1
|
Welch EF, Rush KW, Eastman KAS, Bandarian V, Blackburn NJ. The binuclear copper state of peptidylglycine monooxygenase visualized through a selenium-substituted peptidyl-homocysteine complex. Dalton Trans 2025; 54:4941-4955. [PMID: 39981625 DOI: 10.1039/d5dt00082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Bioactive peptides generally require post-translational processing to convert them to their fully active forms. Peptidylglycine monooxygenase (PHM) is a copper-dependent enzyme that catalyzes C-alpha hydroxylation of a glycine-extended pro-peptide, a critical post-translational step in peptide amidation. A canonical mechanism based on experimental and theoretical considerations proposes that molecular oxygen reacts at the mononuclear CuM-center to form a reactive Cu(II)-superoxo intermediate capable of H-atom abstraction from the peptidyl substrate, followed by long range ET from the CuH center positioned 11 Å away across a solvent-filled cleft. However, recent data has challenged this mechanism, suggesting instead that an "open-to-closed" conformational transition brings the copper centers closer to facilitate reaction at a binuclear copper site. Here we present direct observations of an enzyme-bound binuclear copper species, which was enabled by the use of an Ala-Ala-Phe-homoselenocysteine (hSeCys) species. EXAFS, UV/vis, and EPR studies are used to show that this reagent reacts with the oxidized enzyme to form a novel mixed valence entity which is subtly different from that observed previously for the S-peptidyl complex (K. W. Rush, K. A. S. Eastman, E. F. Welch, V. Bandarian and N. J. Blackburn, J. Am. Chem. Soc., 2024, 146, 5074-5080). In the ascorbate-reduced Cu(I) state of PHM, EXAFS measurements at both the Se and Cu absorption edges provide a unique signature of a bridging mode of binding, with Se-Cu site occupancy (1.8) measured from the Se-EXAFS simulating to twice that of the Cu-Se site occupancy (0.85) measured at the Cu edge. The ability of the hSeCys entity to induce a binuclear state is further emphasized by the XAS of the selenomethionyl peptide complex, where no such bridging chemistry is observed. The properties of the binuclear PHM derivative are of interest due to their unique chemical signatures, as well as providing the basis for a completely new mechanistic paradigm for PHM and its monooxygenase congeners.
Collapse
Affiliation(s)
- Evan F Welch
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, OR 97239, USA.
| | - Katherine W Rush
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, OR 97239, USA.
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA
| | | | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry, Oregon Health and Sciences University, Portland, OR 97239, USA.
| |
Collapse
|
2
|
Zhang Y, Yuan X, Guo X, Xu H, Zhang D, Wu Z, Zhang J. All-in-One Zinc-Doped Prussian Blue Nanozyme for Efficient Capture, Separation, and Detection of Copper Ion (Cu 2+ ) in Complicated Matrixes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306961. [PMID: 37803466 DOI: 10.1002/smll.202306961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 10/08/2023]
Abstract
Copper is a vital micronutrient for lives and an important ingredient for bactericides and fungicides. Given its indispensable biological and agricultural roles, there is an urgent need to develop simple, affordable, and reliable methods for detecting copper in complicated matrixes, particularly in underdeveloped regions where costly standardized instruments and sample dilution procedures hinder progress. The findings that zinc-doped Prussian blue nanoparticle (ZnPB NP) exhibits exceptional efficiency in capturing and isolating copper ions, and accelerates the generation of dissolved oxygen in a solution of H2 O2 with remarkable sensitivity and selectivity, the signal of which displays a positive correlation with the copper level due to the copper-enhanced catalase-like activity of ZnPB NP, are presented. Consequently, the ZnPB NP serves as an all-in-one sensor for copper ion. The credibility of the method for copper assays in human urine and farmland soil is shown by comparing it to the standard instrumentation, yielding a coefficient of correlation (R2 = 0.9890), but the cost is dramatically reduced. This ZnPB nanozyme represents a first-generation probe for copper ion in complicated matrixes, laying the groundwork for the future development of a practical copper sensor that can be applied in resource-constrained environments.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Xue Yuan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Chemistry and Materials Science, University of Science, and Technology of China, Hefei, 230026, P. R. China
| | - Xinyue Guo
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Chemistry and Materials Science, University of Science, and Technology of China, Hefei, 230026, P. R. China
| | - Huan Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, 243002, P. R. China
| | - Zhengyan Wu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Jia Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| |
Collapse
|
3
|
Luo J, He C. Chemical protein synthesis enabled engineering of saccharide oxidative cleavage activity in artificial metalloenzymes. Int J Biol Macromol 2024; 256:128083. [PMID: 38000595 DOI: 10.1016/j.ijbiomac.2023.128083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023]
Abstract
Chemical protein (semi-)synthesis is a powerful technique allowing the incorporation of unnatural functionalities at any desired protein site. Herein we describe a facile one-pot semi-synthetic strategy for the construction of a type 2 copper center in the active site of azurin, which is achieved by substitution of Met121 with unnatural amino acid residues bearing a strong ligand N,N-bis(pyridylmethyl)amine (DPA) to mimic the function of typical histidine brace-bearing copper monooxygenases, such as lytic polysaccharide monooxygenases (LPMOs) involved in polysaccharide breakdown. The semi-synthetic proteins were routinely obtained in over 10-mg scales to allow for spectroscopic measurements (UV-Vis, CD, and EPR), which provides structural evidences for the CuII-DPA-modified azurins. 4-nitrophenyl-β-D-glucopyranoside (PNPG) was used as a model substrate for the H2O2-driven oxidative cleavage reaction facilitated by semi-synthetic azurins, and the CuII-6 complex showed a highest activity (TTN 253). Interestingly, our semi-synthetic azurins were able to tolerate high H2O2 concentrations (up to 4000-fold of the enzyme), making them promising for practical applications. Collectively, we establish that chemical protein synthesis can be exploited as a reliable technology in affording large quantities of artificial metalloproteins to facilitate the transformation of challenging chemical reactions.
Collapse
Affiliation(s)
- Jindi Luo
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
4
|
Selenol (-SeH) as a target for mercury and gold in biological systems: Contributions of mass spectrometry and atomic spectroscopy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Liao P, Liu H, He C. Chemical synthesis of human selenoprotein F and elucidation of its thiol-disulfide oxidoreductase activity. Chem Sci 2022; 13:6322-6327. [PMID: 35733894 PMCID: PMC9159075 DOI: 10.1039/d2sc00492e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/06/2022] [Indexed: 01/16/2023] Open
Abstract
Selenoprotein F (SelF) is an endoplasmic reticulum-residing eukaryotic protein that contains a selenocysteine (Sec) residue. It has been suggested to be involved in a number of physiological processes by acting as a thiol-disulfide oxidoreductase, but the exact role has remained unclear due to the lack of a reliable production method. We document herein a robust synthesis of the human SelF through a three-segment two-ligation semisynthesis strategy. Highlighted in this synthetic route are the use of a mild desulfurization process to protect the side-chain of the Sec residue from being affected and the simultaneous removal of acetamidomethyl and p-methoxybenzyl protection groups by PdCl2, thus facilitating the synthesis of multi-milligrams of homogenous SelF. The reduction potential of SelF was determined and the thiol-disulfide oxidoreductase activity was further supported by its ability to catalyze the reduction and isomerization of disulfide bonds.
Collapse
Affiliation(s)
- Peisi Liao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518057 China
| | - Chunmao He
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
6
|
Yu Y, Marshall NM, Garner DK, Nilges MJ, Lu Y. Tuning reduction potentials of type 1 copper center in azurin by replacing a histidine ligand with its isostructural analogues. J Inorg Biochem 2022; 234:111863. [DOI: 10.1016/j.jinorgbio.2022.111863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/16/2022]
|
7
|
An X, Chen C, Wang T, Huang A, Zhang D, Han MJ, Wang J. Genetic Incorporation of Selenotyrosine Significantly Improves Enzymatic Activity of Agrobacterium radiobacter Phosphotriesterase. Chembiochem 2021; 22:2535-2539. [PMID: 32789938 DOI: 10.1002/cbic.202000460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Indexed: 12/16/2022]
Abstract
Tyrosine plays important roles in many enzymes. To facilitate enzyme design, mechanistic studies and minimize structural perturbation in the active site, here we report the genetic incorporation of a novel unnatural amino acid selenotyrosine (SeHF), which has single-atom replacement in comparison to tyrosine. The arPTE-(Agrobacterium radiobacter Phosphotriesterase) Tyr309SeHF mutant exhibits a significant 12-fold increase in kcat and 3.2-fold enhancement in kcat /KM at pH 7.0. Molecular dynamics simulations show that the SeHF309 mutation results in a conformational switch which opens up the product release pocket and increases the product release rate, thereby elevating the overall enzyme activity. Significant improvement of the catalytic efficiency at neutral pH by single unnatural amino acid (UAA) mutation broadens the application of this enzyme, and provides valuable insights to the mechanism. Our method represents a new approach for designing enzymes with enhanced activity.
Collapse
Affiliation(s)
- Xiaojing An
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Chao Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
- University of the Chinese Academy of Sciences (UCAS), Hefei, China
| | - Tianyuan Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Aiping Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Ming-Jie Han
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Jiangyun Wang
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
8
|
Wang Y, Liu P, Chang J, Xu Y, Wang J. Site-Specific Selenocysteine Incorporation into Proteins by Genetic Engineering. Chembiochem 2021; 22:2918-2924. [PMID: 33949764 DOI: 10.1002/cbic.202100124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a rare naturally proteinogenic amino acid, is the major form of essential trace element selenium in living organisms. Selenoproteins, with one or several Sec residues, are found in all three domains of life. Many selenoproteins play a role in critical cellular functions such as maintaining cell redox homeostasis. Sec is usually encoded by an in-frame stop codon UGA in the selenoprotein mRNA, and its incorporation in vivo is highly species-dependent and requires the reprogramming of translation. This mechanistic complexity of selenoprotein synthesis poses a big challenge to produce synthetic selenoproteins. To understand the functions of natural as well as engineered selenoproteins, many strategies have recently been developed to overcome the inherent barrier for recombinant selenoprotein production. In this review, we will describe the progress in selenoprotein production methodology.
Collapse
Affiliation(s)
- Yuchuan Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| | - Pengcheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Jiao Chang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Yunping Xu
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China
| | - Jiangyun Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| |
Collapse
|
9
|
Oroz P, Navo CD, Avenoza A, Busto JH, Corzana F, Jiménez-Osés G, Peregrina JM. Toward Enantiomerically Pure β-Seleno-α-amino Acids via Stereoselective Se-Michael Additions to Chiral Dehydroalanines. Org Lett 2021; 23:1955-1959. [PMID: 33373248 DOI: 10.1021/acs.orglett.0c03832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first totally chemo- and diastereoselective 1,4-conjugate additions of Se-nucleophiles to a chiral bicyclic dehydroalanine (Dha) are described. The methodology is simple and does not require any catalyst, providing exceptional yields at room temperature, and involves the treatment of the corresponding diselenide compound with NaBH4 in the presence of the Dha. These Se-Michael additions provide an excellent channel for the synthesis of enantiomerically pure selenocysteine (Sec) derivatives, which pose high potential for chemical biology applications.
Collapse
Affiliation(s)
- Paula Oroz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| |
Collapse
|
10
|
Takei T, Ando T, Takao T, Ohnishi Y, Kurisu G, Iwaoka M, Hojo H. Chemical synthesis of ferredoxin with 4 selenocysteine residues using a segment condensation method. Chem Commun (Camb) 2020; 56:14239-14242. [PMID: 33118552 DOI: 10.1039/d0cc06252a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferredoxin (Fd) is an electron carrier protein containing a [2Fe-2S] cluster. In this paper, we synthesized Se-Fd, in which four Cys residues coordinated to the cluster are substituted to selenocysteine. After the one-pot segment coupling by the thioester method, followed by deprotection and cluster loading, the desired Se-Fd was successfully obtained.
Collapse
Affiliation(s)
- Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
11
|
Szuster J, Zitare UA, Castro MA, Leguto AJ, Morgada MN, Vila AJ, Murgida DH. Cu A-based chimeric T1 copper sites allow for independent modulation of reorganization energy and reduction potential. Chem Sci 2020; 11:6193-6201. [PMID: 32953013 PMCID: PMC7480511 DOI: 10.1039/d0sc01620a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/01/2020] [Indexed: 01/19/2023] Open
Abstract
Attaining rational modulation of thermodynamic and kinetic redox parameters of metalloproteins is a key milestone towards the (re)design of proteins with new or improved redox functions. Here we report that implantation of ligand loops from natural T1 proteins into the scaffold of a CuA protein leads to a series of distorted T1-like sites that allow for independent modulation of reduction potentials (E°') and electron transfer reorganization energies (λ). On the one hand E°' values could be fine-tuned over 120 mV without affecting λ. On the other, λ values could be modulated by more than a factor of two while affecting E°' only by a few millivolts. These results are in sharp contrast to previous studies that used T1 cupredoxin folds, thus highlighting the importance of the protein scaffold in determining such parameters.
Collapse
Affiliation(s)
- Jonathan Szuster
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE, CONICET-UBA) , Argentina .
- Departamento de Química Inorgánica, Analítica y Química-Física , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Ulises A Zitare
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE, CONICET-UBA) , Argentina .
- Departamento de Química Inorgánica, Analítica y Química-Física , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - María A Castro
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE, CONICET-UBA) , Argentina .
- Departamento de Química Inorgánica, Analítica y Química-Física , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Alcides J Leguto
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) , Argentina
- Departamento de Química Biológica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Rosario , Argentina
| | - Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) , Argentina
- Departamento de Química Biológica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Rosario , Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) , Argentina
- Departamento de Química Biológica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Rosario , Argentina
| | - Daniel H Murgida
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE, CONICET-UBA) , Argentina .
- Departamento de Química Inorgánica, Analítica y Química-Física , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
12
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
13
|
Mirts EN, Bhagi-Damodaran A, Lu Y. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors. Acc Chem Res 2019; 52:935-944. [PMID: 30912643 DOI: 10.1021/acs.accounts.9b00011] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metalloproteins set the gold standard for performing important functions, including catalyzing demanding reactions under mild conditions. Designing artificial metalloenzymes (ArMs) to catalyze abiological reactions has been a major endeavor for many years, but most ArM activities are far below those of native enzymes, making them unsuitable for most pratical applications. A critical step to advance the field is to fundamentally understand what it takes to not only confer but also fine-tune ArM activities so they match those of native enzymes. Indeed, only once we can freely modulate ArM activity to rival (or surpass!) natural enzymes can the potential of ArMs be fully realized. A key to unlocking ArM potential is the observation that one metal primary coordination sphere can display a range of functions and levels of activity, leading to the realization that secondary coordination sphere (SCS) interactions are critically important. However, SCS interactions are numerous, long-range, and weak, making them very difficult to reproduce in ArMs. Furthermore, natural enzymes are tied to a small set of biologically available functional moieties from canonical amino acids and physiologically available metal ions and metallocofactors, severely limiting the chemical space available to probe and tune ArMs. In this Account, we summarize the use of unnatural amino acids (UAAs) and non-native metal ions and metallocofactors by our group and our collaborators to probe and modulate ArM functions. We incorporated isostructural UAAs in a type 1 copper (T1Cu) protein azurin to provide conclusive evidence that axial ligand hydrophobicity is a major determinant of T1Cu redunction potential ( E°'). Closely related work from other groups are also discussed. We also probed the role of protein backbone interactions that cannot be altered by standard mutagenesis by replacing the peptide bond with an ester linkage. We used insight gained from these studies to tune the E°' of azurin across the entire physiological range, the broadest range ever achieved in a single metalloprotein. Introducing UAA analogues of Tyr into ArM models of heme-copper oxidase (HCO) revealed a linear relationship between p Ka, E°', and activity. We also substituted non-native hemes and non-native metal ions for their native equivalents in these models to resolve several issues that were intractable in native HCOs and the closely related nitric oxide reductases, such as their roles in modulating substrate affinity, electron transfer rate, and activity. We incorporated abiological cofactors such as ferrocene and Mn(salen) into azurin and myoglobin, respectively, to stabilize these inorganic and organometallic compounds in water, confer abiological functions, tune their E°' and activity through SCS interactions, and show that the approach to metallocofactor anchoring and orientation can tune enantioselectivity and alter function. Replacing Cu in azurin with non-native Fe or Ni can impart novel activities, such as superoxide reduction and C-C bond formation. While progress was made, we have identified only a small fraction of the interactions that can be generally applied to ArMs to fine-tune their functions. Because SCS interactions are subtle and heavily interconnected, it has been difficult to characterize their effects quantitatively. It is vital to develop spectroscopic and computational techniques to detect and quantify their effects in both resting states and catalytic intermediates.
Collapse
Affiliation(s)
- Evan N. Mirts
- Department of Chemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Rapid and efficient protein synthesis through expansion of the native chemical ligation concept. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0122] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Ferentinos E, Chatziefthimiou S, Boudalis AK, Pissas M, Mathies G, Gast P, Groenen EJJ, Sanakis Y, Kyritsis P. The [Fe{(SePPh2
)2
N}2
] Complex Revisited: X-ray Crystallography, Magnetometry, High-Frequency EPR, and Mössbauer Studies Reveal Its Tetrahedral FeII
Se4
Coordination Sphere. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201701459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Eleftherios Ferentinos
- Inorganic Chemistry Laboratory; Department of Chemistry; National and Kapodistrian University of Athens; Panepistimiopolis 15771 Athens Greece
| | - Spyros Chatziefthimiou
- Institute of Nanoscience and Nanotechnology; N.C.S.R. “Demokritos”; Aghia Paraskevi 15310 Attiki Greece
| | - Athanassios K. Boudalis
- Institute of Nanoscience and Nanotechnology; N.C.S.R. “Demokritos”; Aghia Paraskevi 15310 Attiki Greece
| | - Michael Pissas
- Institute of Nanoscience and Nanotechnology; N.C.S.R. “Demokritos”; Aghia Paraskevi 15310 Attiki Greece
| | - Guinevere Mathies
- Huygens-Kamerlingh Onnes Laboratory; Department of Physics; Leiden University; Niels Bohrweg 2 2333 CA Leiden The Netherlands
| | - Peter Gast
- Huygens-Kamerlingh Onnes Laboratory; Department of Physics; Leiden University; Niels Bohrweg 2 2333 CA Leiden The Netherlands
| | - Edgar J. J. Groenen
- Huygens-Kamerlingh Onnes Laboratory; Department of Physics; Leiden University; Niels Bohrweg 2 2333 CA Leiden The Netherlands
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology; N.C.S.R. “Demokritos”; Aghia Paraskevi 15310 Attiki Greece
| | - Panayotis Kyritsis
- Inorganic Chemistry Laboratory; Department of Chemistry; National and Kapodistrian University of Athens; Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
16
|
Liu J, Chen Q, Rozovsky S. Selenocysteine-Mediated Expressed Protein Ligation of SELENOM. Methods Mol Biol 2018; 1661:265-283. [PMID: 28917051 DOI: 10.1007/978-1-4939-7258-6_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A sizeable fraction of the selenoproteome encodes oxidoreductases possessing a thioredoxin fold, a structural motif that is shared among a diverse group of enzymes. In these oxidoreductases, the active site is comprised of a cysteine and a selenocysteine separated by one to two amino acids. In a subset of these selenoproteins, such as human SELENOH, SELENOM, SELENOT, SELENOV, SELENOW, and SELENOF, this redox motif is positioned immediately after the first β-sheet in a short loop, and is essential for interactions with its substrate or partners. Here, we describe the preparation of a representative member of this group, SELENOM, by selenocysteine-driven expressed protein ligation. The preparation employs a peptide bond formation between two protein fragments expressed recombinantly in E. coli. This method can be employed to prepare other selenoproteins.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Qingqing Chen
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, 136 Brown Laboratory, Newark, DE, 19716, USA.
| |
Collapse
|
17
|
Mousa R, Notis Dardashti R, Metanis N. Selen und Selenocystein in der Proteinchemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Norman Metanis
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
18
|
Mousa R, Notis Dardashti R, Metanis N. Selenium and Selenocysteine in Protein Chemistry. Angew Chem Int Ed Engl 2017; 56:15818-15827. [PMID: 28857389 DOI: 10.1002/anie.201706876] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 01/22/2023]
Abstract
Selenocysteine, the selenium-containing analogue of cysteine, is the twenty-first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.
Collapse
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
19
|
Agostini F, Völler J, Koksch B, Acevedo‐Rocha CG, Kubyshkin V, Budisa N. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Angew Chem Int Ed Engl 2017; 56:9680-9703. [DOI: 10.1002/anie.201610129] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Agostini
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | - Jan‐Stefan Völler
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Beate Koksch
- Institute of Chemistry and Biochemistry—Organic ChemistryFreie Universität Berlin Takustrasse 3 14195 Berlin Germany
| | | | - Vladimir Kubyshkin
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Nediljko Budisa
- Institut für ChemieTechnische Universität Berlin Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
20
|
Biokatalyse mit nicht‐natürlichen Aminosäuren: Enzymologie trifft Xenobiologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201610129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Dery L, Reddy PS, Dery S, Mousa R, Ktorza O, Talhami A, Metanis N. Accessing human selenoproteins through chemical protein synthesis. Chem Sci 2017; 8:1922-1926. [PMID: 28451306 PMCID: PMC5364654 DOI: 10.1039/c6sc04123j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/29/2016] [Indexed: 12/28/2022] Open
Abstract
The human body contains 25 selenoproteins, which contain in their sequence the twenty-first encoded amino acid, selenocysteine. About a dozen of these proteins remain functionally uncharacterized or poorly studied. Challenges in accessing these selenoproteins using traditional recombinant expressions have prevented biological characterization thus far. Chemical protein synthesis has the potential to overcome these hurdles. Here we report the first total chemical syntheses of two human selenoproteins, selenoprotein M (SELM) and selenoprotein W (SELW). The synthesis of the more challenging protein SELM was enabled using recent advances in the field of selenocysteine chemistry. This approach allows the preparation of selenoproteins in milligram quantities and in homogenous form, which should open new horizons for future studies to pursue a fuller biological understanding of their role in health and disease.
Collapse
Affiliation(s)
- L Dery
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra, Givat Ram , Jerusalem 91904 , Israel .
| | - P Sai Reddy
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra, Givat Ram , Jerusalem 91904 , Israel .
| | - S Dery
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra, Givat Ram , Jerusalem 91904 , Israel .
| | - R Mousa
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra, Givat Ram , Jerusalem 91904 , Israel .
| | - O Ktorza
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra, Givat Ram , Jerusalem 91904 , Israel .
| | - A Talhami
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra, Givat Ram , Jerusalem 91904 , Israel .
| | - N Metanis
- Institute of Chemistry , The Hebrew University of Jerusalem , Edmond J. Safra, Givat Ram , Jerusalem 91904 , Israel .
| |
Collapse
|
22
|
Yu Y, Petrik ID, Chacón KN, Hosseinzadeh P, Chen H, Blackburn NJ, Lu Y. Effect of circular permutation on the structure and function of type 1 blue copper center in azurin. Protein Sci 2017; 26:218-226. [PMID: 27759897 PMCID: PMC5275729 DOI: 10.1002/pro.3071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022]
Abstract
Type 1 copper (T1Cu) proteins are electron transfer (ET) proteins involved in many important biological processes. While the effects of changing primary and secondary coordination spheres in the T1Cu ET function have been extensively studied, few report has explored the effect of the overall protein structural perturbation on active site configuration or reduction potential of the protein, even though the protein scaffold has been proposed to play a critical role in enforcing the entatic or "rack-induced" state for ET functions. We herein report circular permutation of azurin by linking the N- and C-termini and creating new termini in the loops between 1st and 2nd β strands or between 3rd and 4th β strands. Characterization by electronic absorption, electron paramagnetic spectroscopies, as well as crystallography and cyclic voltammetry revealed that, while the overall structure and the primary coordination sphere of the circular permutated azurins remain the same as those of native azurin, their reduction potentials increased by 18 and 124 mV over that of WTAz. Such increases in reduction potentials can be attributed to subtle differences in the hydrogen-bonding network in secondary coordination sphere around the T1Cu center.
Collapse
Affiliation(s)
- Yang Yu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjin300308China
| | - Igor D. Petrik
- Department of Chemistry, University of Illinois at Urbana‐ChampaignUrbanaIllinois61801
| | | | - Parisa Hosseinzadeh
- Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois61801
| | - Honghui Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of SciencesTianjin300308China
- Tianjin University of Science and TechnologyTianjin300457China
| | - Ninian J. Blackburn
- Institute of Environmental Health, Oregon Health and Science UniversityPortlandOregon97239
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana‐ChampaignUrbanaIllinois61801
- Department of BiochemistryUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois61801
| |
Collapse
|
23
|
Biosynthetic approach to modeling and understanding metalloproteins using unnatural amino acids. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0343-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Clark KM, Tian S, van der Donk WA, Lu Y. Probing the role of the backbone carbonyl interaction with the Cu A center in azurin by replacing the peptide bond with an ester linkage. Chem Commun (Camb) 2016; 53:224-227. [PMID: 27918029 PMCID: PMC5253137 DOI: 10.1039/c6cc07274g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of a backbone carbonyl interaction with an engineered CuA center in azurin was investigated by developing a method of synthesis and incorporation of a depsipeptide where one of the amide bonds in azurin is replaced by an ester bond using expressed protein ligation. Studies by electronic absorption and electron paramagnetic resonance spectroscopic techniques indicate that, while the substitution does not significantly alter the geometry of the site, it weakens the axial interaction to the CuA center and strengthens the Cu-Cu bond, as evidenced by the blue shift of the near-IR absorption that has been assigned to the Cu-Cu ψ → ψ* transition. Interestingly, the changes in the electronic structure from the replacement did not result in a change in the reduction potential of the CuA center, suggesting that the diamond core structure of Cu2SCys2 is resistant to variations in axial interactions.
Collapse
Affiliation(s)
- Kevin M Clark
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA.
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA
| | - Wilfred A van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA. and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA
| | - Yi Lu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA. and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue Urbana, IL 61801, USA
| |
Collapse
|
25
|
Cordeau E, Cantel S, Gagne D, Lebrun A, Martinez J, Subra G, Enjalbal C. Selenazolidine: a selenium containing proline surrogate in peptide science. Org Biomol Chem 2016; 14:8101-8. [PMID: 27506250 DOI: 10.1039/c6ob01450j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the search for new peptide ligands containing selenium in their sequences, we investigated l-4-selenazolidine-carboxylic acid (selenazolidine, Sez) as a proline analog with the chalcogen atom in the γ-position of the ring. In contrast to proteinogenic selenocysteine (Sec) and selenomethionine (SeMet), the incorporation within a peptide sequence of such a non-natural amino acid has never been studied. There is thus a great interest in increasing the possibility of selenium insertion within peptides, especially for sequences that do not possess a sulfur containing amino acid (Cys or Met), by offering other selenated residues suitable for peptide synthesis protocols. Herein, we have evaluated selenazolidine in Boc/Bzl and Fmoc/tBu strategies through the synthesis of a model tripeptide, both in solution and on a solid support. Special attention was paid to the stability of the Sez residue in basic conditions. Thus, generic protocols have been optimized to synthesize Sez-containing peptides, through the use of an Fmoc-Xxx-Sez-OH dipeptide unit. As an example, a new analog of the vasopressin receptor-1A antagonist was prepared, in which Pro was replaced with Sez [3-(4-hydroxyphenyl)-propionyl-d-Tyr(Me)-Phe-Gln-Asn-Arg-Sez-Arg-NH2]. Both proline and such pseudo-proline containing peptides exhibited similar pharmacological properties and endopeptidase stabilities indicating that the presence of the selenium atom has minimal functional effects. Taking into account the straightforward handling of Sez as a dipeptide building block in a conventional Fmoc/tBu SPPS strategy, this result suggested a wide range of potential uses of the Sez amino acid in peptide chemistry, for instance as a viable proline surrogate as well as a selenium probe, complementary to Sec and SeMet, for NMR and mass spectrometry analytical purposes.
Collapse
Affiliation(s)
- E Cordeau
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, Université de Montpellier, CNRS, ENSCM, Place E. Bataillon, 34095 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
26
|
Berry SM, Strange JN, Bladholm EL, Khatiwada B, Hedstrom CG, Sauer AM. Nitrite Reductase Activity in Engineered Azurin Variants. Inorg Chem 2016; 55:4233-47. [PMID: 27055058 DOI: 10.1021/acs.inorgchem.5b03006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitrite reductase (NiR) activity was examined in a series of dicopper P.a. azurin variants in which a surface binding copper site was added through site-directed mutagenesis. Four variants were synthesized with copper binding motifs inspired by the catalytic type 2 copper binding sites found in the native noncoupled dinuclear copper enzymes nitrite reductase and peptidylglycine α-hydroxylating monooxygenase. The four azurin variants, denoted Az-NiR, Az-NiR3His, Az-PHM, and Az-PHM3His, maintained the azurin electron transfer copper center, with the second designed copper site located over 13 Å away and consisting of mutations Asn10His,Gln14Asp,Asn16His-azurin, Asn10His,Gln14His,Asn16His-azurin, Gln8Met,Gln14His,Asn16His-azurin, and Gln8His,Gln14His,Asn16His-azurin, respectively. UV-visible absorption spectroscopy, EPR spectroscopy, and electrochemistry of the sites demonstrate copper binding as well as interaction with small exogenous ligands. The nitrite reduction activity of the variants was determined, including the catalytic Michaelis-Menten parameters. The variants showed activity (0.34-0.59 min(-1)) that was slower than that of native NiRs but comparable to that of other model systems. There were small variations in activity of the four variants that correlated with the number of histidines in the added copper site. Catalysis was found to be reversible, with nitrite produced from NO. Reactions starting with reduced azurin variants demonstrated that electrons from both copper centers were used to reduce nitrite, although steady-state catalysis required the T2 copper center and did not require the T1 center. Finally, experiments separating rates of enzyme reduction from rates of reoxidation by nitrite demonstrated that the reaction with nitrite was rate limiting during catalysis.
Collapse
Affiliation(s)
- Steven M Berry
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Jacob N Strange
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Erika L Bladholm
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Balabhadra Khatiwada
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Christine G Hedstrom
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| | - Alexandra M Sauer
- Department of Chemistry and Biochemistry, University of Minnesota Duluth , 1039 University Drive, Duluth, Minnesota 55812, United States
| |
Collapse
|
27
|
Hosseinzadeh P, Lu Y. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1857:557-581. [PMID: 26301482 PMCID: PMC4761536 DOI: 10.1016/j.bbabio.2015.08.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022]
Abstract
Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- Parisa Hosseinzadeh
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA
| | - Yi Lu
- Department of Chemistry and Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews St., Urbana, IL, 61801, USA.
| |
Collapse
|
28
|
Varlamova EG, Novoselov SV. Methods to biosynthesize mammalian selenocysteine-containing proteins in vitro. Mol Biol 2016. [DOI: 10.1134/s0026893316010210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Shoshan MS, Lehman Y, Goch W, Bal W, Tshuva EY, Metanis N. Selenocysteine containing analogues of Atx1-based peptides protect cells from copper ion toxicity. Org Biomol Chem 2016; 14:6979-84. [DOI: 10.1039/c6ob00849f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Seleno-substituted model peptides of copper metallochaperone proteins display particularly high Cu(i) affinity andin vitroanti-oxidative reactivity.
Collapse
Affiliation(s)
| | - Yonat Lehman
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- Warszawa 02106
- Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences
- Warszawa 02106
- Poland
| | - Edit Y. Tshuva
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| | - Norman Metanis
- The Hebrew University of Jerusalem
- Jerusalem 9190401
- Israel
| |
Collapse
|
30
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|
31
|
Lewis JC. Metallopeptide catalysts and artificial metalloenzymes containing unnatural amino acids. Curr Opin Chem Biol 2015; 25:27-35. [PMID: 25545848 PMCID: PMC4380757 DOI: 10.1016/j.cbpa.2014.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023]
Abstract
Metallopeptide catalysts and artificial metalloenzymes built from peptide scaffolds and catalytically active metal centers possess a number of exciting properties that could be exploited for selective catalysis. Control over metal catalyst secondary coordination spheres, compatibility with library based methods for optimization and evolution, and biocompatibility stand out in this regard. A wide range of unnatural amino acids (UAAs) have been incorporated into peptide and protein scaffolds using several distinct methods, and the resulting UAAs containing scaffolds can be used to create novel hybrid metal-peptide catalysts. Promising levels of selectivity have been demonstrated for several hybrid catalysts, and these provide a strong impetus and important lessons for the design of and optimization of hybrid catalysts.
Collapse
Affiliation(s)
- Jared C Lewis
- University of Chicago, Department of Chemistry, 5735 South Ellis Avenue, Chicago, IL 60637, United States.
| |
Collapse
|
32
|
Metanis N, Hilvert D. Natural and synthetic selenoproteins. Curr Opin Chem Biol 2014; 22:27-34. [DOI: 10.1016/j.cbpa.2014.09.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
|
33
|
Ollivier N, Blanpain A, Boll E, Raibaut L, Drobecq H, Melnyk O. Selenopeptide transamidation and metathesis. Org Lett 2014; 16:4032-5. [PMID: 25017723 PMCID: PMC4120982 DOI: 10.1021/ol501866j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Selenopeptides
can be transamidated by cysteinyl peptides in water
using mild conditions (pH 5.5, 37 °C) in the presence of an arylthiol
catalyst. Similar conditions also catalyze the metathesis of selenopeptides.
The usefulness of the selenophosphine derived from TCEP (TCEP=Se)
for inhibiting the TCEP-induced deselenization of selenocysteine residue
is also reported.
Collapse
Affiliation(s)
- Nathalie Ollivier
- CNRS UMR 8161, Institut Pasteur de Lille, Université Lille Nord de France , 59021 Lille, France
| | | | | | | | | | | |
Collapse
|
34
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 610] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
36
|
Clark KM, Yu Y, van der Donk WA, Blackburn N, Lu Y. Modulating the Copper-Sulfur Interaction in Type 1 Blue Copper Azurin by Replacing Cys112 with Nonproteinogenic Homocysteine. Inorg Chem Front 2014; 1:153-158. [PMID: 24707355 PMCID: PMC3972132 DOI: 10.1039/c3qi00096f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Cu-SCys interaction is known to play a dominant role in defining the type 1 (T1) blue copper center with respect to both its electronic structure and electron transfer function. Despite this importance, its role has yet to be probed by mutagenesis studies without dramatic change of its T1 copper character. We herein report replacement of the conserved Cys112 in azurin with the nonproteinogenic amino acid homocysteine. Based on electronic absorption, electron paramagnetic resonance, and extended x-ray absorption fine structural spectroscopic studies, this variant displays typical type 1 copper site features. Surprisingly, instead of increasing the strength of the Cu-sulfur interaction by the introduction of the extra methylene group, the Cys112Hcy azurin showed a decrease in the covalent interaction between SHcy and Cu(II) when compared with the WT SCys-Cu(II) interaction. This is likely due to geometric adjustment of the center that resulted in the copper ion moving out of the trigonal plane defined by two histidines and one Hcy and closer to Met121. These structural changes resulted in an increase of reduction potential by 35 mV, consistent with lower Cu-S covalency. These results suggest that the Cu-SCys interaction is close to being optimal in native blue copper protein. It also demonstrates the power of using nonproteinogenic amino acids in addressing important issues in bioinorganic chemistry.
Collapse
Affiliation(s)
- Kevin M Clark
- University of Illinois-Urbana, Department of Biochemistry, Urbana, IL61801; USA
| | - Yang Yu
- University of Illinois-Urbana. Center for Biophysics and Computational Biology, Urbana, IL 61801, USA
| | - Wilfred A van der Donk
- University of Illinois-Urbana, Department of Biochemistry, Urbana, IL61801; USA
- University of Illinois-Urbana. Center for Biophysics and Computational Biology, Urbana, IL 61801, USA
- University of Illinois-Urbana. Department of Chemistry, Urbana, IL 61801, USA
- Howard Hughes Medical Institute, Urbana, IL 61801, USA
| | - Ninian Blackburn
- Oregon Health & Sciences University, Institute of Environmental Health, Beaverton, OR 97006, USA
| | - Yi Lu
- University of Illinois-Urbana, Department of Biochemistry, Urbana, IL61801; USA
- University of Illinois-Urbana. Center for Biophysics and Computational Biology, Urbana, IL 61801, USA
- University of Illinois-Urbana. Department of Chemistry, Urbana, IL 61801, USA
| |
Collapse
|
37
|
Modern Extensions of Native Chemical Ligation for Chemical Protein Synthesis. PROTEIN LIGATION AND TOTAL SYNTHESIS I 2014; 362:27-87. [DOI: 10.1007/128_2014_584] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Malins LR, Mitchell NJ, Payne RJ. Peptide ligation chemistry at selenol amino acids. J Pept Sci 2013; 20:64-77. [DOI: 10.1002/psc.2581] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Lara R. Malins
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| | | | - Richard J. Payne
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
39
|
Isomorphic deactivation of a Pseudomonas aeruginosa oxidoreductase: The crystal structure of Ag(I) metallated azurin at 1.7 Å. J Inorg Biochem 2013; 128:11-6. [PMID: 23911566 DOI: 10.1016/j.jinorgbio.2013.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 11/21/2022]
Abstract
Multiple biophysical methods demonstrate that silver effectively metallates Pseudomonas aeruginosa apo-azurin in solution. X-ray crystallography of the silver-modified protein reveals that silver binds to azurin at the traditional copper mediated active site with nearly identical geometry. Cyclic voltammetry indicates that the silver adduct is redox inert. Our results suggest that a potential mechanism for the microbial toxicity of silver is the deactivation of copper oxidoreductases by the effective binding and structural mimicry by silver without the corresponding function.
Collapse
|
40
|
Wilson TD, Yu Y, Lu Y. Understanding copper-thiolate containing electron transfer centers by incorporation of unnatural amino acids and the CuA center into the type 1 copper protein azurin. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Warren JJ, Lancaster KM, Richards JH, Gray HB. Inner- and outer-sphere metal coordination in blue copper proteins. J Inorg Biochem 2012; 115:119-26. [PMID: 22658756 PMCID: PMC3434318 DOI: 10.1016/j.jinorgbio.2012.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
Blue copper proteins (BCPs) comprise classic cases of Nature's profound control over the electronic structures and chemical reactivity of transition metal ions. Early studies of BCPs focused on their inner coordination spheres, that is, residues that directly coordinate Cu. Equally important are the electronic and geometric perturbations to these ligands provided by the outer coordination sphere. In this tribute to Hans Freeman, we review investigations that have advanced the understanding of how inner-sphere and outer-sphere coordination affects biological Cu properties.
Collapse
Affiliation(s)
- Jeffrey J Warren
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
42
|
Lee BC, Lobanov AV, Marino SM, Kaya A, Seravalli J, Hatfield DL, Gladyshev VN. A 4-selenocysteine, 2-selenocysteine insertion sequence (SECIS) element methionine sulfoxide reductase from Metridium senile reveals a non-catalytic function of selenocysteines. J Biol Chem 2011; 286:18747-55. [PMID: 21393246 DOI: 10.1074/jbc.m111.229807] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine (Sec) residues occur in thiol oxidoreductase families, and functionally characterized selenoenzymes typically have a single Sec residue used directly for redox catalysis. However, how new Sec residues evolve and whether non-catalytic Sec residues exist in proteins is not known. Here, we computationally identified several genes with multiple Sec insertion sequence (SECIS) elements, one of which was a methionine-R-sulfoxide reductase (MsrB) homolog from Metridium senile that has four in-frame UGA codons and two nearly identical SECIS elements. One of the UGA codons corresponded to the conserved catalytic Sec or Cys in MsrBs, whereas the three other UGA codons evolved recently and had no homologs with Sec or Cys in these positions. Metabolic (75)Se labeling showed that all four in-frame UGA codons supported Sec insertion and that both SECIS elements were functional and collaborated in Sec insertion at each UGA codon. Interestingly, recombinant M. senile MsrB bound iron, and further analyses suggested the possibility of binding an iron-sulfur cluster by the protein. These data show that Sec residues may appear transiently in genes containing SECIS elements and be adapted for non-catalytic functions.
Collapse
Affiliation(s)
- Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Incorporation of the red copper nitrosocyanin binding loop into blue copper azurin. J Biol Inorg Chem 2010; 16:473-80. [DOI: 10.1007/s00775-010-0746-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
|
44
|
Clark KM, Yu Y, Marshall NM, Sieracki NA, Nilges MJ, Blackburn NJ, van der Donk WA, Lu Y. Transforming a blue copper into a red copper protein: engineering cysteine and homocysteine into the axial position of azurin using site-directed mutagenesis and expressed protein ligation. J Am Chem Soc 2010; 132:10093-101. [PMID: 20608676 DOI: 10.1021/ja102632p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interactions of the axial ligand with its blue copper center are known to be important in tuning spectroscopic and redox properties of cupredoxins. While conversion of the blue copper center with a weak axial ligand to a green copper center containing a medium strength axial ligand has been demonstrated in cupredoxins, converting the blue copper center to a red copper center with a strong axial ligand has not been reported. Here we show that replacing Met121 in azurin from Pseudomonas aeruginosa with Cys caused an increased ratio (R(L)) of absorption at 447 nm over that at 621 nm. Whereas no axial Cu-S(Cys121) interaction in Met121Cys was detectable by extended X-ray absorption fine structure (EXAFS) spectroscopy at pH 5, similar to what was observed in native azurin with Met121 as the axial ligand, the Cu-S(Cys121) interaction at 2.74 A is clearly visible at higher pH. Despite the higher R(L) and stronger axial Cys121 interaction with Cu(II) ion, the Met121Cys variant remains largely a type 1 copper protein at low pH (with hyperfine coupling constant A( parallel) = 54 x 10(-4) cm(-1) at pH 4 and 5), or distorted type 1 or green copper protein at high pH (A(parallel) = 87 x 10(-4) cm(-1) at pH 8 and 9), attributable to the relatively long distance between the axial ligand and copper and the constraint placed by the protein scaffold. To shorten the distance between axial ligand and copper, we replaced Met121 with a nonproteinogenic amino acid homocysteine that contains an extra methylene group, resulting in a variant whose spectra (R(L)= 1.5, and A(parallel) = 180 x 10(-4) cm(-1)) and Cu-S(Cys) distance (2.22 A) are very similar to those of the red copper protein nitrosocyanin. Replacing Met121 with Cys or homocysteine resulted in lowering of the reduction potential from 222 mV in the native azurin to 95 +/- 3 mV for Met121Cys azurin and 113 +/- 6 mV for Met121Hcy azurin at pH 7. The results strongly support the "coupled distortion" model that helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of using unnatural amino acids to address critical chemical biological questions.
Collapse
Affiliation(s)
- Kevin M Clark
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Lancaster KM, Yokoyama K, Richards JH, Winkler JR, Gray HB. High-potential C112D/M121X (X = M, E, H, L) Pseudomonas aeruginosa azurins. Inorg Chem 2010; 48:1278-80. [PMID: 19113863 DOI: 10.1021/ic802322e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Site-directed mutagenesis of Pseudomonas aeruginosa azurin C112D at the M121 position has afforded a series of proteins with elevated Cu(II/I) reduction potentials relative to the Cu(II) aquo ion. The high potential and low axial hyperfine splitting (Cu(II) electron paramagnetic resonance A( parallel)) of the C112D/M121L protein are remarkably similar to features normally associated with type 1 copper centers.
Collapse
Affiliation(s)
- Kyle M Lancaster
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
46
|
Rajapandian V, Hakkim V, Subramanian V. Molecular Dynamics Studies on Native, Loop-Contracted, and Metal Ion-Substituted Azurins. J Phys Chem B 2010; 114:8474-86. [DOI: 10.1021/jp911301v] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. Rajapandian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| | - V. Hakkim
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| | - V. Subramanian
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020, India
| |
Collapse
|
47
|
Rashid Baig NB, Chandrakala RN, Sudhir VS, Chandrasekaran S. Synthesis of Unnatural Selenocystines and β-Aminodiselenides via Regioselective Ring-Opening of Sulfamidates Using a Sequential, One-Pot, Multistep Strategy. J Org Chem 2010; 75:2910-21. [DOI: 10.1021/jo1001388] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nasir Baig Rashid Baig
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - R. N. Chandrakala
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - V. Sai Sudhir
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | | |
Collapse
|
48
|
Abstract
Metalloproteins catalyse some of the most complex and important processes in nature, such as photosynthesis and water oxidation. An ultimate test of our knowledge of how metalloproteins work is to design new metalloproteins. Doing so not only can reveal hidden structural features that may be missing from studies of native metalloproteins and their variants, but also can result in new metalloenzymes for biotechnological and pharmaceutical applications. Although it is much more challenging to design metalloproteins than non-metalloproteins, much progress has been made in this area, particularly in functional design, owing to recent advances in areas such as computational and structural biology.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
49
|
Dudev T, Lim C. Metal-Binding Affinity and Selectivity of Nonstandard Natural Amino Acid Residues from DFT/CDM Calculations. J Phys Chem B 2009; 113:11754-64. [DOI: 10.1021/jp904249s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and the Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, and the Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
50
|
Hondal RJ. Using chemical approaches to study selenoproteins-focus on thioredoxin reductases. Biochim Biophys Acta Gen Subj 2009; 1790:1501-12. [PMID: 19406205 DOI: 10.1016/j.bbagen.2009.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/15/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
Abstract
The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries. This review focuses on chemical approaches to produce selenoproteins and study the mechanism of selenoenzymes. The use of intein-mediated peptide ligation is discussed with respect to the production of the mammalian selenoenzymes thioredoxin reductase and selenoprotein R, also known as methionine sulfoxide reductase B1. New methods for removing protecting groups from selenocysteine post-synthesis and methods for selenosulfide/diselenide formation are also reviewed. Chemical approaches have also been used to study the enzymatic mechanism of thioredoxin reductase. The approach divides the enzyme into two modules, a large protein module lacking selenocysteine and a small, synthetic selenocysteine-containing peptide. Study of this semisynthetic enzyme has revealed three distinct enzymatic pathways that depend on the properties of the substrate. The enzyme utilizes a macromolecular mechanism for protein substrates, a second mechanism for small molecule substrates and a third pathway for selenium-containing substrates such as selenocystine.
Collapse
Affiliation(s)
- Robert J Hondal
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, USA.
| |
Collapse
|