1
|
Sun X, Li A, Li N, Ji G, Song Z. Facile Preparation of Heteropolypeptides from Crude Mixtures of α-Amino Acid N-Carboxyanhydrides. Biomacromolecules 2024; 25:6093-6102. [PMID: 39167691 DOI: 10.1021/acs.biomac.4c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heteropolypeptides bearing two or more functional side chains are promising polymeric materials for various biomedical applications. However, conventional preparation of heteropolypeptides relies on the synthesis and purification of each N-carboxyanhydride (NCA) monomer in a separate manner, which substantially increases the time and cost. Herein, we report the facile preparation of heteropolypeptides with up to 86% yield within several hours, which are obtained from a mixture of crude NCA monomers. The combination of n-hexane precipitation and biphasic segregation effectively removed >90% impurities from crude NCA mixtures, allowing for the successful polymerization process. Various heteropolypeptides with monomodal distribution and narrow dispersity were efficiently prepared, whose compositions were predetermined by the feeding ratios of amino acids. We believe that this work significantly simplifies the preparation of various heteropolypeptides, boosting the downstream studies of these promising materials.
Collapse
Affiliation(s)
- Xiao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Aoting Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ning Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guonan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Salas-Ambrosio P, Tronnet A, Badreldin M, Reyes L, Since M, Bourgeade-Delmas S, Dupuy B, Verhaeghe P, Bonduelle C. Star-like poly(peptoid)s with selective antibacterial activity. Polym Chem 2022. [DOI: 10.1039/d1py01529j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed new macromolecular engineering approaches enabling the preparation of star-shaped and antimicrobial polypeptoids by ring-opening polymerization.
Collapse
Affiliation(s)
| | - Antoine Tronnet
- LCC-CNRS, UPR8241, Université de Toulouse, CNRS, UPS, Toulouse, France
- Institut Pasteur, Université de Paris, UMR-CNRS 2001, LPBA, Paris, France
| | - Mostafa Badreldin
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Luzangel Reyes
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Marc Since
- Normandie Univ, UNICAEN, CERMN, 14000, Caen, France
| | | | - Bruno Dupuy
- Institut Pasteur, Université de Paris, UMR-CNRS 2001, LPBA, Paris, France
| | - Pierre Verhaeghe
- LCC-CNRS, UPR8241, Université de Toulouse, CNRS, UPS, Toulouse, France
- Department of Pharmacy, CHU Nîmes, 30000 Nîmes, France
| | - Colin Bonduelle
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| |
Collapse
|
3
|
Sun H, Wang Y, Song J. Polymer Vesicles for Antimicrobial Applications. Polymers (Basel) 2021; 13:2903. [PMID: 34502943 PMCID: PMC8434374 DOI: 10.3390/polym13172903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Polymer vesicles, hollow nanostructures with hydrophilic cavity and hydrophobic membrane, have shown significant potentials in biomedical applications including drug delivery, gene therapy, cancer theranostics, and so forth, due to their unique cell membrane-like structure. Incorporation with antibacterial active components like antimicrobial peptides, etc., polymer vesicles exhibited enhanced antimicrobial activity, extended circulation time, and reduced cell toxicity. Furthermore, antibacterial, and anticancer can be achieved simultaneously, opening a new avenue of the antimicrobial applications of polymer vesicles. This review seeks to highlight the state-of-the-art of antimicrobial polymer vesicles, including the design strategies and potential applications in the field of antibacterial. The structural features of polymer vesicles, preparation methods, and the combination principles with antimicrobial active components, as well as the advantages of antimicrobial polymer vesicles, will be discussed. Then, the diverse applications of antimicrobial polymer vesicles such as wide spectrum antibacterial, anti-biofilm, wound healing, and tissue engineering associated with their structure features are presented. Finally, future perspectives of polymer vesicles in the field of antibacterial is also proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China;
| | - Jiahui Song
- Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China;
| |
Collapse
|
4
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:E7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
5
|
Salas-Ambrosio P, Tronnet A, Verhaeghe P, Bonduelle C. Synthetic Polypeptide Polymers as Simplified Analogues of Antimicrobial Peptides. Biomacromolecules 2020; 22:57-75. [PMID: 32786537 DOI: 10.1021/acs.biomac.0c00797] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are naturally occurring macromolecules made of amino acids that are potent broad-spectrum antibiotics with potential as novel therapeutic agents. This review aims to summarize the fundamental principles concerning the structure and mechanism of action of these AMPs, in order to guide the design of polymeric analogues that organic chemistry can generate. Among those simplified analogues, this review particularly focuses on those made of amino acids called polypeptide polymers: they are showing great potential by providing one of the best biomimetic and bioactive structures for further biomaterials science applications.
Collapse
Affiliation(s)
| | - Antoine Tronnet
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Pierre Verhaeghe
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse 31400, France
| | - Colin Bonduelle
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
6
|
Leigh T, Fernandez-Trillo P. Helical polymers for biological and medical applications. Nat Rev Chem 2020; 4:291-310. [PMID: 37127955 DOI: 10.1038/s41570-020-0180-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Helices are the most prevalent secondary structure in biomolecules and play vital roles in their activity. Chemists have been fascinated with mimicking this molecular conformation with synthetic materials. Research has now been devoted to the synthesis and characterization of helical materials, and to understand the design principles behind this molecular architecture. In parallel, work has been done to develop synthetic polymers for biological and medical applications. We now have access to materials with controlled size, molecular conformation, multivalency or functionality. As a result, synthetic polymers are being investigated in areas such as drug and gene delivery, tissue engineering, imaging and sensing, or as polymer therapeutics. Here, we provide a critical view of where these two fields, helical polymers and polymers for biological and medical applications, overlap. We have selected relevant polymer families and examples to illustrate the range of applications that can be targeted and the impact of the helical conformation on the performance. For each family of polymers, we briefly describe how they can be prepared, what helical conformations are observed and what parameters control helicity. We close this Review with an outlook of the challenges ahead, including the characterization of helicity through the process and the identification of biocompatibility.
Collapse
|
7
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
8
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
9
|
Wu Y, Xia G, Zhang W, Chen K, Bi Y, Liu S, Zhang W, Liu R. Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. J Mater Chem B 2020; 8:9173-9196. [DOI: 10.1039/d0tb01916j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development and progress of antimicrobial polypeptides and saccharide–polypeptide conjugates in regards to their structural design, biological functions and antimicrobial mechanism.
Collapse
Affiliation(s)
- Yueming Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Guixue Xia
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Weiwei Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Kang Chen
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yufang Bi
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Shiqi Liu
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Wenjing Zhang
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
| |
Collapse
|
10
|
Synthesis, Characterization and Hydrolytic Degradation of p-Cresol-Substituted Polyphosphazenes. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/s13369-019-03952-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Shirbin SJ, Insua I, Holden JA, Lenzo JC, Reynolds EC, O'Brien-Simpson NM, Qiao GG. Architectural Effects of Star-Shaped "Structurally Nanoengineered Antimicrobial Peptide Polymers" (SNAPPs) on Their Biological Activity. Adv Healthc Mater 2018; 7:e1800627. [PMID: 30175464 DOI: 10.1002/adhm.201800627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/26/2018] [Indexed: 12/20/2022]
Abstract
In this work, the effect of two key structural parameters, number of arms and arm length, of star-shaped "structurally nanoengineered antimicrobial peptide polymers" (SNAPPs) on their antimicrobial activity and biocompatibility, is investigated. A library of star-shaped SNAPPs is prepared, containing varying arm numbers and arm lengths. Antimicrobial assays are then performed to assess the capacity of the SNAPPs to disrupt the membrane, inhibit the growth, and kill pathogenic bacteria. A major finding of the study is that increasing arm number and length of SNAPPs enhanced antimicrobial activity, which can be respectively attributed to the higher local concentrations of polypeptide arms and increased α-helical content. SNAPP architecture is shown to affect the bacteria membrane state and therefore mechanism of killing. Two more potent structures with up to twice the antimicrobial activity of the previously reported SNAPP are discovered in this process. Toxicities of the SNAPPs also increase with arm number and arm length, however therapeutic index calculations identified a 16-arm SNAPP and an easier to prepare 4-arm SNAPP as the best therapeutic agents. The biocompatibility of the SNAPP with the best biological activity is also evaluated in vivo, showing no markers of systemic damage in mice.
Collapse
Affiliation(s)
- Steven J Shirbin
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ignacio Insua
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology Oral Health CRC, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James A Holden
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology Oral Health CRC, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jason C Lenzo
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology Oral Health CRC, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Eric C Reynolds
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology Oral Health CRC, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology Oral Health CRC, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
12
|
Shen W, He P, Xiao C, Chen X. From Antimicrobial Peptides to Antimicrobial Poly(α-amino acid)s. Adv Healthc Mater 2018; 7:e1800354. [PMID: 29923332 DOI: 10.1002/adhm.201800354] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/22/2018] [Indexed: 01/17/2023]
Abstract
Conventional small-molecule antibiotics are facing a significant challenge of the rapidly developed drug resistance of pathogens. In contrast, antimicrobial peptides (AMPs), an important component for innate host defenses, are now under intensive investigation as a promising antimicrobial agent for combating drug resistant pathogens. Most AMPs can effectively kill a broad spectrum of pathogens via physical disruption of microbial cellular membranes, which is identified to be difficult to develop resistance. However, the clinical applications of AMPs are still greatly limited by several inherent impediments, such as high cost of production, potential hemolysis or toxicity, and liability to proteinase degradation. Recently, cationic poly(α-amino acid)s with structures mimicking the AMPs are found to have excellent antimicrobial activity. These polymers, termed "antimicrobial poly(α-amino acid)s (APAAs)," have some advantages over AMPs, such as easy production and modification, prolonged antimicrobial activity, low cytotoxicity, and enhanced stability to protease degradation. Here, a brief introduction of mechanisms and affecting factors of microbial killing by AMPs is first presented, followed by a systematic illustration of recent advances in design and preparation of biomimetic APAAs and a perspective in this field.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
- University of Chinese Academy of Sciences; 19A Yuquan Road Beijing 100049 P. R. China
| | - Pan He
- School of Materials Science and Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 P. R. China
| |
Collapse
|
13
|
Zhang C, Yuan J, Lu J, Hou Y, Xiong W, Lu H. From neutral to zwitterionic poly(α-amino acid) nonfouling surfaces: Effects of helical conformation and anchoring orientation. Biomaterials 2018; 178:728-737. [DOI: 10.1016/j.biomaterials.2018.01.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 12/28/2022]
|
14
|
Wen JT, Roper JM, Tsutsui H. Polydiacetylene Supramolecules: Synthesis, Characterization, and Emerging Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00848] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Sun H, Hong Y, Xi Y, Zou Y, Gao J, Du J. Synthesis, Self-Assembly, and Biomedical Applications of Antimicrobial Peptide-Polymer Conjugates. Biomacromolecules 2018. [PMID: 29539262 DOI: 10.1021/acs.biomac.8b00208] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antimicrobial peptides (AMPs) have been attracting much attention due to their excellent antimicrobial efficiency and low rate in driving antimicrobial resistance (AMR), which has been increasing globally to alarming levels. Conjugation of AMPs into functional polymers not only preserves excellent antimicrobial activities but reduces the toxicity and offers more functionalities, which brings new insight toward developing multifunctional biomedical materials such as hydrogels, polymer vesicles, polymer micelles, and so forth. These nanomaterials have been exhibiting excellent antimicrobial activity against a broad spectrum of bacteria including multidrug-resistant (MDR) ones, high selectivity, and low cytotoxicity, suggesting promising potentials in wound dressing, implant coating, antibiofilm, tissue engineering, and so forth. This Perspective seeks to highlight the state-of-the-art strategy for the synthesis, self-assembly, and biomedical applications of AMP-polymer conjugates and explore the promising directions for future research ranging from synthetic strategies, multistage and stimuli-responsive antibacterial activities, antifungi applications, and potentials in elimination of inflammation during medical treatment. It also will provide perspectives on how to stem the remaining challenges and unresolved problems in combating bacteria, including MDR ones.
Collapse
Affiliation(s)
- Hui Sun
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yuanxiu Hong
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yuejing Xi
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yijie Zou
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jingyi Gao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China.,Department of Orthopedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , China
| |
Collapse
|
16
|
Abstract
Synthetic peptide-based polymers can fold into different secondary structures in the same way as do proteins. This review article presents how tuning the polypeptide secondary structure could be a key step to modulate various properties in advanced polymeric materials (size, rigidity, self-assembly,etc.).
Collapse
Affiliation(s)
- Colin Bonduelle
- CNRS
- LCC (Laboratoire de Chimie de Coordination (UPR8241))
- F-31077 Toulouse
- France
- Université de Toulouse
| |
Collapse
|
17
|
Christiansen SH, Murphy RA, Juul-Madsen K, Fredborg M, Hvam ML, Axelgaard E, Skovdal SM, Meyer RL, Sørensen UBS, Möller A, Nyengaard JR, Nørskov-Lauritsen N, Wang M, Gadjeva M, Howard KA, Davies JC, Petersen E, Vorup-Jensen T. The Immunomodulatory Drug Glatiramer Acetate is Also an Effective Antimicrobial Agent that Kills Gram-negative Bacteria. Sci Rep 2017; 7:15653. [PMID: 29142299 PMCID: PMC5688084 DOI: 10.1038/s41598-017-15969-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
Classic drug development strategies have failed to meet the urgent clinical needs in treating infections with Gram-negative bacteria. Repurposing drugs can lead to timely availability of new antibiotics, accelerated by existing safety profiles. Glatiramer acetate (GA) is a widely used and safe formulation for treatment of multiple sclerosis. It contains a large diversity of essentially isomeric polypeptides with the cationic and amphiphilic character of many antimicrobial peptides (AMP). Here, we report that GA is antibacterial, targeting Gram-negative organisms with higher activity towards Pseudomonas aeruginosa than the naturally-occurring AMP LL-37 in human plasma. As judged from flow cytometric assays, bacterial killing by GA occurred within minutes. Laboratory strains of Escherichia coli and P. aeruginosa were killed by a process of condensing intracellular contents. Efficient killing by GA was also demonstrated in Acinetobacter baumannii clinical isolates and approximately 50% of clinical isolates of P. aeruginosa from chronic airway infection in CF patients. By contrast, the Gram-positive Staphylococcus aureus cells appeared to be protected from GA by an increased formation of nm-scale particulates. Our data identify GA as an attractive drug repurposing candidate to treat infections with Gram-negative bacteria.
Collapse
Affiliation(s)
- Stig Hill Christiansen
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ronan A Murphy
- CF and Chronic Lung Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kristian Juul-Madsen
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marlene Fredborg
- Dept. of Clinical Microbiology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Michael Lykke Hvam
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Dept. of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
| | - Esben Axelgaard
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sandra M Skovdal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Dept. of Bioscience, Aarhus University, Aarhus, Denmark
| | - Uffe B Skov Sørensen
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Arne Möller
- Dept. of Structural Biology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Center for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Niels Nørskov-Lauritsen
- Dept. of Clinical Microbiology, Aarhus University Hospital Skejby, Aarhus, Denmark.,Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mikala Wang
- Dept. of Clinical Microbiology, Aarhus University Hospital Skejby, Aarhus, Denmark.,Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mihaela Gadjeva
- Dept. of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.,Dept. of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
| | - Jane C Davies
- CF and Chronic Lung Infection, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Dept. of Paediatric Respiratory Medicine, Royal Brompton & Harefield Foundation Trust, London, UK
| | - Eskild Petersen
- Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Aarhus University Network for Interdisciplinary Drug Resistance Research, Aarhus, Denmark.,Dept. of Infectious Diseases, The Royal Hospital, Muscat, Sultanate of Oman
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Dept. of Biomedicine, Aarhus University, Aarhus, Denmark. .,Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark. .,Aarhus University Network for Interdisciplinary Drug Resistance Research, Aarhus, Denmark.
| |
Collapse
|
18
|
González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez-Hernández J. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides. Polymers (Basel) 2017; 9:E551. [PMID: 30965855 PMCID: PMC6418556 DOI: 10.3390/polym9110551] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022] Open
Abstract
In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs). First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.
Collapse
Affiliation(s)
- Carmen M González-Henríquez
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, P.O. Box 9845, Correo 21, Santiago 7800003, Chile.
| | - Mauricio A Sarabia-Vallejos
- Departamento de Ingeniería Estructural y Geotecnia, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, P.O. Box 306, Correo 22, Santiago 7820436, Chile.
| | - Juan Rodríguez-Hernández
- Departamento de Química y Propiedades de Polímeros, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
19
|
Xi Y, Song T, Tang S, Wang N, Du J. Preparation and Antibacterial Mechanism Insight of Polypeptide-Based Micelles with Excellent Antibacterial Activities. Biomacromolecules 2016; 17:3922-3930. [PMID: 27936717 DOI: 10.1021/acs.biomac.6b01285] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Traditional antibiotics usually sterilize in chemical ways, which may lead to serious drug resistance. By contrast, peptide-based antibacterial materials are less susceptible to drug resistance. Herein we report the preparation of an antibacterial peptide-based copolymer micelle and the investigation of its membrane-penetration antibacterial mechanism by transmission electron microscopy (TEM). The copolymer is poly(l-lactide)-block-poly(phenylalanine-stat-lysine) [PLLA31-b-poly(Phe24-stat-Lys36)], which is synthesized by ring-opening polymerization. The PLLA chains form the core, whereas the polypeptide chains form the coronas of the micelle in aqueous solution. This micelle boasts excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. Furthermore, TEM studies clearly reveal that the micelles pierce and then destroy the cell membrane of the bacteria. We also compared the advantages and disadvantages of two general methods for measuring the Minimal Inhibitory Concentration (MIC) values of antibacterial micelles. Overall, this study provides us with direct evidence for the antibacterial mechanism of polypeptide-based micelles and a strategy for synthesizing biodegradable antibacterial nanomaterials without antibiotic resistance.
Collapse
Affiliation(s)
- Yuejing Xi
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , 301 Middle Yanchang Road, Shanghai 200072, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| | - Tao Song
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| | - Songyao Tang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| | - Nuosha Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , 301 Middle Yanchang Road, Shanghai 200072, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University , 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
20
|
Wang M, Zhou C, Chen J, Xiao Y, Du J. Multifunctional Biocompatible and Biodegradable Folic Acid Conjugated Poly(ε-caprolactone)–Polypeptide Copolymer Vesicles with Excellent Antibacterial Activities. Bioconjug Chem 2015; 26:725-34. [DOI: 10.1021/acs.bioconjchem.5b00061] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingzhi Wang
- School of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chuncai Zhou
- School of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jing Chen
- School of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- School of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- School of Materials Science
and Engineering, Key Laboratory of Advanced Civil Engineering Materials
of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
21
|
Lu H, Wang J, Song Z, Yin L, Zhang Y, Tang H, Tu C, Lin Y, Cheng J. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem Commun (Camb) 2014; 50:139-55. [DOI: 10.1039/c3cc46317f] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Zhou C, Wang M, Zou K, Chen J, Zhu Y, Du J. Antibacterial Polypeptide-Grafted Chitosan-Based Nanocapsules As an "Armed" Carrier of Anticancer and Antiepileptic Drugs. ACS Macro Lett 2013; 2:1021-1025. [PMID: 35581872 DOI: 10.1021/mz400480z] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibacterial polypeptides as ancient immune defense systems are effective against bacteria. Here we report a novel kind of "armed" carrier: an antibacterial polypeptide-grafted chitosan-based nanocapsule with an excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. This nanocapsule also has excellent blood compatibility and low cytotoxicity. Patients after tumor surgery may benefit from this "armed" carrier because it is highly anti-inflammation and is able to deliver anticancer and antiepileptic drugs simultaneously.
Collapse
Affiliation(s)
- Chuncai Zhou
- School
of Materials Science
and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Mingzhi Wang
- School
of Materials Science
and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Kaidian Zou
- School
of Materials Science
and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jing Chen
- School
of Materials Science
and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Yunqing Zhu
- School
of Materials Science
and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jianzhong Du
- School
of Materials Science
and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| |
Collapse
|
23
|
Zhai S, Song X, Feng C, Jiang X, Li Y, Lu G, Huang X. Synthesis of α-helix-containing PPEGMEA-g-PBLG, well-defined amphiphilic graft copolymer, by sequential SET-LRP and ROP. Polym Chem 2013. [DOI: 10.1039/c3py00474k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Tang H, Zhang D. Multi-functionalization of helical block copoly(α-peptide)s by orthogonal chemistry. Polym Chem 2011. [DOI: 10.1039/c1py00015b] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Ding J, Xiao C, Tang Z, Zhuang X, Chen X. Highly Efficient “Grafting From” an α-Helical Polypeptide Backbone by Atom Transfer Radical Polymerization. Macromol Biosci 2010; 11:192-8. [DOI: 10.1002/mabi.201000238] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/23/2010] [Indexed: 11/06/2022]
|
26
|
Zhou C, Qi X, Li P, Chen WN, Mouad L, Chang MW, Leong SSJ, Chan-Park MB. High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of alpha-aminoacid-N-carboxyanhydrides. Biomacromolecules 2010; 11:60-7. [PMID: 19957992 DOI: 10.1021/bm900896h] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antimicrobial peptides (AMPs), particularly those effective against methicillin-resistant Staphylococcus aureus ( S. aureus ) and antibiotic-resistant Pseudomonas aeruginosa ( P. aeruginosa ), are important alternatives to antibiotics. Typical peptide synthesis methods involving solid-phase sequential synthesis are slow and costly, which are obstacles to their more widespread application. In this paper, we synthesize peptides via ring-opening polymerization of alpha-amino acid N-carboxyanhydrides (NCA) using a transition metal initiator. This method offers high potential for inexpensive synthesis of substantial quantities of AMPs. Lysine (K) was chosen as the hydrophilic amino acid and alanine (A), phenylalanine (F), and leucine (L) as the hydrophobic amino acids. We synthesized five series of AMPs (i.e., P(KA), P(KL), P(KF), P(KAL), and P(KFL)), varied the hydrophobic amino acid content from 0 to 100%, and determined minimal inhibitory concentrations (MICs) against clinically important Gram-negative and Gram-positive bacteria and fungi (i.e., Escherichia coli ( E. coli ), P. aeruginosa , Serratia marcescens ( S. marcescens ), and Candida albicans ( C. albicans ). We found that P(K(10)F(7.5)L(7.5)) and P(K(10)F(15)) show the broadest activity against all five pathogens and have the lowest MICs against these pathogens. For P(K(10)F(7.5)L(7.5)), the MICs against E. coli , P. aeruginosa , S. marcescens , S. aureus , and C. albicans are 31 microg/mL, 31 microg/mL, 250 microg/mL, 31 microg/mL, and 62.5 microg/mL, while for P(K(10)F(15)) the respective MICs are 31 microg/mL, 31 microg/mL, 250 microg/mL, 31 microg/mL, and 125 microg/mL. These are lower than the MICs of many naturally occurring AMPs. The membrane depolarization and SEM assays confirm that the mechanism of microbe killing by P(K(10)F(7.5)L(7.5)) copeptide includes membrane disruption, which is likely to inhibit rapid induction of AMP-resistance in pathogens.
Collapse
Affiliation(s)
- Chuncai Zhou
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G. Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides. Chem Rev 2009; 109:5528-78. [DOI: 10.1021/cr900049t] [Citation(s) in RCA: 439] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nikos Hadjichristidis
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou 15771, Athens, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou 15771, Athens, Greece
| | - Marinos Pitsikalis
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou 15771, Athens, Greece
| | - Georgios Sakellariou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou 15771, Athens, Greece
| |
Collapse
|
28
|
Li J, Wang T, Wu D, Zhang X, Yan J, Du S, Guo Y, Wang J, Zhang A. Stimuli-Responsive Zwitterionic Block Copolypeptides: Poly(N-isopropylacrylamide)-block-poly(lysine-co-glutamic acid). Biomacromolecules 2008; 9:2670-6. [DOI: 10.1021/bm800394p] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingguo Li
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| | - Tao Wang
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| | - Dalin Wu
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| | - Xiuqiang Zhang
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| | - Jiatao Yan
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| | - Song Du
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| | - Yifei Guo
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| | - Jintao Wang
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| | - Afang Zhang
- School of Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75, Zhengzhou 450052, China
| |
Collapse
|
29
|
|
30
|
Kricheldorf HR. Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angew Chem Int Ed Engl 2006; 45:5752-84. [PMID: 16948174 DOI: 10.1002/anie.200600693] [Citation(s) in RCA: 472] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Syntheses and polymerizations of alpha-amino acid N-carboxyanhydrides (NCAs) were reported for the first time by Hermann Leuchs in 1906. Since that time, these cyclic and highly reactive amino acid derivatives were used for stepwise peptide syntheses but mainly for the formation of polypeptides by ring-opening polymerizations. This review summarizes the literature after 1985 and reports on new aspects of the polymerization processes, such as the formation of cyclic polypeptides or novel organometal catalysts. Polypeptides with various architectures, such as diblock, triblock, and multiblock sequences, and star-shaped or dendritic structures are also mentioned. Furthermore, lyotropic and thermotropic liquid-crystalline polypeptides will be discussed and the role of polypeptides as drugs or drug carriers are reviewed. Finally, the hypothetical role of NCAs in molecular evolution on the prebiotic Earth is discussed.
Collapse
Affiliation(s)
- Hans R Kricheldorf
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
31
|
Kricheldorf HR. Polypeptide und 100 Jahre Chemie der α-Aminosäure-N-carboxyanhydride. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600693] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|