain MA. Formation of an Amine-Water Cyclic Pentamer: A New Type of Water Cluster in a Polyazacryptand. CRYSTAL GROWTH & DESIGN 2010; 10:1486-1488. [PMID: 20495666 PMCID: PMC2873190 DOI: 10.1021/cg100161a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Structural analysis of an adduct of a thiophene-based cryptand with tosylic acid shows the formation of a hybrid amine-water cyclic pentamer composed of four water molecules and one protonated amine in the charged hydrophobic cavity. The bulky tosylate groups remain outside the cavity, making the ligand favorable for hosting water molecules. Ab initio calculations based on density functional theory (DFT) confirm that the hybrid amine-water pentamer is stabilized inside the hydrophobic cavity of the cryptand.
Collapse
Affiliation(s)
- Musabbir A. Saeed
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39212
| | - Bryan M. Wong
- Materials Chemistry Department, Sandia National Laboratories, Livermore, CA 94551
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803
| | - Ramaiyer Venkatraman
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39212
| | - Md. Alamgir Hossain
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39212
| |
Collapse
|
35
|
Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem Rev 2009; 110:949-1017. [DOI: 10.1021/cr900121s] [Citation(s) in RCA: 791] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Shimrit Cohen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yong Wang
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Chen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Denisov IG, Mak PJ, Makris TM, Sligar SG, Kincaid JR. Resonance Raman characterization of the peroxo and hydroperoxo intermediates in cytochrome P450. J Phys Chem A 2009; 112:13172-9. [PMID: 18630867 DOI: 10.1021/jp8017875] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Resonance Raman (RR) studies of intermediates generated by cryoreduction of the oxyferrous complex of the D251N mutant of cytochrome P450(cam) (CYP101) are reported. Owing to the fact that proton delivery to the active site is hindered in this mutant, the unprotonated peroxo-ferric intermediate is observed as the primary species after radiolytic reduction of the oxy-complex in frozen solutions at 77 K. In as much as previous EPR and ENDOR studies have shown that annealing of this species to approximately 180 K results in protonation of the distal oxygen atom to form the hydroperoxo intermediate, this system has been exploited to permit direct RR interrogation of the changes in the Fe-O and O-O bonds caused by the reduction and subsequent protonation. Our results show that the nu(O-O) mode decreases from a superoxo-like frequency near approximately 1130 cm(-1) to 792 cm(-1) upon reduction. The latter frequency, as well as its lack of sensitivity to H/D exchange, is consistent with heme-bound peroxide formulation. This species also exhibits a nu(Fe-O) mode, the 553 cm(-1) frequency of which is higher than that observed for the nonreduced oxy P450 precursor (537 cm(-1)), implying a strengthened Fe-O linkage upon reduction. Upon subsequent protonation, the resulting Fe-O-OH fragment exhibits a lowered nu(O-O) mode at 774 cm(-1), whereas the nu(Fe-O) increases to 564 cm(-1). Both modes exhibit a downshift upon H/D exchange, as expected for a hydroperoxo-ferric formulation. These experimental RR data are compared with those previously acquired for the wild-type protein, and the shifts observed upon reduction and subsequent protonation are discussed with reference to theoretical predictions.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
37
|
Role of protein motions on proton transfer pathways in human carbonic anhydrase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:352-61. [PMID: 19781668 DOI: 10.1016/j.bbapap.2009.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 09/03/2009] [Accepted: 09/05/2009] [Indexed: 12/13/2022]
Abstract
We report here a theoretical study on the formation of long-range proton transfer pathways in proteins due to side chain conformational fluctuations of amino acid residues and reorganization of interior hydration positions. The proton transfer pathways in such systems may be modeled as fluctuating hydrogen-bonded networks with both short- and long-lived connections between the networked nodes, the latter being formed by polar protein atoms and water molecules. It is known that these fluctuations may extend over several decades of time ranging from a few femtoseconds to a few milliseconds. We have shown in this article how the use of a variety of theoretical methods may be utilized to detect a generic set of pathways and assess the feasibility of forming one or more transient connections. We demonstrate the application of these methods to the enzyme human carbonic anhydrase II and its mutants. Our results reveal several alternative pathways in addition to the one mediated by His-64. We also probe at length the mechanism of key conformational fluctuations contributing to the formation of the detected pathways.
Collapse
|
38
|
Rojubally A, Cheng SH, Rojubally A, Cheng SH, Foreman C, Rojubally A, Cheng SH, Foreman C, Huang J, Agnes GR, Plettner E. Linking of cytochrome P450camand putidaredoxin by a co-ordination bridge. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701422799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Altarsha M, Benighaus T, Kumar D, Thiel W. How is the reactivity of cytochrome P450cam affected by Thr252X mutation? A QM/MM study for X = serine, valine, alanine, glycine. J Am Chem Soc 2009; 131:4755-63. [PMID: 19281168 DOI: 10.1021/ja808744k] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton transfer reactions play a vital role in the catalytic cycle of cytochrome P450cam and are responsible for the formation of the iron-oxo species called Compound I (Cpd I) that is supposed to be the active oxidant. Depending on the course of the proton transfer, protonation of the last observable intermediate (ferric hydroperoxo complex, Cpd 0) can lead to either the formation of Cpd I (coupling reaction) or the ferric resting state (uncoupling reaction). The ratio of these two processes is drastically affected by mutation of the Thr252 residue. In this work, we study the effect of Thr252X (X = serine, valine, alanine, glycine) mutations on the formation of Cpd I by means of hybrid quantum mechanical/molecular mechanical (QM/MM) calculations and classical simulations. In the wild-type enzyme, the coupling reaction is favored since its rate-limiting barrier is 13 kcal/mol lower than that for uncoupling. This difference is reduced to 7 kcal/mol in the serine mutant. In the case of valine, alanine, and glycine mutants, an additional water molecule enters the active site and lowers the activation energy of the uncoupling reaction significantly. With the additional water molecule, coupling and uncoupling have similar barriers in the valine mutant, and the uncoupling reaction becomes favored in the alanine and glycine mutants. These findings agree very well with experimental results and thus confirm the assumption that uncontrolled proton delivery by solvent water networks is responsible for the uncoupling reaction. The present study provides a detailed mechanistic understanding of the role of the Thr252 residue.
Collapse
Affiliation(s)
- Muhannad Altarsha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
40
|
Altarsha M, Wang D, Benighaus T, Kumar D, Thiel W. QM/MM Study of the Second Proton Transfer in the Catalytic Cycle of the D251N Mutant of Cytochrome P450cam. J Phys Chem B 2009; 113:9577-88. [DOI: 10.1021/jp809838k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhannad Altarsha
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Dongqi Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Benighaus
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
41
|
Shinobu A, Agmon N. Mapping Proton Wires in Proteins: Carbonic Anhydrase and GFP Chromophore Biosynthesis. J Phys Chem A 2009; 113:7253-66. [DOI: 10.1021/jp8102047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ai Shinobu
- Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Noam Agmon
- Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
42
|
Roy A, Taraphder S. A theoretical study on the detection of proton transfer pathways in some mutants of human carbonic anhydrase II. J Phys Chem B 2008; 112:13597-607. [PMID: 18826189 DOI: 10.1021/jp0757309] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structural and kinetic studies of mutants can give much insight into the function of an enzyme. We report the detection of possible proton transfer pathways into the active site of a number of mutants of the enzyme human carbonic anhydrase II (HCA II). Using a recently developed method of path search in the protein conformational space, we identify hydrogen-bonded networks (or proton paths) that can dynamically connect the protein surface to the active site through fluctuations in protein structure and hydration. The feasibility of establishing such dynamical connectivities is assessed by computing the change in free energy of conformational fluctuations and compared to those identified earlier in the wild type enzyme. It is found that the point mutation facilitates or suppresses one or more of the alternative pathways. Our results allow the use of a generic set of pathways to correlate qualitatively the residual activity in the mutants to the molecular mechanism of proton transfer in the absence of His at position 64. We also demonstrate how the detected pathways may be used to compare the efficiencies of the mutants His-64-Ala/Asn-62-His and His-64-Ala/Asn-67-His using the empirical valence bond theory.
Collapse
Affiliation(s)
- Arijit Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
43
|
Rasaiah JC, Garde S, Hummer G. Water in Nonpolar Confinement: From Nanotubes to Proteins and Beyond. Annu Rev Phys Chem 2008; 59:713-40. [DOI: 10.1146/annurev.physchem.59.032607.093815] [Citation(s) in RCA: 586] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shekhar Garde
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Gerhard Hummer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520;
| |
Collapse
|
44
|
Wang D, Zheng J, Shaik S, Thiel W. Quantum and molecular mechanical study of the first proton transfer in the catalytic cycle of cytochrome P450cam and its mutant D251N. J Phys Chem B 2008; 112:5126-38. [PMID: 18386859 DOI: 10.1021/jp074958t] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the catalytic cycle of cytochrome P450cam, the hydroperoxo intermediate (Cpd 0) is formed by proton transfer from a reduced oxyheme complex (S5). This process is drastically slowed down when Asp251 is mutated to Asn (D251N). We report quantum mechanical/molecular mechanical (QM/MM) calculations that address this proton delivery in the doublet state through a hydrogen-bond network in the Asp251 channel, both for the wild-type enzyme and the D251N mutant, using four different active-site models. For the wild-type, we find a facile concerted mechanism for proton transfer from protonated Asp251 via Wat901 and Thr252 to the FeOO moiety, with a barrier of about 1 kcal/mol and a high exothermicity of more than 20 kcal/mol. In the D251N mutant with a neutral Asn251 residue, the proton transfer is almost thermoneutral or slightly exothermic in the three models considered. It is still very facile when the Asn251 residue adopts a conformation analogous to Asp251 in the wild-type enzyme, but the barrier increases significantly when the Asn251 side chain flips (as indicated by classical molecular dynamics simulations). This flip disrupts the hydrogen-bond network and hence the proton-transfer pathway, which causes a longer lifetime of S5 in the D251N mutant (consistent with experimental observations). The entry of an additional water molecule into the active site of D251N with flipped Asn251 regenerates the hydrogen-bond network and provides a viable mechanism for proton delivery in the mutant, with a moderate barrier of about 7 kcal/mol.
Collapse
Affiliation(s)
- Dongqi Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
45
|
Roy A, Taraphder S. Effect of electrostatic interactions on the formation of proton transfer pathways in human carbonic anhydrase II. J CHEM SCI 2008. [DOI: 10.1007/s12039-007-0068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Affiliation(s)
- Philip Ball
- Nature, 4-6 Crinan Street, London N1 9XW, U.K
| |
Collapse
|
47
|
Makris TM, von Koenig K, Schlichting I, Sligar SG. Alteration of P450 distal pocket solvent leads to impaired proton delivery and changes in heme geometry. Biochemistry 2007; 46:14129-40. [PMID: 18001135 DOI: 10.1021/bi7013695] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Distal pocket water molecules have been widely implicated in the delivery of protons required in O-O bond heterolysis in the P450 reaction cycle. Targeted dehydration of the cytochrome P450cam (CYP101) distal pocket through mutagenesis of a distal pocket glycine to either valine or threonine results in the alteration of spin state equilibria, and has dramatic consequences on the catalytic rate, coupling efficiency, and kinetic solvent isotope effect parameters, highlighting an important role of the active-site hydration level on P450 catalysis. Cryoradiolysis of the mutant CYP101 oxyferrous complexes further indicates a specific perturbation of proton-transfer events required for the transformation of ferric-peroxo to ferric-hydroperoxo states. Finally, crystallography of the 248Val and 248Thr mutants in both the ferric camphor bound resting state and ferric-cyano adducts shows both the alteration of hydrogen-bonding networks and the alteration of heme geometry parameters. Taken together, these results indicate that the distal pocket microenvironment governs the transformation of reactive heme-oxygen intermediates in P450 cytochromes.
Collapse
Affiliation(s)
- Thomas M Makris
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
48
|
Roy A, Taraphder S. Identification of Proton-Transfer Pathways in Human Carbonic Anhydrase II. J Phys Chem B 2007; 111:10563-76. [PMID: 17691838 DOI: 10.1021/jp073499t] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the probable proton-transfer pathways from the surface of human carbonic anhydrase II into the active site cavity through His-64 that has been widely implicated as a key residue along the proton-transfer path. A recursive analysis of hydrogen-bonded clusters in the static crystallographic structure shows that there is no complete path through His-64 in either of its experimentally detected conformations. Side chain conformational fluctuation of His-64 from its outward conformation toward the active site is found to provide a crucial dynamic connectivity needed to complete the path coupled to local reorganization of the protein structure and hydration. The energy and free energy barriers along the detected pathway have been estimated to derive the mechanism of His-64 rotation toward the active site. We also investigate a dynamical connectivity map that highlights networks of disordered water molecules that may promote a direct (and probably transient) access of the solvent to the active site. Our studies reveal how such solvent access channels may be related to the putative proton shuttle mediated by His-64. The paths thus identified can be potentially used as reaction coordinates for further studies on the molecular mechanism of enzyme action.
Collapse
Affiliation(s)
- Arijit Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
49
|
Herzog E, Frigato T, Helms V, Lancaster CRD. Energy barriers of proton transfer reactions between amino acid side chain analogs and water from ab initio calculations. J Comput Chem 2007; 27:1534-47. [PMID: 16847935 DOI: 10.1002/jcc.20442] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proton transfer reactions were studied in all titratable pairs of amino acid side chains where, under physiologically reasonable conditions, one amino acid may function as a donor and the other one as an acceptor. Energy barriers for shifting the proton from donor to acceptor atom were calculated by electronic structure methods at the MP2/6-31++G(d,p) level, and the well-known double-well potentials were characterized. The energy difference between both minima can be expressed by a parabola using as argument the donor-acceptor distance R(DA). In this work, the fit parameters of the quadratic expression are determined for each donor-acceptor pair. Moreover, it was found previously that the energy barriers of the reactions can be expressed by an analytical expression depending on the distance between donor and acceptor and the energy difference between donor and acceptor bound states. The validity of this approach is supported by the extensive new data set. This new parameterization of proton transfer barriers between titratable amino acid side chains allows us to very efficiently estimate proton transfer probabilities in molecular modelling studies or during classical molecular dynamics simulation of biomolecular systems.
Collapse
Affiliation(s)
- Elena Herzog
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics,Max-von-Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
50
|
Yin H, Hummer G, Rasaiah JC. Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion. J Am Chem Soc 2007; 129:7369-77. [PMID: 17508748 DOI: 10.1021/ja070456h] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water expulsion from the protein core is a key step in protein folding. Nevertheless, unusually large water clusters confined into the nonpolar cavities have been observed in the X-ray crystal structures of tetrabrachion, a bacterial protein that is thermostable up to at least 403 K (130 degrees C). Here, we use molecular dynamics (MD) simulations to investigate the structure and thermodynamics of water filling the largest cavity of the right-handed coiled-coil stalk of tetrabrachion at 365 K (92 degrees C), the temperature of optimal bacterial growth, and at room temperature (298 K). Hydrogen-bonded water clusters of seven to nine water molecules are found to be thermodynamically stable in this cavity at both temperatures, confirming the X-ray studies. Stability, as measured by the transfer free energy of the optimal size cluster, decreases with increasing temperature. Water filling is thus driven by the energy of transfer and opposed by the transfer entropy, both depending only weakly on temperature. Our calculations suggest that cluster formation becomes unfavorable at approximately 384 K (110 degrees C), signaling the onset of drying just slightly above the temperature of optimal growth. "Drying" thus precedes protein denaturation. At room temperature, the second largest cavity in tetrabrachion accommodates a five water molecule cluster, as reported in the X-ray studies. However, the simulations show that at 365 K the cluster is unstable and breaks up. We suggest that the large hydrophobic cavities may act as binding sites for two proteases, possibly explaining the unusual thermostability of the resulting protease-stalk complexes (up to approximately 393 K, 120 degrees C).
Collapse
Affiliation(s)
- Hao Yin
- Department of Chemistry, University of Maine, Orono, Maine 04469-5706, USA
| | | | | |
Collapse
|