1
|
Villela-Torres MDLL, Prado-Uribe MDC, Díaz MÁ, Pablo HQ, Soria-Castro E, Escofet NE, Maldonado CEF, Paniagua R. Effect of High Sodium Intake on Gut Tight Junctions' Structure and Permeability to Bacterial Toxins in a Rat Model of Chronic Kidney Disease. Arch Med Res 2024; 55:102969. [PMID: 38484487 DOI: 10.1016/j.arcmed.2024.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Uremic toxicity changes the gut structure and permeability, allowing bacterial toxins to translocate from the lumen to the blood during chronic kidney failure (CKD). Clinical fluid overload and tissue edema without uremia have similar effects but have not been adequately demonstrated and analyzed in CKD. AIMS To investigate the effect of sodium intake on the plasma concentration of gut-derived uremic toxins, indoxyl sulfate (IS), and p-cresyl sulfate (pCS) and the expression of genes and proteins of epithelial gut tight junctions in a rat model of CKD. METHODS Sham-operated (control group, CG) and five-sixths nephrectomized (5/6Nx) Sprague-Dawley rats were randomly assigned to low (LNa), normal (NNa), or high sodium (HNa) diets., Animals were then sacrificed at 8 and 12 weeks and analyzed for IS and pCS plasma concentrations, as well as for gene and protein expression of thigh junction proteins, and transmission electron microscopy (TEM) in colon fragments. RESULTS The HNa 5/6Nx groups had higher concentrations of IS and pCS than CG, NNa, and LNa at eight and twelve weeks. Furthermore, HNa 5/6Nx groups had reduced expression of the claudin-4 gene and protein than CG, NNa, and LNa. HNa had reduced occludin gene expression compared to CG. Occludin protein expression was more reduced in HNa than in CG, NNa, and LNa. The gut epithelial tight junctions appear dilated in HNa compared to NNa and LNa in TEM. CONCLUSION Dietary sodium intake and fluid overload have a significant role in gut epithelial permeability in the CKD model.
Collapse
Affiliation(s)
- María de la Luz Villela-Torres
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - María-Del-Carmen Prado-Uribe
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marcela Ávila Díaz
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Héctor Quezada Pablo
- Immunnology and Proteomics Research Lab, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Elizabeth Soria-Castro
- Cardiovascular Biomedicine Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Nuria Esturau Escofet
- Physical Chemistry Department, Laboratorio Universitario de Resonancia Magnética Nuclear, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Ramón Paniagua
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
2
|
Nakano T, Watanabe H, Imafuku T, Tokumaru K, Fujita I, Arimura N, Maeda H, Tanaka M, Matsushita K, Fukagawa M, Maruyama T. Indoxyl Sulfate Contributes to mTORC1-Induced Renal Fibrosis via The OAT/NADPH Oxidase/ROS Pathway. Toxins (Basel) 2021; 13:toxins13120909. [PMID: 34941746 PMCID: PMC8706756 DOI: 10.3390/toxins13120909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Activation of mTORC1 (mechanistic target of rapamycin complex 1) in renal tissue has been reported in chronic kidney disease (CKD)-induced renal fibrosis. However, the molecular mechanisms responsible for activating mTORC1 in CKD pathology are not well understood. The purpose of this study was to identify the uremic toxin involved in mTORC1-induced renal fibrosis. Among the seven protein-bound uremic toxins, only indoxyl sulfate (IS) caused significant activation of mTORC1 in human kidney 2 cells (HK-2 cells). This IS-induced mTORC1 activation was inhibited in the presence of an organic anion transporter inhibitor, a NADPH oxidase inhibitor, and an antioxidant. IS also induced epithelial–mesenchymal transition of tubular epithelial cells (HK-2 cells), differentiation of fibroblasts into myofibroblasts (NRK-49F cells), and inflammatory response of macrophages (THP-1 cells), which are associated with renal fibrosis, and these effects were inhibited in the presence of rapamycin (mTORC1 inhibitor). In in vivo experiments, IS overload was found to activate mTORC1 in the mouse kidney. The administration of AST-120 or rapamycin targeted to IS or mTORC1 ameliorated renal fibrosis in Adenine-induced CKD mice. The findings reported herein indicate that IS activates mTORC1, which then contributes to renal fibrosis. Therapeutic interventions targeting IS and mTORC1 could be effective against renal fibrosis in CKD.
Collapse
Affiliation(s)
- Takehiro Nakano
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
- Correspondence: ; Tel.: +81-96-371-4855
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Kai Tokumaru
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Issei Fujita
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Nanaka Arimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto 8614112, Japan; (M.T.); (K.M.)
| | - Kazutaka Matsushita
- Department of Nephrology, Akebono Clinic, Kumamoto 8614112, Japan; (M.T.); (K.M.)
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa 2591193, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| |
Collapse
|
3
|
The protein-bound uremic toxin p-cresyl-sulfate promotes intracellular ROS production and lipid peroxidation in 3T3-L1 adipose cells. Biochimie 2021; 189:137-143. [PMID: 34217821 DOI: 10.1016/j.biochi.2021.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 11/23/2022]
Abstract
Patients with chronic kidney disease (CKD) often exhibit increased level of oxidative stress that contribute to the deterioration of renal function and uremic complications. White adipose tissue (WAT) has been recognized as a major site of production of radical oxygen species (ROS) in the context of metabolic diseases. This study was designed to decipher whether the protein bound uremic toxin p-cresyl-sulfate (p-CS) could contribute to ROS production in WAT and promote oxidative stress. Mouse 3T3-L1 adipocytes were incubated for 2 h in culture medium containing 212 μM p-CS, a concentration chosen to mimic levels encountered in end stage renal disease patients or KCl as a control and intracellular ROS production was measured using the fluorescent probe 5-6-carboxy-2',7'-dichlorodihydrofluorescein diacetate. Oxidative insult was estimated by the measurement of malondialdehyde (MDA) content and glutathione content. The effects of probenecid (1 mM) a potent inhibitor of organic anion transporter, apocynin (1 mM) an inhibitor of NADPH oxidase or common antioxidants such as α-tocopherol (2.5 μM), ascorbate (200 μM), and N-acetylcysteine (500 μM) were further evaluated. p-CS triggered a striking increase in ROS production (+228%, p < 0.01), in MDA content (+214%, p < 0.005) and a decrease in glutathione (-47%, P < 0.01). Pre-treatment of cells with probenecid, apocynin or antioxidants prevented the p-CS induced ROS production and oxidative insults. These results suggest that in uremic state, the intracellular accumulation of p-CS in adipose cells could contribute, through an activation of NADPH oxidase, to the redox imbalance often reported in CKD patients.
Collapse
|
4
|
Zhou X, Ulaszewska MM, De Gobba C, Rinnan Å, Poulsen MW, Chen J, Mattivi F, Hedegaard RV, Skibsted LH, Dragsted LO. New Advanced Glycation End Products Observed in Rat Urine by Untargeted Metabolomics after Feeding with Heat-Treated Skimmed Milk Powder. Mol Nutr Food Res 2021; 65:e2001049. [PMID: 33559951 DOI: 10.1002/mnfr.202001049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Indexed: 12/28/2022]
Abstract
SCOPE Milk powder is commonly consumed throughout the world. However, advanced glycation end products (AGEs) will form in milk powder during thermal processing and long-term storage. This study aimed to identify such compounds with potential as new urinary biomarkers of intake of heat-treated skimmed milk powder (HSMP). METHODS AND RESULTS A parallel study is performed with different dosages of HSMP as well as hydrolyzed HSMP and untreated skimmed milk powder (SMP) in 36 rats. The 24-h urine samples on day 7 or 8 are collected and profiled by untargeted UPLC-Qtof-MS metabolomics. Statistical analysis revealed 25 metabolites differentiating SMP and HSMP; nineteen of these structures are proposed as lysine- and arginine-derived AGEs, and heterocyclic compounds. CONCLUSION These metabolites may potentially serve as biomarkers of food intake pending further validation to assess intakes of heat-processed dairy foods and thus help to elucidate the effects of HSMP consumption or dietary AGEs on human health.
Collapse
Affiliation(s)
- Xiaomin Zhou
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Maria M Ulaszewska
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
- Center for Omics Sciences, Proteomics and Metabolomics Facility - ProMeFa, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristian De Gobba
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, 1958, Denmark
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Åsmund Rinnan
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Malene W Poulsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy
- Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Rikke Vingborg Hedegaard
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Leif Horsfelt Skibsted
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, 1958, Denmark
| |
Collapse
|
5
|
Indoxyl Sulfate Contributes to Adipose Tissue Inflammation through the Activation of NADPH Oxidase. Toxins (Basel) 2020; 12:toxins12080502. [PMID: 32764271 PMCID: PMC7472142 DOI: 10.3390/toxins12080502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue inflammation appears to be a risk factor for the progression of chronic kidney disease (CKD), but the effect of CKD on adipose tissue inflammation is poorly understood. The purpose of this study was to clarify the involvement of uremic toxins (indoxyl sulfate (IS), 3-indoleacetic acid, p-cresyl sulfate and kynurenic acid) on CKD-induced adipose tissue inflammation. IS induces monocyte chemoattractant protein-1 (MCP-1) expression and reactive oxygen species (ROS) production in the differentiated 3T3L-1 adipocyte. An organic anion transporter (OAT) inhibitor, an NADPH oxidase inhibitor or an antioxidant suppresses the IS-induced MCP-1 expression and ROS production, suggesting the OAT/NADPH oxidase/ROS pathway is involved in the action of IS. Co-culturing 3T3L-1 adipocytes and mouse macrophage cells showed incubating adipocytes with IS increased macrophage infiltration. An IS-overload in healthy mice increased IS levels, oxidative stress and MCP-1 expression in epididymal adipose tissue compared to unloaded mice. Using 5/6-nephrectomized mice, the administration of AST-120 suppressed oxidative stress and the expression of MCP-1, F4/80 and TNF-α in epididymal adipose tissue. These collective data suggest IS could be a therapeutic target for the CKD-related inflammatory response in adipose tissue, and that AST-120 could be useful for the treatment of IS-induced adipose tissue inflammation.
Collapse
|
6
|
Kwon YD, Jeon MH, Park NK, Seo JK, Son J, Ryu YH, Hong SY, Chun JH. Synthesis of 18F-Labeled Aryl Fluorosulfates via Nucleophilic Radiofluorination. Org Lett 2020; 22:5511-5516. [PMID: 32589035 DOI: 10.1021/acs.orglett.0c01868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfuryl fluoride gas is a key reagent for SO2F transfer. However, conventional SO2F transfer reactions have limited 18F-radiochemistry translation, due to the inaccessibility of gaseous [18F]SO2F2. Herein, we report the first SO2F2-free synthesis of aryl [18F]fluorosulfates from both phenolic and isolated aryl imidazylate precursors with cyclotron-produced 18F-. The radiochemical yields ranged from moderate to good with excellent functional group tolerance. The reliability of our approach was validated by the automated radiosynthesis of 4-acetamidophenyl [18F]fluorosulfate.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Ho Jeon
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nam Kyu Park
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung You Hong
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Abe T, Onoda M, Matsuura T, Sugimura J, Obara W, Sasaki N, Kato T, Tatsumi K, Maruyama T. Evaluation of a new measurement method of indoxyl sulfate in hemodialysis patients. Ther Apher Dial 2020; 25:44-49. [PMID: 32281288 DOI: 10.1111/1744-9987.13500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 11/29/2022]
Abstract
Indoxyl sulfate (IS) is related to the development of cardiovascular disease and total mortality in dialysis patients. High-performance liquid chromatography (HPLC) is the conventional measurement approach. However, the HPLC method is difficult to perform in real time. Recently, the IS Assay Kit "NIPRO", which enables the measuring of total IS by the enzyme method, was developed. This new reagent allows the easy and quick measurement of many samples using the automatic biochemical analyzer. Moreover, it was reported that it demonstrated satisfactory analytical performance. If this enzyme method is useful for measuring IS in hemodialysis, we can expect that the mechanism in which the IS effects adversely on a body as uremic toxins will be clarified. However, the enzyme method is more easily influenced by other coexisting substances. In this study, we have assessed on how the uremic toxins and anticoagulation effect on this new reagent and evaluate whether it can be put into practice effectively for hemodialysis patients. For the enzyme method, accuracy, simultaneous repeatability, linearity, limit of detection, influence of coexisting materials, and correlation with the HPLC method were examined. Accuracy and simultaneous repeatability were satisfactory, and linearity was good. The limit of detection was acceptable, and there was no influence of coexisting materials. With regard to the correlation, the regression equation was y = 0.947X + 7.987 and the correlation coefficient (r) was 0.972. This new reagent showed sufficient fundamental performance and had a good correlation with the conventional HPLC method for assessing the plasma of dialysis patients.
Collapse
Affiliation(s)
- Takaya Abe
- Department of Urology, Iwate Medical University, School of Medicine, Morioka, Japan
| | - Mitsutaka Onoda
- Department of Urology, Iwate Medical University, School of Medicine, Morioka, Japan
| | - Tomohiko Matsuura
- Department of Urology, Iwate Medical University, School of Medicine, Morioka, Japan
| | - Jun Sugimura
- Department of Urology, Iwate Medical University, School of Medicine, Morioka, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University, School of Medicine, Morioka, Japan
| | - Nariyuki Sasaki
- Dialysis Center, Seitetsu Memorial Hospital, Kamaishi, Japan
| | - Tetsuo Kato
- Dialysis Center, Seitetsu Memorial Hospital, Kamaishi, Japan
| | - Kenta Tatsumi
- Department III, Research & Development Laboratory, Medical Technology for Planning, Development & Marketing, Nipro Corporation, Kusatsushi, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Kumamoto University, Graduate School of Pharmaceutical Sciences, School of Pharmacy, Kumamoto, Japan
| |
Collapse
|
8
|
Rodrigues SD, Santos SS, Meireles T, Romero N, Glorieux G, Pecoits-Filho R, Zhang DD, Nakao LS. Uremic toxins promote accumulation of oxidized protein and increased sensitivity to hydrogen peroxide in endothelial cells by impairing the autophagic flux. Biochem Biophys Res Commun 2019; 523:123-129. [PMID: 31837804 DOI: 10.1016/j.bbrc.2019.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/05/2019] [Indexed: 01/12/2023]
Abstract
Chronic kidney disease (CKD) is associated with high mortality rates, mainly due to cardiovascular diseases (CVD). Uremia has been considered a relevant risk factor for CVD in CKD patients, since uremic toxins (UTs) promote systemic and vascular inflammation, oxidative stress and senescence. Here, we demonstrate that uremic toxins indoxyl sulfate (IxS), p-cresyl sulfate (pCS) and indole acetic acid (IAA) are incorporated by human endothelial cells and inhibit the autophagic flux, demonstrated by cellular p62 accumulation. Moreover, isolated and mixed UTs impair the lysosomal stage of autophagy, as determined by cell imaging of the mRFP-GFP-LC3 protein. Endothelial cells exposed to UTs display accumulation of carbonylated proteins and increased sensitivity to hydrogen peroxide. Rapamycin, an autophagy activator which induces both autophagosome formation and clearance, prevented these effects. Collectively, our findings demonstrate that accumulation of oxidized proteins and enhanced cell sensitivity to hydrogen peroxide are consequences of impaired autophagic flux. These data provide evidence that UTs-induced impaired autophagy may be a novel contributor to endothelial dysfunction.
Collapse
Affiliation(s)
- Silvia D Rodrigues
- Department of Basic Pathology, Universidade Federal do Paraná, 81531-980, Curitiba, Brazil
| | - Sabrina S Santos
- Department of Basic Pathology, Universidade Federal do Paraná, 81531-980, Curitiba, Brazil
| | - Tassiana Meireles
- Department of Basic Pathology, Universidade Federal do Paraná, 81531-980, Curitiba, Brazil
| | - Natalia Romero
- Cell Analysis Division, Agilent Technologies, 02421, Lexington, MA, USA
| | - Griet Glorieux
- Department of Nephrology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Roberto Pecoits-Filho
- Center for Health and Biological Sciences, Pontific Catholic University of Paraná, 80215-901, Curitiba, Brazil
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, 85721, Tucson, AZ, USA
| | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal do Paraná, 81531-980, Curitiba, Brazil.
| |
Collapse
|
9
|
Unambiguous Characterization of p-Cresyl Sulfate, a Protein-Bound Uremic Toxin, as Biomarker of Heart and Kidney Disease. Molecules 2019; 24:molecules24203704. [PMID: 31618977 PMCID: PMC6832250 DOI: 10.3390/molecules24203704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/01/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022] Open
Abstract
p-Cresyl sulfate is one of the bound uremic toxins whose level increases in the sera of patients with the severity of chronic kidney disease and is therefore used as a standard for clinical investigations. Our first attempts to obtain p-cresyl sulfate led exclusively to the product of sulfonation of the aromatic ring instead of sulfation on the OH moiety. Nevertheless, this initial discouraging result allowed us to handle both p-cresyl sulfate and 2-hydroxy-5-methylbenzenesulfonic acid obtained by different synthetic pathways. Interestingly, the comparison between the two isomers pointed out that the two molecules show the same fragmentation pattern and are indistinguishable by mass spectrometry. They cannot be separated on several commercially available columns. The only difference between the two compounds is a 10-fold higher ionization yield under negative ion electrospray ionization. NMR spectral studies definitely confirmed the different molecular structures. We present here an unambiguous biomimetic synthetic route for p-cresyl sulfate and the spectroscopic characterization of both the compounds by nuclear magnetic resonance and mass spectrometry.
Collapse
|
10
|
Vollmer T, Ljungberg B, Jankowski V, Jankowski J, Glorieux G, Stegmayr BG. An in-vitro assay using human spermatozoa to detect toxicity of biologically active substances. Sci Rep 2019; 9:14525. [PMID: 31601841 PMCID: PMC6787250 DOI: 10.1038/s41598-019-50929-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Identifying the key toxic players within an in-vivo toxic syndrome is crucial to develop targeted therapies. Here, we established a novel method that characterizes the effect of single substances by means of an ex-vivo incubation set-up. We found that primary human spermatozoa elicit a distinct motile response on a (uremic) toxic milieu. Specifically, this approach describes the influence of a bulk toxic environment (uremia) as well as single substances (uremic toxins) by real-time analyzing motile cellular behavior. We established the human spermatozoa-based toxicity testing (HSTT) for detecting single substance-induced toxicity to be used as a screening tool to identify in-vivo toxins. Further, we propose an application of the HSTT as a method of clinical use to evaluate toxin-removing interventions (hemodialysis).
Collapse
Affiliation(s)
- Tino Vollmer
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden. .,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany. .,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin-Brandenburg School for Regenerative Therapies (BSRT) & Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umea University, Umea, Sweden
| | - Vera Jankowski
- Institute for Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Cardiovascular Research, University Hospital, RWTH Aachen University, Aachen, Germany.,School for Cardiovascular Diseases, University of Maastricht, Maastricht, The Netherlands
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Bernd G Stegmayr
- Department of Public Health and Clinical Medicine, Umea University, Umea, Sweden
| |
Collapse
|
11
|
Contribution of the uremic milieu to an increased pro-inflammatory monocytic phenotype in chronic kidney disease. Sci Rep 2019; 9:10236. [PMID: 31308443 PMCID: PMC6629661 DOI: 10.1038/s41598-019-46724-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023] Open
Abstract
Intermediate (CD14++CD16+) monocytes have important pro-inflammatory and atherogenic features and are increased in patients with chronic kidney disease (CKD). The present study aims to elucidate the role of the uremic milieu and of platelet activation in monocyte differentiation. Monocyte subtypes were analyzed in CKD patients (n = 193) and healthy controls (n = 27). Blood from healthy controls (Ctrl; n = 8) and hemodialysis patients (HD; n = 8) was centrifuged, and plasma (pl) was exchanged between Ctrl and HD (Ctrlcells/HDpl and HDcells/Ctrlpl) or reconstituted as original (Ctrlsham and HDsham) and incubated for 24 h (T24). Monocyte differentiation and platelet aggregation to monocytes (MPA) was assessed by flow cytometry. Especially, a higher proportion of CD14++CD16+ monocytes was found in hemodialysis (HD) patients (p < 0.01). In plasma exchange experiments, Ctrl cells/HD pl T24 showed an increased percentage of CD14++CD16+ monocytes versus Ctrl sham (33.7% ± 15 vs. 15.7% ± 9.6; P < 0.005), comparable to the level of CD14++CD16+ monocytes in the HD sham condition. The percentage of CD14++CD16+ monocytes was lowered by suspending HD cells in Ctrl pl (18.4% ± 7.8 vs. 36.7% ± 15 in HD sham; P < 0.005) reaching the level of the Ctrl sham condition (15.7% ± 9.6). A mixture of uremic sulfates increased CD14++CD16+ monocytes compared to control (19.8 ± 9.6% vs. 15.8 ± 10.9%; P < 0.05), paralleled by a rise MPA. Blocking MPA by abciximab, a potential therapeutic strategy, or anti-CD62P did not inhibit differentiation towards the CD14++CD16+ monocytes. In conclusion, in the present cohort, CD14++CD16+ monocytes are especially increased in HD patients and this can at least in part be attributed to the presence of the uremic milieu, with uremic sulfates inducing a reversible shift towards pro-inflammatory CD14++CD16+ monocytes.
Collapse
|
12
|
Sueyoshi M, Fukunaga M, Mei M, Nakajima A, Tanaka G, Murase T, Narita Y, Hirata S, Kadowaki D. Effects of lactulose on renal function and gut microbiota in adenine-induced chronic kidney disease rats. Clin Exp Nephrol 2019; 23:908-919. [PMID: 30895529 PMCID: PMC6555783 DOI: 10.1007/s10157-019-01727-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/10/2019] [Indexed: 01/23/2023]
Abstract
Background Constipation is frequently observed in patients with chronic kidney disease (CKD). Lactulose is expected to improve the intestinal environment by stimulating bowel movements as a disaccharide laxative and prebiotic. We studied the effect of lactulose on renal function in adenine-induced CKD rats and monitored uremic toxins and gut microbiota. Methods Wistar/ST male rats (10-week-old) were fed 0.75% adenine-containing diet for 3 weeks to induce CKD. Then, they were divided into three groups and fed as follows: control, normal diet; and 3.0- and 7.5-Lac, 3.0% and 7.5% lactulose-containing diets, respectively, for 4 weeks. Normal diet group was fed normal diet for 7 weeks. The rats were observed for parameters including renal function, uremic toxins, and gut microbiota. Results The control group showed significantly higher serum creatinine (sCr) and blood urea nitrogen (BUN) 3 weeks after adenine feeding than at baseline, with a 8.5-fold increase in serum indoxyl sulfate (IS). After switching to 4 weeks of normal diet following adenine feeding, the sCr and BUN in control group remained high with a further increase in serum IS. In addition, tubulointerstitial fibrosis area was increased in control group. On the other hand, 3.0- and 7.5-Lac groups improved sCr and BUN levels, and suppressed tubulointerstitial fibrosis, suggesting preventing of CKD progression by lactulose. Lac groups also lowered level of serum IS and proportions of gut microbiota producing IS precursor. Conclusion Lactulose modifies gut microbiota and ameliorates CKD progression by suppressing uremic toxin production.
Collapse
Affiliation(s)
- Miyu Sueyoshi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masaki Fukunaga
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mizue Mei
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Atsushi Nakajima
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd, Mie, Japan
| | - Gaku Tanaka
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd, Mie, Japan
| | - Takayo Murase
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd, Mie, Japan
| | - Yuki Narita
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Hirata
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Daisuke Kadowaki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| |
Collapse
|
13
|
Acid strength measurements of Amberlyst 15 resin, p-xylene-2-sulfonic acid and chlorosulfonic and sulfuric acid treated SiO2, Al2O3, TiO2 and MgO. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01551-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Maciel RAP, Cunha RS, Busato V, Franco CRC, Gregório PC, Dolenga CJR, Nakao LS, Massy ZA, Boullier A, Pecoits-Filho R, Stinghen AEM. Uremia Impacts VE-Cadherin and ZO-1 Expression in Human Endothelial Cell-to-Cell Junctions. Toxins (Basel) 2018; 10:toxins10100404. [PMID: 30301260 PMCID: PMC6215219 DOI: 10.3390/toxins10100404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/16/2018] [Accepted: 09/29/2018] [Indexed: 12/16/2022] Open
Abstract
Endothelial dysfunction in uremia can result in cell-to-cell junction loss and increased permeability, contributing to cardiovascular diseases (CVD) development. This study evaluated the impact of the uremic milieu on endothelial morphology and cell junction’s proteins. We evaluated (i) serum levels of inflammatory biomarkers in a cohort of chronic kidney disease (CKD) patients and the expression of VE-cadherin and Zonula Occludens-1 (ZO-1) junction proteins on endothelial cells (ECs) of arteries removed from CKD patients during renal transplant; (ii) ECs morphology in vitro under different uremic conditions, and (iii) the impact of uremic toxins p-cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) as well as of total uremic serum on VE-cadherin and ZO-1 gene and protein expression in cultured ECs. We found that the uremic arteries had lost their intact and continuous endothelial morphology, with a reduction in VE-cadherin and ZO-1 expression. In cultured ECs, both VE-cadherin and ZO-1 protein expression decreased, mainly after exposure to Pi and uremic serum groups. VE-cadherin mRNA expression was reduced while ZO-1 was increased after exposure to PCS, IS, Pi, and uremic serum. Our findings show that uremia alters cell-to-cell junctions leading to an increased endothelial damage. This gives a new perspective regarding the pathophysiological role of uremia in intercellular junctions and opens new avenues to improve cardiovascular outcomes in CKD patients.
Collapse
Affiliation(s)
- Rayana A P Maciel
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Regiane S Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Valentina Busato
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Célia R C Franco
- Cell Biology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Paulo C Gregório
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Carla J R Dolenga
- Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Lia S Nakao
- Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, APHP, Boulogne-Billancourt, 92100 Paris, France and Inserm U1018, Team 5, CESP, UVSQ, Paris-Saclay University, 94800 Villejuif, France.
| | - Agnès Boullier
- Universitè de Picardie Jules Verne, MP3CV and CHU d'Amiens, 80025 Amiens, France.
| | - Roberto Pecoits-Filho
- Pontifícia Universidade Católica do Paraná, School of Medicine, Curitiba 80215-901, Brazil.
| | - Andréa E M Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| |
Collapse
|
15
|
Hoibian E, Florens N, Koppe L, Vidal H, Soulage CO. Distal Colon Motor Dysfunction in Mice with Chronic Kidney Disease: Putative Role of Uremic Toxins. Toxins (Basel) 2018; 10:toxins10050204. [PMID: 29772737 PMCID: PMC5983260 DOI: 10.3390/toxins10050204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
Although gastrointestinal complications are a common feature of patients with chronic kidney disease (CKD), the impact of uremia on bowel motility remains poorly understood. The present study was, therefore, designed to investigate the impact of uremia on gut motility. Kidney failure was induced in mice by chemical nephrectomy using an adenine diet (0.25% w/w). Gastrointestinal transit time and colon motility were explored in vivo and ex vivo. Colons from control mice were incubated with uremic plasma or uremic toxins (urea, indoxyl-sulfate or p-cresyl-sulfate) at concentrations encountered in patients with end-stage renal disease. Mice fed an adenine diet for 3 weeks exhibited a 3-fold increase in plasma urea (p < 0.001) evidencing kidney failure. The median gastrointestinal transit time was doubled (1.8-fold, p < 0.001) while a reduction in colonic propulsive motility was observed in CKD mice (3-fold, p < 0.001). Colon from CKD mice exhibited an abnormal pattern of contraction associated with a blunted maximal force of contraction. Control colons incubated with plasma from hemodialysis patients exhibited a blunted level of maximal contraction (p < 0.01). Incubation with urea did not elicit any difference but incubation with indoxyl-sulfate or p-cresyl-sulfate decreased the maximal force of contraction (−66% and −55%, respectively. p < 0.01). Taken together, these data suggest that uremia impairs colon motility probably through the retention of uremic toxins. Colon dysmotility might contribute to the gastrointestinal symptoms often reported in patients with CKD.
Collapse
Affiliation(s)
- Elsa Hoibian
- Univ. Lyon, CarMeN lab, INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
| | - Nans Florens
- Univ. Lyon, CarMeN lab, INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
- Department of Nephrology, Hospices Civils de Lyon, Hôpital Edouard Herriot, F-69437 Lyon, France.
| | - Laetitia Koppe
- Univ. Lyon, CarMeN lab, INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, F-69495 Pierre-Bénite, France.
| | - Hubert Vidal
- Univ. Lyon, CarMeN lab, INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
| | - Christophe O Soulage
- Univ. Lyon, CarMeN lab, INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
| |
Collapse
|
16
|
Yi D, Monteiro EB, Chambert S, Soula HA, Daleprane JB, Soulage CO. Determination of the binding properties of p-cresyl glucuronide to human serum albumin. Biochimie 2018; 150:1-7. [PMID: 29705133 DOI: 10.1016/j.biochi.2018.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
p-Cresyl glucuronide (p-CG) is a by-product of tyrosine metabolism that accumulates in patients with end-stage renal disease. p-CG binding to human serum albumin in physiological conditions (37 °C, pH 7.40) was studied by ultrafiltration (MWCO 10 kDa) and data were analyzed assuming one binding site. The estimated value of the association constant was 2.77 × 103 M-1 and a maximal stoichiometry of 3.80 mol per mole. At a concentration relevant for end-stage renal patients, p-CG was 23% bound to albumin. Competition experiments, using fluorescent probes, demonstrated that p-CG did not bind to Sudlow's site I or site II. The p-CG did not interfere with the binding of p-cresyl-sulfate or indoxyl sulfate to serum albumin.
Collapse
Affiliation(s)
- Dan Yi
- Univ. Lyon, CarMeN, INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| | - Elisa Bernardes Monteiro
- Univ. Lyon, CarMeN, INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France; Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Stéphane Chambert
- INSA Lyon, ICBMS, Laboratoire de Chimie Organique et Bioorganique, Bât J. Verne, 20 av A. Einstein, 69621 Villeurbanne Cedex, France
| | - Hédi A Soula
- Sorbonne Universités, Univ. Pierre et Marie Curie - Paris 6, 75006 Paris, France
| | - Julio B Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Christophe O Soulage
- Univ. Lyon, CarMeN, INSERM U1060, INRA U1397, INSA de Lyon, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
| |
Collapse
|
17
|
Tang WH, Wang CP, Yu TH, Tai PY, Liang SS, Hung WC, Wu CC, Huang SH, Lee YJ, Chen SC. Protein-bounded uremic toxin p-cresylsulfate induces vascular permeability alternations. Histochem Cell Biol 2018; 149:607-617. [PMID: 29589110 DOI: 10.1007/s00418-018-1662-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
The goal of the present studies is to investigate that the impact of p-cresylsulfate (PCS) on the endothelial barrier integrity via in situ exposure and systemic exposure. Vascular permeability changes induced by local injection of PCS were evaluated by the techniques of both Evans blue (EB) and India ink tracer. Rats were intravenously injected with EB or India ink followed by intradermal injections of various doses of PCS (0, 0.4, 2, 10 and 50 µmol/site) on rat back skins. At different time points, skin EB was extracted and quantified. The administration of India ink was used to demonstrate leaky microvessels. Skin PCS levels were also determined by liquid chromatography-mass spectrometry. We also investigated whether the increased endothelial leakage occurred in the aortic endothelium in rats treated with 5/6 nephrectomy and intraperitoneal injection of PCS 50 mg/kg/day for 4 weeks. The aortic endothelial integrity was evaluated by increased immunoglobulin G (IgG) leakage. High doses of PCS, but not lower doses, significantly induced vascular leakage as compared to saline injection and EB leakage exhibited in time-dependent manner. A time-correlated increase in leaky microvessels was detected in the tissues examined. The injected PCS declined with time and displayed an inverse relationship with vascular leakage. Chronic kidney disease (CKD) rats administered with PCS, compared to control rats, had significantly higher serum levels of PCS and apparent IgG deposition in the aortic intima. Increased endothelial leakage induced by PCS in skin microvessels and the aorta of CKD rats suggests that the PCS-induced endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Wei-Hua Tang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chao-Ping Wang
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan.,School of Medicine for International Students, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Teng-Hung Yu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Pei-Yang Tai
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chin Hung
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Cheng-Ching Wu
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Sung-Hao Huang
- Division of Cardiology, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
| | | | - Shih-Chieh Chen
- Department of Anatomy, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Koppe L, Alix PM, Croze ML, Chambert S, Vanholder R, Glorieux G, Fouque D, Soulage CO. p-Cresyl glucuronide is a major metabolite of p-cresol in mouse: in contrast to p-cresyl sulphate, p-cresyl glucuronide fails to promote insulin resistance. Nephrol Dial Transplant 2017; 32:2000-2009. [DOI: 10.1093/ndt/gfx089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/27/2017] [Indexed: 02/04/2023] Open
|
19
|
Favretto G, Souza LM, Gregório PC, Cunha RS, Maciel RAP, Sassaki GL, Toledo MG, Pecoits-Filho R, Souza WM, Stinghen AEM. Role of Organic Anion Transporters in the Uptake of Protein-Bound Uremic Toxins by Human Endothelial Cells and Monocyte Chemoattractant Protein-1 Expression. J Vasc Res 2017; 54:170-179. [PMID: 28472795 DOI: 10.1159/000468542] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/05/2017] [Indexed: 12/12/2022] Open
Abstract
Organic anion transporters (OATs) are involved in the uptake of uremic toxins such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS), which play a role in endothelial dysfunction in patients with chronic kidney diseases (CKD). In this study, we investigated the role of OAT1 and OAT3 in the uptake of PCS and IS into human endothelial cells. PCS was synthesized via p-cresol sulfation and characterized using analytical methods. The cells were treated with PCS and IS in the absence and presence of probenecid (Pb), an OAT inhibitor. Cell viability was assessed using the MTT assay. The absorbed toxins were analyzed using chromatography, OAT expression using immunocytochemistry and western blot, and monocyte chemoattractant protein-1 (MCP-1) expression using enzyme-linked immunosorbent assay. Cell viability decreased after toxin treatment in a dose-dependent manner. PCS and IS showed significant internalization after 60 min treatment, while no internalization was observed in the presence of Pb, suggesting that OATs are involved in the transport of both toxins. Immunocytochemistry and western blot demonstrated OAT1 and OAT3 expression in endothelial cells. MCP-1 expression increased after toxins treatment but decreased after Pb treatment. PCS and IS uptake were mediated by OATs, and OAT blockage could serve as a therapeutic strategy to inhibit MCP-1 expression.
Collapse
Affiliation(s)
- Giane Favretto
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
p-Cresyl sulfate affects the oxidative burst, phagocytosis process, and antigen presentation of monocyte-derived macrophages. Toxicol Lett 2016; 263:1-5. [PMID: 27760375 DOI: 10.1016/j.toxlet.2016.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/10/2016] [Accepted: 10/08/2016] [Indexed: 12/28/2022]
Abstract
Immune system dysfunction is a common condition in chronic kidney disease (CKD). The present study investigated the effect of p-Cresyl sulfate (pCS) on human cell line U937 monocyte-derived macrophages (MDM) activity. MDM (1×106 cells/mL) were incubated with pCS (10, 25, or 50μg/mL), with or without lipopolysaccharide (LPS; 25ng/mL) and then evaluated NO production, phagocytosis and antigen-presenting molecules expression (HLA-ABC, HLA-DR, CD80 and CD86). All analyses were performed by flow cytometry. All pCS concentrations were able to increase NO production (49±12.1%, 39.8±7.75%, 43.7±11.9%, respectively) compared to untreated cells (4.35±3.34%) after 6h incubation but only the lowest concentration increased this production after 12h (82.9±8.6%, 61±7.2%, 40.8±11.7%). Combined with LPS, the same results were observed. Regarding to phagocytosis, all concentrations were able to induce bead engulfment (35.4±2.71%, 30±3.04%, 23.28±4.58%). In addition, pCS (50μg/mL) was able to increase HLA-ABC and CD80 expression, showed a slight effect on HLA-DR expression and, no difference in basal CD86 levels. pCS can induce an increased oxidative burst and phagocytosis by human macrophages while no modulation of HLA-DR or CD86 expression was induced. Together, these results suggest that pCS induces macrophage activation but interfere in antigen processing, leading to a failure in adaptive immune response in CKD.
Collapse
|
21
|
Pavlenko D, van Geffen E, van Steenbergen MJ, Glorieux G, Vanholder R, Gerritsen KGF, Stamatialis D. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma. Sci Rep 2016; 6:34429. [PMID: 27703258 PMCID: PMC5050520 DOI: 10.1038/srep34429] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 11/09/2022] Open
Abstract
Hemodialysis is a widely available and well-established treatment for patients with End Stage Renal Disease (ESRD). However, although life-sustaining, patient mortality rates are very high. Several recent studies corroborated the link between dialysis patients' outcomes and elevated levels of protein-bound uremic toxins (PBUT) that are poorly removed by conventional hemodialysis. Therefore, new treatments are needed to improve their removal. Recently, our group showed that the combination of dialysis and adsorption on one membrane, the mixed matrix membrane (MMM), can effectively remove those toxins from human plasma. However, these first MMMs were rather large in diameter and their mass transport characteristics needed improvement before application in the clinical setting. Therefore, in this study we developed a new generation of MMMs that have a smaller diameter and optimized characteristics offering superior ability in removing the PBUT indoxyl sulfate (IS) and p-cresyl sulfate (pCS) in comparison to first generation MMMs (30 and 125% respectively), as well as, a commercial dialysis membrane (more than 100% better removal).
Collapse
Affiliation(s)
- Denys Pavlenko
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Esmée van Geffen
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Mies J. van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Griet Glorieux
- Ghent University Hospital, Department of Internal Medicine, Nephrology Division, 9000 Ghent, Belgium
| | - Raymond Vanholder
- Ghent University Hospital, Department of Internal Medicine, Nephrology Division, 9000 Ghent, Belgium
| | - Karin G. F. Gerritsen
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
22
|
Han H, Chen Y, Zhu Z, Su X, Ni J, Du R, Zhang R, Jin W. p-Cresyl sulfate promotes the formation of atherosclerotic lesions and induces plaque instability by targeting vascular smooth muscle cells. Front Med 2016; 10:320-9. [PMID: 27527366 DOI: 10.1007/s11684-016-0463-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/12/2016] [Indexed: 12/17/2022]
Abstract
Coronary atherosclerosis is a major complication of chronic kidney disease. This condition contributes to the increased mortality in dialysis patients. p-Cresyl sulfate (PCS) is a prototype of protein-bound uremic toxins that cannot be efficiently removed through routine dialysis procedures. In the present study, ApoE(-/-) mice that underwent 5/6 nephrectomy were randomly divided into two groups, namely, vehicle-treated group (n = 20) and PCS-treated group (n = 20). Mice were sacrificed for en face and immunohistological analyses after 8 or 24 weeks of high-fat diet. Rat aortic vascular smooth muscle cells (VSMCs) were treated with phosphate buffer solution or 500 μmol/L PCS for in vitro evaluation. PCS-treated mice were observed to suffer increased atherosclerotic lesions after eight weeks of PCS administration. Moreover, 24 weeks of PCS administration also markedly increased the vulnerability index of aortic plaques. PCS was also observed to facilitate the migration and proliferation of VSMCs during the progression of the disease. Moreover, PCS disturbed the balance between matrix metalloproteinases and tissue inhibitor of metalloproteinases within the plaques. Thus, PCS played a vital role in promoting atherogenesis and disturbing the stability of formed plaques probably by targeting VSMCs.
Collapse
Affiliation(s)
- Hui Han
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanjia Chen
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengbin Zhu
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiuxiu Su
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingwei Ni
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Run Du
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ruiyan Zhang
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei Jin
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
de Loor H, Poesen R, De Leger W, Dehaen W, Augustijns P, Evenepoel P, Meijers B. A liquid chromatography – tandem mass spectrometry method to measure a selected panel of uremic retention solutes derived from endogenous and colonic microbial metabolism. Anal Chim Acta 2016; 936:149-56. [DOI: 10.1016/j.aca.2016.06.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 11/17/2022]
|
24
|
Enoki Y, Watanabe H, Arake R, Sugimoto R, Imafuku T, Tominaga Y, Ishima Y, Kotani S, Nakajima M, Tanaka M, Matsushita K, Fukagawa M, Otagiri M, Maruyama T. Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Sci Rep 2016; 6:32084. [PMID: 27549031 PMCID: PMC4994088 DOI: 10.1038/srep32084] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle atrophy, referred to as sarcopenia, is often observed in chronic kidney disease (CKD) patients, especially in patients who are undergoing hemodialysis. The purpose of this study was to determine whether uremic toxins are involved in CKD-related skeletal muscle atrophy. Among six protein-bound uremic toxins, indole containing compounds, indoxyl sulfate (IS) significantly inhibited proliferation and myotube formation in C2C12 myoblast cells. IS increased the factors related to skeletal muscle breakdown, such as reactive oxygen species (ROS) and inflammatory cytokines (TNF-α, IL-6 and TGF-β1) in C2C12 cells. IS also enhanced the production of muscle atrophy-related genes, myostatin and atrogin-1. These effects induced by IS were suppressed in the presence of an antioxidant or inhibitors of the organic anion transporter and aryl hydrocarbon receptor. The administered IS was distributed to skeletal muscle and induced superoxide production in half-nephrectomized (1/2 Nx) mice. The chronic administration of IS significantly reduced the body weights accompanied by skeletal muscle weight loss. Similar to the in vitro data, IS induced the expression of myostatin and atrogin-1 in addition to increasing the production of inflammatory cytokines by enhancing oxidative stress in skeletal muscle. These data suggest that IS has the potential to accelerate skeletal muscle atrophy by inducing oxidative stress-mediated myostatin and atrogin-1 expression.
Collapse
Affiliation(s)
- Yuki Enoki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Riho Arake
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Ryusei Sugimoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yuna Tominaga
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto, Japan
| | | | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Japan.,Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
25
|
Han H, Chen Y, Zhu J, Ni J, Sun J, Zhang R. Atorvastatin attenuates p‑cresyl sulfate‑induced atherogenesis and plaque instability in ApoE knockout mice. Mol Med Rep 2016; 14:3122-8. [PMID: 27574007 PMCID: PMC5042741 DOI: 10.3892/mmr.2016.5626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
p-cresyl sulfate (PCS) is a protein-bound uremic toxin retained in the blood of patients with chronic kidney disease (CKD) As atherosclerosis is a primary cardiovascular complication for patients with CKD, the aim of the present study was to investigate the mechanisms underlying the aggravation of atherosclerosis by PCS. In addition, the effect of atorvastatin was assessed in reversing the effects of PCS. PCS was revealed to promote the initiation and progression of atherosclerosis. Following treatment with atorvastatin, apolipoprotein E knockout mice demonstrated a reduction in PCS-induced atherogenesis and plaque vulnerability. In addition, atorvastatin decreased the protein expression levels of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1, and the interaction between leukocytes and endothelia. The plasma lipid profiles of mice were not significantly affected by gavage of low-dose atorvastatin. The results of the present study indicate that PCS promotes plaque growth and instability by enhancing leukocyte-endothelium interaction, and that these effects may be attenuated by atorvastatin treatment.
Collapse
Affiliation(s)
- Hui Han
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanjia Chen
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jinzhou Zhu
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jingwei Ni
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jiateng Sun
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ruiyan Zhang
- Department of Cardiology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
26
|
Poesen R, Evenepoel P, de Loor H, Kuypers D, Augustijns P, Meijers B. Metabolism, Protein Binding, and Renal Clearance of Microbiota-Derived p-Cresol in Patients with CKD. Clin J Am Soc Nephrol 2016; 11:1136-1144. [PMID: 27084876 PMCID: PMC4934829 DOI: 10.2215/cjn.00160116] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/25/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Colonic microbial metabolism substantially contributes to uremic retention solutes in CKD. p-Cresyl sulfate is the main representative of this group of solutes, relating to adverse outcomes. Other than sulfate conjugation, p-cresol is subjected to endogenous glucuronide conjugation. Whether the balance between sulfate and glucuronide conjugation is relevant in CKD is unexplored. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We prospectively followed 488 patients with CKD stages 1-5 (enrollment between November of 2005 and September of 2006; follow-up until December of 2010). Serum and urine levels of p-cresyl sulfate and p-cresyl glucuronide were measured using liquid chromatography-mass spectrometry. Total amount of microbial p-cresol was calculated by the sum of serum p-cresyl sulfate and p-cresyl glucuronide. Outcome analysis was performed for mortality and cardiovascular disease. RESULTS Serum p-cresyl sulfate was a median of 193.0-fold (interquartile range, 121.1-296.6) higher than serum p-cresyl glucuronide, with a significant correlation between eGFR and proportion of serum p-cresyl sulfate to glucuronide (rho=0.23; P=0.001). There was also a significant correlation between eGFR and proportion of 24-hour urinary excretion of p-cresyl sulfate to glucuronide (rho=0.32; P<0.001). Higher serum p-cresol and lower proportion of serum p-cresyl sulfate to glucuronide were jointly and significantly associated with mortality (hazard ratio per SD higher, 1.58; 95% confidence interval, 1.10 to 2.29; P=0.01 and hazard ratio, 0.65; 95% confidence interval, 0.47 to 0.89; P<0.01, respectively) and cardiovascular disease (hazard ratio, 1.68; 95% confidence interval, 1.27 to 2.22; P<0.001 and hazard ratio, 0.55; 95% confidence interval, 0.42 to 0.72; P<0.001, respectively) after adjustment for eGFR, Framingham risk factors, mineral bone metabolism markers, C-reactive protein, and albumin. CONCLUSIONS p-Cresol shows a preponderance of sulfate conjugation, although a relatively diminished sulfotransferase activity can be suggested in patients with advanced CKD. Along with total p-cresol burden, a relative shift from sulfate to glucuronide conjugation is independently associated with mortality and cardiovascular disease, warranting increased focus to the dynamic interplay between microbial and endogenous metabolism.
Collapse
Affiliation(s)
- Ruben Poesen
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium; and
| | - Pieter Evenepoel
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium; and
| | - Henriette de Loor
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium; and
| | - Dirk Kuypers
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium; and
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, University of Leuven, Leuven, Belgium
| | - Björn Meijers
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, Leuven, Belgium; and
| |
Collapse
|
27
|
Saldanha JF, Yi D, Stockler-Pinto MB, Soula HA, Chambert S, Fouque D, Mafra D, Soulage CO. Determination of the binding properties of the uremic toxin phenylacetic acid to human serum albumin. Biochimie 2016; 125:53-8. [PMID: 26945842 DOI: 10.1016/j.biochi.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
Uremic toxins are compounds normally excreted in urine that accumulate in patients with chronic kidney disease as a result of decreased renal clearance. Phenylacetic acid (PAA) has been identified as a new protein bound uremic toxin. The purpose of this study was to investigate in vitro the interaction between PAA and human serum albumin (HSA) at physiological and pathological concentrations. We used ultrafiltration to show that there is a single high-affinity binding site for PAA on HSA, with a binding constant on the order of 3.4 × 10(4) M(-1) and a maximal stoichiometry of 1.61 mol per mole. The PAA, at the concentration reported in end-stage renal patients, was 26% bound to albumin. Fluorescent probe competition experiments demonstrated that PAA did not bind to Sudlow's site I (in subdomain IIA) and only weakly bind to Sudlow's site II (in subdomain IIIA). The PAA showed no competition with other protein-bound uremic toxins such as p-cresyl-sulfate or indoxyl sulfate for binding to serum albumin. Our results provide evidence that human serum albumin can act as carrier protein for phenylacetic acid.
Collapse
Affiliation(s)
- Juliana F Saldanha
- Medical Sciences Graduate Program, Federal University Fluminense, Niteroi, Rio de Janeiro, Brazil
| | - Dan Yi
- Univ Lyon, INSA-Lyon, UMR 1060 INSERM, CarMeN, F-69621 Villeurbanne, France
| | - Milena B Stockler-Pinto
- Cardiovascular Sciences Graduate Program, Federal University Fluminense, Niteroi, Rio de Janeiro, Brazil
| | - Hédi A Soula
- Univ Lyon, INSA-Lyon, UMR 1060 INSERM, CarMeN, F-69621 Villeurbanne, France
| | - Stéphane Chambert
- Univ Lyon, INSA-Lyon, UMR 5246 CNRS, ICBMS, F-69621 Villeurbanne, France
| | - Denis Fouque
- Univ Lyon, INSA-Lyon, UMR 1060 INSERM, CarMeN, F-69621 Villeurbanne, France; Department of Nephrology, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Denise Mafra
- Medical Sciences Graduate Program, Federal University Fluminense, Niteroi, Rio de Janeiro, Brazil; Cardiovascular Sciences Graduate Program, Federal University Fluminense, Niteroi, Rio de Janeiro, Brazil
| | | |
Collapse
|
28
|
Velenosi TJ, Hennop A, Feere DA, Tieu A, Kucey AS, Kyriacou P, McCuaig LE, Nevison SE, Kerr MA, Urquhart BL. Untargeted plasma and tissue metabolomics in rats with chronic kidney disease given AST-120. Sci Rep 2016; 6:22526. [PMID: 26932318 PMCID: PMC4773761 DOI: 10.1038/srep22526] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Chronic kidney disease (CKD) results in the accumulation of metabolic waste products that are normally cleared by the kidney, known as uremia. Many of these waste products are from bacteria metabolites in the gut. Accumulation of uremic toxins in plasma and tissue, as well as the gut-plasma-tissue metabolic axis are important for understanding pathophysiological mechanisms of comorbidities in CKD. In this study, an untargeted metabolomics approach was used to determine uremic toxin accumulation in plasma, liver, heart and kidney tissue in rats with adenine-induced CKD. Rats with CKD were also given AST-120, a spherical carbon adsorbent, to assess metabolic changes in plasma and tissues with the removal of gut-derived uremic toxins. AST-120 decreased >55% of metabolites that were increased in plasma, liver and heart tissue of rats with CKD. CKD was primarily defined by 8 gut-derived uremic toxins, which were significantly increased in plasma and all tissues. These metabolites were derived from aromatic amino acids and soy protein including: indoxyl sulfate, p-cresyl sulfate, hippuric acid, phenyl sulfate, pyrocatechol sulfate, 4-ethylphenyl sulfate, p-cresol glucuronide and equol 7-glucuronide. Our results highlight the importance of diet and gut-derived metabolites in the accumulation of uremic toxins and define the gut-plasma-tissue metabolic axis in CKD.
Collapse
Affiliation(s)
- Thomas J Velenosi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Anzel Hennop
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David A Feere
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Alvin Tieu
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew S Kucey
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Polydoros Kyriacou
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Laura E McCuaig
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephanie E Nevison
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael A Kerr
- Department of Chemistry, The University of Western Ontario, London, ON, Canada
| | - Bradley L Urquhart
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Lawson Health Research Institute, London, Ontario, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
29
|
Mutsaers HA, Caetano-Pinto P, Seegers AE, Dankers AC, van den Broek PH, Wetzels JF, van den Brand JA, van den Heuvel LP, Hoenderop JG, Wilmer MJ, Masereeuw R. Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology. Toxicol In Vitro 2015. [DOI: 10.1016/j.tiv.2015.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Gross P, Massy ZA, Henaut L, Boudot C, Cagnard J, March C, Kamel S, Drueke TB, Six I. Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J Cell Physiol 2015; 230:2927-35. [DOI: 10.1002/jcp.25018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 04/14/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Priscilla Gross
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
| | - Ziad A. Massy
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
- Division of Nephrology; Ambroise Paré University Hospital, AP-HP; Paris-Ile-de-France-Ouest University (UVSQ); Boulogne-Billancourt France
| | - Lucie Henaut
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
| | - Cédric Boudot
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
| | - Joanna Cagnard
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
| | - Cécilia March
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
| | - Saïd Kamel
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
| | - Tilman B. Drueke
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
| | - Isabelle Six
- INSERM Unit 1088; Jules Verne University of Picardie; Amiens France
| |
Collapse
|
31
|
Impact of the uremic milieu on the osteogenic potential of mesenchymal stem cells. PLoS One 2015; 10:e0116468. [PMID: 25635832 PMCID: PMC4312090 DOI: 10.1371/journal.pone.0116468] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/09/2014] [Indexed: 01/04/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogenesis, play a role in the balance of bone formation and resorption, but their functioning in uremia has not been well defined. To study the effects of the uremic milieu on osteogenic properties, we applied an in vitro assay culturing hMSCs in osteogenic medium supplemented with serum from healthy donors and from uremic patients on hemodialysis. Compared to control, serum from uremic patients induces, in hMSC cultures, a modification of several key regulators of bone remodeling, in particular a reduction of the ratio Receptor Activator of Nuclear factor Kappa B Receptor (RANKL) over osteoprotegerin, indicating an adaptive response of the system to favor osteogenesis over osteoclastosis. However, the levels of osteopontin, osteocalcin, and collagen type I, are increased in cell medium, while BMP-2, and alizarin red staining were decreased, pointing to a reduction of bone formation favoring resorption. Selected uremic toxins, such as p-cresylsulfate, p-cresylglucuronide, parathyroid hormone, indoxyl sulfate, asymmetric dimethylarginine, homocysteine, were able to mimic some of the effects of whole serum from uremic patients. Serum from cinacalcet-treated patients antagonizes these effects. Hydrogen sulfide (H2S) donors as well as hemodialysis treatment are able to induce beneficial effects. In conclusion, bone modifications in uremia are influenced by the capability of the uremic milieu to alter hMSC osteogenic differentiation. Cinacalcet, H2S donors and a hemodialysis session can ameliorate the hampered calcium deposition.
Collapse
|
32
|
Watanabe H, Miyamoto Y, Enoki Y, Ishima Y, Kadowaki D, Kotani S, Nakajima M, Tanaka M, Matsushita K, Mori Y, Kakuta T, Fukagawa M, Otagiri M, Maruyama T. p-Cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacol Res Perspect 2014; 3:e00092. [PMID: 25692011 PMCID: PMC4317224 DOI: 10.1002/prp2.92] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/22/2014] [Indexed: 01/19/2023] Open
Abstract
The major cause of death in patients with chronic kidney disease (CKD) is cardiovascular disease. Here, p-Cresyl sulfate (PCS), a uremic toxin, is considered to be a risk factor for cardiovascular disease in CKD. However, our understanding of the vascular toxicity induced by PCS and its mechanism is incomplete. The purpose of this study was to determine whether PCS enhances the production of reactive oxygen species (ROS) in vascular endothelial and smooth muscle cells, resulting in cytotoxicity. PCS exhibited pro-oxidant properties in human umbilical vein endothelial cells (HUVEC) and aortic smooth muscle cells (HASMC) by enhancing NADPH oxidase expression. PCS also up-regulates the mRNA levels and the protein secretion of monocyte chemotactic protein-1 (MCP-1) in HUVEC. In HASMC, PCS increased the mRNA levels of alkaline phosphatase (ALP), osteopontin (OPN), core-binding factor alpha 1, and ALP activity. The knockdown of Nox4, a subunit of NADPH oxidase, suppressed the cell toxicity induced by PCS. The vascular damage induced by PCS was largely suppressed in the presence of probenecid, an inhibitor of organic anion transporters (OAT). In PCS-overloaded 5/6-nephrectomized rats, plasma MCP-1 levels, OPN expression, and ALP activity of the aortic arch were increased, accompanied by the induction of Nox4 expression. Collectively, the vascular toxicity of PCS can be attributed to its intracellular accumulation via OAT, which results in an enhanced NADPH oxidase expression and increased ROS production. In conclusion, we found for the first time that PCS could play an important role in the development of cardiovascular disease by inducing vascular toxicity in the CKD condition.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto UniversityKumamoto, Japan
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto UniversityKumamoto, Japan
| | - Yohei Miyamoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto UniversityKumamoto, Japan
| | - Yuki Enoki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto UniversityKumamoto, Japan
| | - Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto UniversityKumamoto, Japan
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto UniversityKumamoto, Japan
| | - Daisuke Kadowaki
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto UniversityKumamoto, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto UniversityKumamoto, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto UniversityKumamoto, Japan
| | - Motoko Tanaka
- Department of Nephrology, Akebono ClinicKumamoto, Japan
| | | | - Yoshitaka Mori
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of MedicineKanagawa, Japan
| | - Takatoshi Kakuta
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of MedicineKanagawa, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of MedicineKanagawa, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo UniversityKumamoto, Japan
- DDS Research Institute, Sojo UniversityKumamoto, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto UniversityKumamoto, Japan
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto UniversityKumamoto, Japan
- Correspondence Toru Maruyama, Department of, Biopharmaceutics, Graduate School of, Pharmaceutical Sciences, Kumamoto, University, 5-1, Oe-honmachi, Chuo-ku,, Kumamoto 862-0973, Japan. Tel: +81-96-, 371-4150; Fax: +81-96-371-4153; E-mail:,
| |
Collapse
|
33
|
Ni J, Zhang W, Zhu Z, Zhu J, Du R, Jing Y, Lu L, Zhang R. In vivo kinetics of the uremic toxin p-cresyl sulfate in mice with variable renal function. Ther Apher Dial 2014; 18:637-42. [PMID: 25256665 DOI: 10.1111/1744-9987.12185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Uremic toxins such as p-cresyl sulfate (PCS) are associated with increased mortality for chronic kidney disease (CKD) patients, but in vivo PCS toxicity studies are limited due to the lack of a standard animal model. To establish such a model, we measured the pharmacokinetics of PCS in mice with variable renal function. Male Balb/c mice subjected to 5/6 nephrectomy (CRF), unilateral nephrectomy (UNX), or no surgery (controls) were given PCS (po, 50 mg/kg). Blood samples were collected over time and plasma PCS concentrations were measured. Over 4 h, PCS was significantly higher in the plasma of CRF mice (63.28 ± 2.76 mg/L), compared to UNX mice (3.11 ± 0.64 mg/L) and controls (0.39 ± 0.12 mg/L). The PCS half-life was greatest in CRF mice (12.07 ± 0.12 h), compared to 0.79 ± 0.04 h in UNX mice and 0.48 ± 0.02 h in control mice. However, the potential presence of additional uremic toxins along with PCS in CRF mice and rapid PCS clearance in control mice suggest that the UNX mouse would be a better PCS model to study toxicity.
Collapse
Affiliation(s)
- Jingwei Ni
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pletinck A, Glorieux G, Schepers E, Cohen G, Gondouin B, Van Landschoot M, Eloot S, Rops A, Van de Voorde J, De Vriese A, van der Vlag J, Brunet P, Van Biesen W, Vanholder R. Protein-bound uremic toxins stimulate crosstalk between leukocytes and vessel wall. J Am Soc Nephrol 2013; 24:1981-94. [PMID: 24009240 PMCID: PMC3839540 DOI: 10.1681/asn.2012030281] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 05/30/2013] [Indexed: 11/03/2022] Open
Abstract
Leukocyte activation and endothelial damage both contribute to cardiovascular disease, a major cause of morbidity and mortality in CKD. Experimental in vitro data link several protein-bound uremic retention solutes to the modulation of inflammatory stimuli, including endothelium and leukocyte responses and cardiovascular damage, corroborating observational in vivo data. However, the impact of these uremic toxins on the crosstalk between endothelium and leukocytes has not been assessed. This study evaluated the effects of acute and continuous exposure to uremic levels of indoxylsulfate (IS), p-cresylsulfate (pCS), and p-cresylglucuronide (pCG) on the recruitment of circulating leukocytes in the rat peritoneal vascular bed using intravital microscopy. Superfusion with IS induced strong leukocyte adhesion, enhanced extravasation, and interrupted blood flow, whereas pCS caused a rapid increase in leukocyte rolling. Superfusion with pCS and pCG combined caused impaired blood flow and vascular leakage but did not further enhance leukocyte rolling over pCS alone. Intravenous infusion with IS confirmed the superfusion results and caused shedding of heparan sulfate, pointing to disruption of the glycocalyx as the mechanism likely mediating IS-induced flow stagnation. These results provide the first clear in vivo evidence that IS, pCS, and pCG exert proinflammatory effects that contribute to vascular damage by stimulating crosstalk between leukocytes and vessels.
Collapse
Affiliation(s)
- Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Gerald Cohen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bertrand Gondouin
- Centre de Néphrologie et Transplantation Rénale, Assistance Publique-Hôpitaux de Marseille, Hôpital de La Conception, Marseille, France
| | - Maria Van Landschoot
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Sunny Eloot
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Angelique Rops
- Nephrology Research Laboratory, Nijmegen Centre for Molecular Life Sciences, Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - An De Vriese
- Renal Unit, Department of Internal Medicine, AZ Sint-Jan Brugge-Oostende AV, Brugge, Belgium
| | - Johan van der Vlag
- Nephrology Research Laboratory, Nijmegen Centre for Molecular Life Sciences, Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Philippe Brunet
- Centre de Néphrologie et Transplantation Rénale, Assistance Publique-Hôpitaux de Marseille, Hôpital de La Conception, Marseille, France
| | - Wim Van Biesen
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
35
|
Human organic anion transporters function as a high-capacity transporter for p-cresyl sulfate, a uremic toxin. Clin Exp Nephrol 2013; 18:814-20. [DOI: 10.1007/s10157-013-0902-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/21/2013] [Indexed: 01/25/2023]
|
36
|
Tanaka H, Iwasaki Y, Yamato H, Mori Y, Komaba H, Watanabe H, Maruyama T, Fukagawa M. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone 2013; 56:347-54. [PMID: 23851293 DOI: 10.1016/j.bone.2013.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/14/2013] [Accepted: 07/02/2013] [Indexed: 01/03/2023]
Abstract
Recent data suggest that several uremic toxins may contribute to the development of bone abnormalities in chronic kidney disease. p-Cresyl sulfate (PCS), the sulfate conjugate of p-cresol, is a protein-bound uremic toxin associated with the progression of chronic kidney disease, cardiovascular risk, and mortality. However, the effects of PCS on bone metabolism remain unclear. In the present study, we evaluated the toxic effects of PCS on primary mouse osteoblasts, compared with an extensively studied uremic toxin indoxyl sulfate (IS). Pre-treatment of osteoblasts with PCS at 0.125 mM and above significantly decreased parathyroid hormone (PTH)-induced cAMP production in a dose-dependent manner. PCS also induced a significant increase in intracellular production of reactive oxygen species (ROS) at 0.25 mM and above, but not at lower concentrations. PCS at 0.125 mM (a concentration that did not induce significant ROS increase) decreased cell viability by augmenting DNA fragmentation and reducing cell proliferation. Inhibition of JNK and p38 mitogen-activated protein kinase (MAPK) abolished the PCS-induced increase in DNA fragmentation and decrease in cAMP production in osteoblastic cells. Compared with PCS, IS induced ROS production at 0.05 mM but did not reduce cAMP production from 0.05 to 0.5 mM. IS induced decrease in cell viability and increase in DNA fragmentation at 0.5mM only. These results suggest that PCS damages osteoblastic cells through not only increasing ROS production but also activating JNK/p38 MAPKs, which is different from the mechanism of injury by IS. These damages of osteoblasts induced by PCS may play a critical role in impairing bone metabolism in patients with chronic kidney disease in whom PCS accumulates.
Collapse
Affiliation(s)
- Hisae Tanaka
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tijink MS, Wester M, Glorieux G, Gerritsen KG, Sun J, Swart PC, Borneman Z, Wessling M, Vanholder R, Joles JA, Stamatialis D. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma. Biomaterials 2013; 34:7819-28. [DOI: 10.1016/j.biomaterials.2013.07.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
38
|
Mutsaers HAM, Engelke UFH, Wilmer MJG, Wetzels JFM, Wevers RA, van den Heuvel LP, Hoenderop JG, Masereeuw R. Optimized metabolomic approach to identify uremic solutes in plasma of stage 3-4 chronic kidney disease patients. PLoS One 2013; 8:e71199. [PMID: 23936492 PMCID: PMC3732267 DOI: 10.1371/journal.pone.0071199] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/28/2013] [Indexed: 11/18/2022] Open
Abstract
Background Chronic kidney disease (CKD) is characterized by the progressive accumulation of various potential toxic solutes. Furthermore, uremic plasma is a complex mixture hampering accurate determination of uremic toxin levels and the identification of novel uremic solutes. Methods In this study, we applied 1H-nuclear magnetic resonance (NMR) spectroscopy, following three distinct deproteinization strategies, to determine differences in the plasma metabolic status of stage 3–4 CKD patients and healthy controls. Moreover, the human renal proximal tubule cell line (ciPTEC) was used to study the influence of newly indentified uremic solutes on renal phenotype and functionality. Results Protein removal via ultrafiltration and acetonitrile precipitation are complementary techniques and both are required to obtain a clear metabolome profile. This new approach, revealed that a total of 14 metabolites were elevated in uremic plasma. In addition to confirming the retention of several previously identified uremic toxins, including p-cresyl sulphate, two novel uremic retentions solutes were detected, namely dimethyl sulphone (DMSO2) and 2-hydroxyisobutyric acid (2-HIBA). Our results show that these metabolites accumulate in non-dialysis CKD patients from 9±7 µM (control) to 51±29 µM and from 7 (0–9) µM (control) to 32±15 µM, respectively. Furthermore, exposure of ciPTEC to clinically relevant concentrations of both solutes resulted in an increased protein expression of the mesenchymal marker vimentin with more than 10% (p<0.05). Moreover, the loss of epithelial characteristics significantly correlated with a loss of glucuronidation activity (Pearson r = −0.63; p<0.05). In addition, both solutes did not affect cell viability nor mitochondrial activity. Conclusions This study demonstrates the importance of sample preparation techniques in the identification of uremic retention solutes using 1H-NMR spectroscopy, and provide insight into the negative impact of DMSO2 and 2-HIBA on ciPTEC, which could aid in understanding the progressive nature of renal disease.
Collapse
Affiliation(s)
- Henricus A. M. Mutsaers
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Udo F. H. Engelke
- Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martijn J. G. Wilmer
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jack F. M. Wetzels
- Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ron A. Wevers
- Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Lambertus P. van den Heuvel
- Department of Laboratory Medicine, Laboratory of Genetic, Endocrine and Metabolic Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Pediatrics, Catholic University Leuven, Leuven, Belgium
| | - Joost G. Hoenderop
- Department of Physiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
39
|
Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int 2013; 84:585-90. [PMID: 23636170 PMCID: PMC3758437 DOI: 10.1038/ki.2013.154] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/18/2013] [Accepted: 02/21/2013] [Indexed: 11/21/2022]
Abstract
The kidney clears numerous solutes from the plasma; however, retention of these solutes
causes uremic illness when the kidneys fail. We know remarkably little about which retained solutes
are toxic and this limits our ability to improve dialysis therapies. To explore this we employed
untargeted mass spectrometry to identify solutes that are efficiently cleared by the kidney. High
resolution mass spectrometry detected 1808 features in the urine and plasma ultrafiltrate of 5
individuals with normal renal function. The estimated clearance rates of 1082 peaks were greater
than the creatinine clearance indicating tubular secretion. Further analysis identified 90 features
representing solutes with estimated clearance rates greater than the renal plasma flow. Quantitative
mass spectrometry with stable isotope dilution confirmed that efficient clearance of these solutes
is made possible by the combination of binding to plasma proteins and tubular secretion. Tandem mass
spectrometry established the chemical identity of 13 solutes including hippuric acid, indoxyl
sulfate, and p-cresol sulfate. These 13 efficiently cleared solutes were found to accumulate in the
plasma of hemodialysis patients, with free levels rising to more than 20-fold normal for all but two
of them. Thus, further analysis of solutes efficiently cleared by secretion in the native kidney may
provide a potential route to the identification of uremic toxins.
Collapse
|
40
|
Koppe L, Pillon NJ, Vella RE, Croze ML, Pelletier CC, Chambert S, Massy Z, Glorieux G, Vanholder R, Dugenet Y, Soula HA, Fouque D, Soulage CO. p-Cresyl sulfate promotes insulin resistance associated with CKD. J Am Soc Nephrol 2013; 24:88-99. [PMID: 23274953 DOI: 10.1681/asn.2012050503] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mechanisms underlying the insulin resistance that frequently accompanies CKD are poorly understood, but the retention of renally excreted compounds may play a role. One such compound is p-cresyl sulfate (PCS), a protein-bound uremic toxin that originates from tyrosine metabolism by intestinal microbes. Here, we sought to determine whether PCS contributes to CKD-associated insulin resistance. Administering PCS to mice with normal kidney function for 4 weeks triggered insulin resistance, loss of fat mass, and ectopic redistribution of lipid in muscle and liver, mimicking features associated with CKD. Mice treated with PCS exhibited altered insulin signaling in skeletal muscle through ERK1/2 activation. In addition, exposing C2C12 myotubes to concentrations of PCS observed in CKD caused insulin resistance through direct activation of ERK1/2. Subtotal nephrectomy led to insulin resistance and dyslipidemia in mice, and treatment with the prebiotic arabino-xylo-oligosaccharide, which reduced serum PCS by decreasing intestinal production of p-cresol, prevented these metabolic derangements. Taken together, these data suggest that PCS contributes to insulin resistance and that targeting PCS may be a therapeutic strategy in CKD.
Collapse
Affiliation(s)
- Laetitia Koppe
- Hospices Civils de Lyon, Department of Nephrology, Hôpital E Herriot, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Watanabe H, Miyamoto Y, Honda D, Tanaka H, Wu Q, Endo M, Noguchi T, Kadowaki D, Ishima Y, Kotani S, Nakajima M, Kataoka K, Kim-Mitsuyama S, Tanaka M, Fukagawa M, Otagiri M, Maruyama T. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int 2013; 83:582-92. [PMID: 23325087 DOI: 10.1038/ki.2012.448] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of p-cresyl sulfate (PCS), a uremic toxin, is associated with the mortality rate of chronic kidney disease patients; however, the biological functions and the mechanism of its action remain largely unknown. Here we determine whether PCS enhances the production of reactive oxygen species (ROS) in renal tubular cells resulting in cytotoxicity. PCS exhibited pro-oxidant properties in human tubular epithelial cells by enhancing NADPH oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) activity. PCS also upregulated mRNA levels of inflammatory cytokines and active TGF-β1 protein secretion associated with renal fibrosis. Knockdown of p22(phox) or Nox4 expression suppressed the effect of PCS, underlining the importance of NADPH oxidase activation on its mechanism of action. PCS also reduced cell viability by increasing ROS production. The toxicity of PCS was largely suppressed in the presence of probenecid, an organic acid transport inhibitor. Administration of PCS for 4 weeks caused significant renal tubular damage in 5/6-nephrectomized rats by enhancing oxidative stress. Thus, the renal toxicity of PCS is attributed to its intracellular accumulation, leading to both increased NADPH oxidase activity and ROS production, which, in turn, triggers induction of inflammatory cytokines involved in renal fibrosis. This mechanism is similar to that for the renal toxicity of indoxyl sulfate.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
A novel UPLC-MS-MS method for simultaneous determination of seven uremic retention toxins with cardiovascular relevance in chronic kidney disease patients. Anal Bioanal Chem 2013; 405:1937-47. [PMID: 23307120 DOI: 10.1007/s00216-012-6636-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 01/09/2023]
Abstract
Chronic kidney disease (CKD) is a devastating illness characterized by accumulation of uremic retention solutes in the body. The objective of this study was to develop and validate a simple, rapid, and robust UPLC-MS-MS method for simultaneous determination, in serum, of seven organic acid uremic retention toxins, namely uric acid (UA), hippuric acid (HA), indoxylsulfate (IS), p-cresylglucuronide (pCG), p-cresylsulfate (pCS), indole-3-acetic acid (IAA), and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF). Isotopically labeled internal standards (d(5)-HA; 1,3-(15)N(2)-UA, and d(5)-IAA) were used to correct for variations in sample preparation and system performance. Separation on a C18 column was followed by negative electrospray ionization and tandem mass spectrometric detection. Accuracy was below the 15 % threshold. Within-day precision varied from 0.60 to 4.54 % and between-day precision was below 13.33 % for all compounds. The applicability of the method was evaluated by analyzing 78 serum samples originating both from healthy controls and from patients at different stages of CKD. These results were compared with those obtained by use of conventional HPLC-PDA-FLD methods. A good correlation was obtained between both methods for all compounds.
Collapse
|
43
|
Uremic toxins inhibit renal metabolic capacity through interference with glucuronidation and mitochondrial respiration. Biochim Biophys Acta Mol Basis Dis 2013; 1832:142-50. [DOI: 10.1016/j.bbadis.2012.09.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/10/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022]
|
44
|
Viaene L, Evenepoel P, Meijers B, Vanderschueren D, Overbergh L, Mathieu C. Uremia suppresses immune signal-induced CYP27B1 expression in human monocytes. Am J Nephrol 2012; 36:497-508. [PMID: 23171504 DOI: 10.1159/000345146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Local production of 1,25-dihydroxyvitamin D (1,25(OH)(2)D) regulated by the CYP27B1 enzyme in monocytes contributes to the immunomodulatory effects of vitamin D. Uremia suppresses renal CYP27B1, but its impact on monocytic CYP27B1 is incompletely understood. The present study aimed to elucidate this issue and to define the pathogenic role of p-cresyl sulfate (PCS), indoxyl sulfate (IndS), and fibroblast growth factor 23 (FGF23). METHODS Resting or immune (interferon-γ + lipopolysaccharide)-stimulated THP1 cells and monocytes, isolated from healthy donors, were cultured in the presence of either healthy serum, uremic serum, PCS, IndS or FGF23. RNA expression levels for CYP27B1 and cytokines were quantified by RT-PCR and enzymatic CYP27B1 activity was measured 24 h after incubation. RESULTS Culturing THP1 cells or human monocytes in the presence of uremic serum led to higher inflammatory cytokine and CYP27B1 expression. Immune signal-induced CYP27B1 expression and activity, conversely, was impaired in the presence of uremic serum. Similar effects were observed in the presence of FGF23, although significance was reached in immune-stimulated cells only. PCS and IndS failed to show any effect. CONCLUSIONS Monocytic baseline CYP27B1 expression is increased in uremia, probably reflecting the microinflammatory state. Immune signal-induced CYP27B1 expression, conversely, is impaired in uremic conditions. Elevated FGF23 levels, but not PCS and IndS, may account, at least partly, for the dysregulation of monocytic CYP27B1 in uremia and, as such, may contribute to the high cardiovascular and infectious burden in chronic kidney disease.
Collapse
Affiliation(s)
- Liesbeth Viaene
- Department of Nephrology, KU Leuven, UZ Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
45
|
Zhu JZ, Zhang J, Yang K, Du R, Jing YJ, Lu L, Zhang RY. P-cresol, but not p-cresylsulphate, disrupts endothelial progenitor cell function in vitro. Nephrol Dial Transplant 2012; 27:4323-30. [PMID: 22962408 DOI: 10.1093/ndt/gfs382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients afflicted with chronic kidney disease (CKD) typically suffer from cardiovascular disease (CVD) which is a leading cause of patient mortality. It has been demonstrated that two distinct physiological events contribute to this disease state. These include the abundance of abnormally high levels of protein-bound uraemic toxins as well as functionally aberrant endothelial progenitor cells (EPCs). Specifically, it has been demonstrated that the uraemic toxin p-cresol (pC; 4-methylphenol) inhibits EPC proliferation and tube formation in previous in vitro studies. More recently, however, it has been demonstrated that circulating pC is actually conjugated and that p-cresylsulphate (pCS) is its main metabolite. Therefore, within the context of this study, we examined the in vitro effects of pC and pCS treatment on cultured human EPCs. METHODS Late-outgrowth EPCs were treated with physiological concentrations of pC or pCS (10, 40, 80, and 160 or 10, 40, 80, 160 and 320 µg/mL for up to 72 h, respectively) in the presence of 4% human serum albumin (HSA). Cell proliferation was determined using WST-1 assay, while migration and tube formation assays were used to evaluate EPC function in vitro. Cell cycle analyses were also performed to determine the effects of pC and pCS on cell cycle status. RESULTS With regard to EPC proliferation, data demonstrate that pC in the presence or absence of HSA had an IC50 of 80.1 and 100.8 µg/mL 72 h post-treatment, respectively, while pCS-treated groups did not impair EPC proliferation. Similarly, pC-treated groups showed limited vessel formation and migration compared with controls and no detrimental effects were seen with pCS treatment. Lastly, pC treatment of EPCs caused cells to accumulate in the G2/M phase of the cell cycle with accompanied down-regulation of cyclin B1 and phosphorylated CDK1. pCS had no effect on cell cycle parameters. CONCLUSIONS Our data demonstrate that pC and pCS have different effects on EPC function. Since there is a dearth of data that have focused on the toxicity of pCS, further research should be performed to determine the exact biological toxicity of pCS on the cardiovascular system.
Collapse
Affiliation(s)
- Jin-zhou Zhu
- Department of Cardiology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Quantification of p-cresol sulphate in human plasma by selected reaction monitoring. Anal Bioanal Chem 2012; 404:2097-104. [DOI: 10.1007/s00216-012-6277-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
47
|
Watanabe H, Noguchi T, Miyamoto Y, Kadowaki D, Kotani S, Nakajima M, Miyamura S, Ishima Y, Otagiri M, Maruyama T. Interaction between Two Sulfate-Conjugated Uremic Toxins, p-Cresyl Sulfate and Indoxyl Sulfate, during Binding with Human Serum Albumin. Drug Metab Dispos 2012; 40:1423-8. [DOI: 10.1124/dmd.112.045617] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
48
|
Meert N, Schepers E, Glorieux G, Van Landschoot M, Goeman JL, Waterloos MA, Dhondt A, Van der Eycken J, Vanholder R. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: clinical data and pathophysiological implications. Nephrol Dial Transplant 2011; 27:2388-96. [DOI: 10.1093/ndt/gfr672] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
49
|
Calaf R, Cerini C, Génovésio C, Verhaeghe P, Jourde-Chiche N, Bergé-Lefranc D, Gondouin B, Dou L, Morange S, Argilés A, Rathelot P, Dignat-George F, Brunet P, Charpiot P. Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2281-6. [PMID: 21727042 DOI: 10.1016/j.jchromb.2011.06.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/22/2011] [Accepted: 06/06/2011] [Indexed: 11/15/2022]
Abstract
During chronic kidney disease (CKD), solutes called uremic solutes, accumulate in blood and tissues of patients. We developed an HPLC method for the simultaneous determination of several uremic solutes of clinical interest in biological fluids: phenol (Pol), indole-3-acetic acid (3-IAA), p-cresol (p-C), indoxyl sulfate (3-INDS) and p-cresol sulfate (p-CS). These solutes were separated by ion-pairing HPLC using an isocratic flow and quantified with a fluorescence detection. The mean serum concentrations of 3-IAA, 3-INDS and p-CS were 2.12, 1.03 and 13.03 μM respectively in healthy subjects, 3.21, 17.45 and 73.47 μM in non hemodialyzed stage 3-5 CKD patients and 5.9, 81.04 and 120.54 μM in hemodialyzed patients (stage 5D). We found no Pol and no p-C in any population. The limits of quantification for 3-IAA, 3-INDS, and p-CS were 0.83, 0.72, and 3.2 μM respectively. The within-day CVs were between 1.23 and 3.12% for 3-IAA, 0.98 and 2% for 3-INDS, and 1.25 and 3.01% for p-CS. The between-day CVs were between 1.78 and 5.48% for 3-IAA, 1.45 and 4.54% for 3-INDS, and 1.19 and 6.36% for p-CS. This HPLC method permits the simultaneous and quick quantification of several uremic solutes for daily analysis of large numbers of samples.
Collapse
Affiliation(s)
- Raymond Calaf
- Laboratoire de Biochimie Moléculaire Fondamentale et Clinique, UFR de Pharmacie, Université de la Méditerranée, 27 boulevard Jean Moulin, 13 385 Marseille cedex 5, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Clearance of p-Cresol Sulfate and β-2-Microglobulin from Dialysate by Commercially Available Sorbent Technology. ASAIO J 2011; 57:219-24. [DOI: 10.1097/mat.0b013e3182178c59] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|