1
|
Atxabal U, Fernández A, Moure MJ, Sobczak K, Nycholat C, Almeida-Marrero V, Oyenarte I, Paulson JC, de la Escosura A, Torres T, Reichardt NC, Jiménez-Barbero J, Ereño-Orbea J. Quantifying Siglec-sialylated ligand interactions: a versatile 19F-T 2 CPMG filtered competitive NMR displacement assay. Chem Sci 2024; 15:10612-10624. [PMID: 38994400 PMCID: PMC11234860 DOI: 10.1039/d4sc01723d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Sialic-acid-binding immunoglobulin-like lectins (Siglecs) are integral cell surface proteins crucial for the regulation of immune responses and the maintenance of immune tolerance through interactions with sialic acids. Siglecs recognize sialic acid moieties, usually found at the end of N-glycan and O-glycan chains. However, the different Siglecs prefer diverse presentations of the recognized sialic acid, depending on the type of glycosidic linkage used to link to the contiguous Gal/GalNAc or sialic acid moieties. This fact, together with possible O- or N-substitutions at the recognized glycan epitope significantly influences their roles in various immune-related processes. Understanding the molecular details of Siglec-sialoglycan interactions is essential for unraveling their specificities and for the development of new molecules targeting these receptors. While traditional biophysical methods like isothermal titration calorimetry (ITC) have been utilized to measure binding between lectins and glycans, contemporary techniques such as surface plasmon resonance (SPR), microscale thermophoresis (MST), and biolayer interferometry (BLI) offer improved throughput. However, these methodologies require chemical modification and immobilization of at least one binding partner, which can interfere the recognition between the lectin and the ligand. Since Siglecs display a large range of dissociation constants, depending on the (bio)chemical nature of the interacting partner, a general and robust method that could monitor and quantify binding would be highly welcomed. Herein, we propose the application of an NMR-based a competitive displacement assay, grounded on 19F T2-relaxation NMR and on the design, synthesis, and use of a strategic spy molecule, to assess and quantify sialoside ligand binding to Siglecs. We show that the use of this specific approach allows the quantification of Siglec binding for natural and modified sialosides, multivalent sialosides, and sialylated glycoproteins in solution, which differ in binding affinities in more than two orders of magnitude, thus providing invaluable insights into sialoglycan-mediated interactions.
Collapse
Affiliation(s)
- Unai Atxabal
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Andrea Fernández
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Glycotechnology Laboratory, CIC biomaGUNE Paseo Miramon 194 San Sebastian 20014 Spain
| | - Maria Jesús Moure
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Klaudia Sobczak
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Corwin Nycholat
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Verónica Almeida-Marrero
- Department of Organic Chemistry, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Iker Oyenarte
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - James C Paulson
- Departments of Molecular Medicine and Immunology & Microbiology, The Scripps Research Institute 10550 North Torrey Pines Road La Jolla California 92037 USA
| | - Andrés de la Escosura
- Department of Organic Chemistry, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid C/Francisco Tomás y Valiente 7 28049 Madrid Spain
- Instituto Madrileño de Estudios Avanzados (IMDEA)-Nanociencia C/Faraday 9 28049 Madrid Spain
| | - Niels C Reichardt
- Glycotechnology Laboratory, CIC biomaGUNE Paseo Miramon 194 San Sebastian 20014 Spain
- CIBER-BBN Paseo Miramon 194 San Sebastian 20014 Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV 48940 Leioa Bizkaia Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Respiratorias 28029 Madrid Spain
| | - June Ereño-Orbea
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
2
|
Lang S, Fletcher DA, Petit AP, Luise N, Fyfe P, Zuccotto F, Porter D, Hope A, Bellany F, Kerr C, Mackenzie CJ, Wyatt PG, Gray DW. Application of an NMR/Crystallography Fragment Screening Platform for the Assessment and Rapid Discovery of New HIV-CA Binding Fragments. ChemMedChem 2024; 19:e202400025. [PMID: 38581280 DOI: 10.1002/cmdc.202400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/08/2024]
Abstract
Identification and assessment of novel targets is essential to combat drug resistance in the treatment of HIV/AIDS. HIV Capsid (HIV-CA), the protein playing a major role in both the early and late stages of the viral life cycle, has emerged as an important target. We have applied an NMR fragment screening platform and identified molecules that bind to the N-terminal domain (NTD) of HIV-CA at a site close to the interface with the C-terminal domain (CTD). Using X-ray crystallography, we have been able to obtain crystal structures to identify the binding mode of these compounds. This allowed for rapid progression of the initial, weak binding, fragment starting points to compounds 37 and 38, which have 19F-pKi values of 5.3 and 5.4 respectively.
Collapse
Affiliation(s)
- Stuart Lang
- Cresset Discovery, New Cambridge House, Bassingbourn Road, Litlington, Cambridgeshire, SG80SSS
| | - Daniel A Fletcher
- BioAscent Discovery Ltd, Bo'Ness Road, Newhouse, Lanarkshire, ML1 5UH
| | | | - Nicola Luise
- Alira Health, Av. De Josep Tarradellas, 123, 7th Floor, 08029, Barcelona, Spain
| | - Paul Fyfe
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| | - Fabio Zuccotto
- Vertex Pharmaceuticals (Europe) Ltd, 86-88, Jubilee Avenue, Milton Park, Abingdon, Oxfordshire, OX14 4RW
| | - David Porter
- Evotec (UK) Ltd, Dorothy Crowfoot Hodgkin Campus, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire, OX14 4RZ
| | - Anthony Hope
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| | - Fiona Bellany
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| | - Catrina Kerr
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| | | | - Paul G Wyatt
- Sitala Bio Ltd, Unit D6, Grain House Mill Court, Great Shelford, Cambridge, CB22 5LD
| | - David W Gray
- Drug Discovery Unit, University of Dundee, Dow Street, Dundee, DD1 5EH
| |
Collapse
|
3
|
Pham P, Hilty C. R2 Relaxometry of SABRE-Hyperpolarized Substrates at a Low Magnetic Field. Anal Chem 2023; 95:16911-16917. [PMID: 37931028 PMCID: PMC10862376 DOI: 10.1021/acs.analchem.3c02709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Nuclear magnetic resonance (NMR) relaxometry at a low magnetic field, in the milli-Tesla range or less, is enabled by signal enhancements through hyperpolarization. The parahydrogen-based method of signal amplification by reversible exchange (SABRE) provides large signals in a dilute liquid for the measurement of R2 relaxation using a single-scan Carr-Purcell-Meiboom-Gill (CPMG) experiment. A comparison of relaxation rates obtained at high and low fields indicates that an otherwise dominant contribution from chemical exchange is excluded in this low-field range. The SABRE process itself is based on exchange between the free and polarization transfer catalyst-bound forms of the substrate. At a high magnetic field of 9.4 T, typical conditions for producing hyperpolarization including 5 mM 5-fluoropyridine-3-carboximidamide as a substrate and 0.5 mM chloro(1,5-cyclooctadiene)[4,5-dimethyl-1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene]iridium(I) as a polarization transfer catalyst precursor resulted in an R2 relaxation rate as high as 3.38 s-1. This relaxation was reduced to 1.19 s-1 at 0.85 mT. A quantitative analysis of relaxation rates and line shapes indicates that milli-Tesla or lower magnetic fields are required to eliminate the exchange contribution. At this magnetic field strength, R2 relaxation rates are indicative primarily of molecular properties. R2 relaxometry may be used for investigating molecular interactions and dynamics. The SABRE hyperpolarization, which provides signal enhancements without requiring a high magnetic field or large instrumentation, is ideally suited to enable these applications.
Collapse
Affiliation(s)
- Pierce Pham
- Chemistry Department, Texas A&M University, College
Station, Texas 77843, United States
| | - Christian Hilty
- Chemistry Department, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
4
|
Pham P, Hilty C. Biomolecular interactions studied by low-field NMR using SABRE hyperpolarization. Chem Sci 2023; 14:10258-10263. [PMID: 37772094 PMCID: PMC10530938 DOI: 10.1039/d3sc02365f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023] Open
Abstract
We demonstrate that low-field nuclear magnetic resonance provides a means for measuring biomacromolecular interactions without requiring a superconducting, or even a permanent magnet. A small molecule, 5-fluoropyridine-3-carboximidamide, is designed to be a specific ligand for the trypsin protein, while containing a fluorine atom as a nuclear spin hyperpolarizable label. With hyperpolarization by the parahydrogen based signal amplification by the reversible exchange method, fluorine NMR signals are detectable in the measurement field of 0.85 mT of an electromagnet, at a concentration of less than 100 μM. As a weak ligand for the protein, the hyperpolarized molecule can serve as a reporter for measuring the binding of other ligands of interest, illustrated by the determination of the dissociation constant KD of benzamidine from changes in the observed R2 relaxation rates. A signal enhancement of more than 106 compared to Boltzmann polarization at the measurement field indicates that this experiment is not feasible without prepolarization. The extended magnetic field range for the measurement of biomolecular interactions under near physiological conditions, with a protein concentration on the order of 10 μM or less, provides a new option for screening of ligand binding, measurement of protein-protein interactions, and measurement of molecular dynamics.
Collapse
Affiliation(s)
- Pierce Pham
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Christian Hilty
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|
5
|
Balboni B, Rinaldi F, Previtali V, Ciamarone A, Girotto S, Cavalli A. Novel Insights into RAD52’s Structure, Function, and Druggability for Synthetic Lethality and Innovative Anticancer Therapies. Cancers (Basel) 2023; 15:cancers15061817. [PMID: 36980703 PMCID: PMC10046612 DOI: 10.3390/cancers15061817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, the RAD52 protein has been highlighted as a mediator of many DNA repair mechanisms. While RAD52 was initially considered to be a non-essential auxiliary factor, its inhibition has more recently been demonstrated to be synthetically lethal in cancer cells bearing mutations and inactivation of specific intracellular pathways, such as homologous recombination. RAD52 is now recognized as a novel and critical pharmacological target. In this review, we comprehensively describe the available structural and functional information on RAD52. The review highlights the pathways in which RAD52 is involved and the approaches to RAD52 inhibition. We discuss the multifaceted role of this protein, which has a complex, dynamic, and functional 3D superstructural arrangement. This complexity reinforces the need to further investigate and characterize RAD52 to solve a challenging mechanistic puzzle and pave the way for a robust drug discovery campaign.
Collapse
Affiliation(s)
- Beatrice Balboni
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Francesco Rinaldi
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Andrea Ciamarone
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| | - Andrea Cavalli
- Computational and Chemical Biology, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, via Belmeloro 6, 40126 Bologna, Italy
- Correspondence: (S.G.); (A.C.); Tel.: +39-010-2896-983 (S.G.); +39-010-2897-403 (A.C.)
| |
Collapse
|
6
|
Mandal R, Pham P, Hilty C. Screening of Protein-Ligand Binding Using a SABRE Hyperpolarized Reporter. Anal Chem 2022; 94:11375-11381. [PMID: 35921650 DOI: 10.1021/acs.analchem.2c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpolarization through signal amplification by reversible exchange (SABRE) provides a facile means to enhance nuclear magnetic resonance (NMR) signals of small molecules containing an N-heterocycle or other binding site for a polarization transfer catalyst. A purpose-designed reporter ligand, which is capable of binding both to a target protein and to the catalyst, makes the sensitivity enhancement by this technique compatible with the measurement of a range of biomolecular interactions. The 1H polarization of the reporter ligand 4-amidinopyridine, which is targeting trypsin, is used to screen ligands that are not themselves hyperpolarizable by SABRE. The respective protein-ligand dissociation constants (KD) are determined by an observed change in the R2 relaxation rate of the reporter. A calculation of expected signal changes indicates that the accessible ligand KD values extend over several orders of magnitude, while the concentrations of target proteins and ligands can be reduced considering the sensitivity gains from hyperpolarization. In general, the design of a single, weakly binding ligand for a target protein enables the use of SABRE hyperpolarization for ligand screening or other biophysical studies involving macromolecular interactions.
Collapse
Affiliation(s)
- Ratnamala Mandal
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Pierce Pham
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Christian Hilty
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Hu J, Kim J, Hilty C. Detection of Protein-Ligand Interactions by 19F Nuclear Magnetic Resonance Using Hyperpolarized Water. J Phys Chem Lett 2022; 13:3819-3823. [PMID: 35465675 PMCID: PMC9088881 DOI: 10.1021/acs.jpclett.2c00448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The transfer of nuclear spin hyperpolarization from water to ligand 19F spins results in a transient signal change that is indicative of protein-ligand interaction. The 19F nucleus allows for background-free detection of these signals, which are modulated by polarization transfer via pathways similar to those in a hyperpolarized 1H water LOGSY experiment. Quantification of the apparent heteronuclear cross-relaxation rates is facilitated by a simultaneous dual-channel detection of 1H and 19F signals. Calculated cross-relaxation rates for the 1H-19F transfer step indicate that these rates are sensitive to binding to medium- and large-sized proteins. The heteronuclear observation of hyperpolarization transfer from water may be used to screen protein-ligand interactions in drug discovery and other applications.
Collapse
Affiliation(s)
- Jiandu Hu
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | | | - Christian Hilty
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| |
Collapse
|
8
|
Mureddu LG, Vuister GW. Fragment-Based Drug Discovery by NMR. Where Are the Successes and Where can It Be Improved? Front Mol Biosci 2022; 9:834453. [PMID: 35252355 PMCID: PMC8895297 DOI: 10.3389/fmolb.2022.834453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last century, the definitions of pharmaceutical drug and drug discovery have changed considerably. Evolving from an almost exclusively serendipitous approach, drug discovery nowadays involves several distinct, yet sometimes interconnected stages aimed at obtaining molecules able to interact with a defined biomolecular target, and triggering a suitable biological response. At each of the stages, a wide range of techniques are typically employed to obtain the results required to move the project into the next stage. High Throughput Screening (HTS) and Fragment Based Drug Design (FBDD) are the two main approaches used to identify drug-like candidates in the early stages of drug discovery. Nuclear Magnetic Resonance (NMR) spectroscopy has many applications in FBDD and is used extensively in industry as well as in academia. In this manuscript, we discuss the paths of both successful and unsuccessful molecules where NMR had a crucial part in their development. We specifically focus on the techniques used and describe strengths and weaknesses of each stage by examining several case studies. More precisely, we examine the development history from the primary screening to the final lead optimisation of AZD3839 interacting with BACE-1, ABT-199 interacting with BCL2/XL and S64315 interacting with MCL-1. Based on these studies, we derive observations and conclusions regarding the FBDD process by NMR and discuss its potential improvements.
Collapse
Affiliation(s)
| | - Geerten W. Vuister
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Ahmed R, Huang J, Lifshitz R, Martinez Pomier K, Melacini G. Structural determinants of the interactions of catechins with Aβ oligomers and lipid membranes. J Biol Chem 2021; 298:101502. [PMID: 34929173 PMCID: PMC8800114 DOI: 10.1016/j.jbc.2021.101502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 02/08/2023] Open
Abstract
The aberrant self-assembly of intrinsically disordered proteins (IDPs) into soluble oligomers and their interactions with biological membranes underlie the pathogenesis of numerous neurodegenerative diseases, including Alzheimer's disease. Catechins have emerged as useful tools to reduce the toxicity of IDP oligomers by modulating their interactions with membranes. However, the structural determinants of catechin binding to IDP oligomers and membranes remain largely elusive. Here, we assemble a catechin library by combining several naturally occurring chemical modifications and, using a coupled NMR-statistical approach, we map at atomic resolution the interactions of such library with the Alzheimer's-associated amyloid-beta (Aβ) oligomers and model membranes. Our results reveal multiple catechin affinity drivers and show that the combination of affinity-reducing covalent changes may lead to unexpected net gains in affinity. Interestingly, we find that the positive cooperativity is more prevalent for Aβ oligomers than membrane binding, and that the determinants underlying catechin recognition by membranes are markedly different from those dissected for Aβ oligomers. Notably, we find that the unanticipated positive cooperativity arises from the critical regulatory role of the gallate catechin moiety, which recruits previously disengaged substituents into the binding interface and leads to an overall greater compaction of the receptor-bound conformation. Overall, the previously elusive structural attributes mapped here provide an unprecedented foundation to establish structure-activity relationships of catechins.
Collapse
Affiliation(s)
- Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Romi Lifshitz
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,For correspondence: Giuseppe Melacini
| |
Collapse
|
10
|
LeBlanc RM, Mesleh MF. A drug discovery toolbox for Nuclear Magnetic Resonance (NMR) characterization of ligands and their targets. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 37:51-60. [PMID: 34895655 DOI: 10.1016/j.ddtec.2020.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Information about the structure, dynamics, and ligand-binding properties of biomolecules can be derived from Nuclear Magnetic Resonance (NMR) spectroscopy and provides valuable information for drug discovery. A multitude of experimental approaches provides a wealth of information that can be tailored to the system of interest. Methods to study the behavior of ligands upon target binding enable the identification of weak binders in a robust manner that is critical for the identification of truly novel binding interactions. This is particularly important for challenging targets. Observing the solution behavior of biomolecules yields information about their structure, dynamics, and interactions. This review describes the breadth of approaches that are available, many of which are under-utilized in a drug-discovery environment, and focuses on recent advances that continue to emerge.
Collapse
Affiliation(s)
- Regan M LeBlanc
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States
| | - Michael F Mesleh
- Structural Biology and Biophysics, Vertex Pharmaceuticals Inc., Boston, MA, 02210, United States.
| |
Collapse
|
11
|
Mandal R, Pham P, Hilty C. Characterization of protein-ligand interactions by SABRE. Chem Sci 2021; 12:12950-12958. [PMID: 34745525 PMCID: PMC8515190 DOI: 10.1039/d1sc03404a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear spin hyperpolarization through signal amplification by reversible exchange (SABRE), the non-hydrogenative version of para-hydrogen induced polarization, is demonstrated to enhance sensitivity for the detection of biomacromolecular interactions. A target ligand for the enzyme trypsin includes the binding motif for the protein, and at a distant location a heterocyclic nitrogen atom for interacting with a SABRE polarization transfer catalyst. This molecule, 4-amidinopyridine, is hyperpolarized with 50% para-hydrogen to yield enhancement values ranging from −87 and −34 in the ortho and meta positions of the heterocyclic nitrogen, to −230 and −110, for different solution conditions. Ligand binding is identified by flow-NMR, in a two-step process that separately optimizes the polarization transfer in methanol while detecting the interaction in a predominantly aqueous medium. A single scan Carr–Purcell–Meiboom–Gill (CPMG) experiment identifies binding by the change in R2 relaxation rate. The SABRE hyperpolarization technique provides a cost effective means to enhance NMR of biological systems, for the identification of protein–ligand interactions and other applications. Protein–ligand binding interactions are characterized by the para-H2 based hyperpolarization technique SABRE and flow-NMR. Binding to the protein is identified by R2 change of a ligand first interacting with the Ir polarization transfer catalyst.![]()
Collapse
Affiliation(s)
- Ratnamala Mandal
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Pierce Pham
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| | - Christian Hilty
- Department of Chemistry, Texas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|
12
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
13
|
Luchinat E, Barbieri L, Cremonini M, Pennestri M, Nocentini A, Supuran CT, Banci L. Determination of intracellular protein-ligand binding affinity by competition binding in-cell NMR. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1270-1281. [PMID: 34605430 PMCID: PMC8489230 DOI: 10.1107/s2059798321009037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023]
Abstract
Structure-based drug development suffers from high attrition rates due to the poor activity of lead compounds in cellular and animal models caused by low cell penetrance, off-target binding or changes in the conformation of the target protein in the cellular environment. The latter two effects cause a change in the apparent binding affinity of the compound, which is indirectly assessed by cellular activity assays. To date, direct measurement of the intracellular binding affinity remains a challenging task. In this work, in-cell NMR spectroscopy was applied to measure intracellular dissociation constants in the nanomolar range by means of protein-observed competition binding experiments. Competition binding curves relative to a reference compound could be retrieved either from a series of independent cell samples or from a single real-time NMR bioreactor run. The method was validated using a set of sulfonamide-based inhibitors of human carbonic anhydrase II with known activity in the subnanomolar to submicromolar range. The intracellular affinities were similar to those obtained in vitro, indicating that these compounds selectively bind to the intracellular target. In principle, the approach can be applied to any soluble intracellular target that gives rise to measurable chemical shift changes upon ligand binding.
Collapse
Affiliation(s)
- Enrico Luchinat
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Letizia Barbieri
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Pennestri
- Pharmaceutical Business Unit, Bruker UK Limited, Banner Lane, Coventry CV4 9GH, United Kingdom
| | - Alessio Nocentini
- Dipartimento Neurofarba, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Dipartimento Neurofarba, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- CERM - Magnetic Resonance Center, Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Almeida TB, Panova S, Walser R. NMR Reporter Assays for the Quantification of Weak-Affinity Receptor-Ligand Interactions. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:1020-1028. [PMID: 33899548 DOI: 10.1177/24725552211009782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biophysical methods are widely employed in academia and the pharmaceutical industry to detect and quantify weak molecular interactions. Such methods find broad application in fragment-based drug discovery (FBDD). In an FBDD campaign, a suitable affinity determination method is key to advancing a project beyond the initial screening phase. Protein-observed (PO) nuclear magnetic resonance (NMR) finds widespread use due to its ability to sensitively detect very weak interactions at residue-level resolution. When there are issues precluding the use of PO-NMR, ligand-observed (LO) NMR reporter assays can be a useful alternative. Such assays can measure affinities in a similar range to PO-NMR while offering some distinct advantages, especially with regard to protein consumption and compound throughput. In this paper, we take a closer look at setting up such assays for routine use, with the aim of getting high-quality, accurate data and good throughput. We assess some of the key characteristics of these assays in the mathematical framework established for fluorescence polarization assays with which the readers may be more familiar. We also provide guidance on setting up such assays and compare their performance with other affinity determination methods that are commonly used in drug discovery.
Collapse
Affiliation(s)
| | | | - Reto Walser
- Molecular Sciences, Astex Pharmaceuticals, Cambridge, UK
| |
Collapse
|
15
|
Rüdisser SH, Goldberg N, Ebert MO, Kovacs H, Gossert AD. Efficient affinity ranking of fluorinated ligands by 19F NMR: CSAR and FastCSAR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:579-594. [PMID: 32556806 DOI: 10.1007/s10858-020-00325-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Fluorine NMR has recently gained high popularity in drug discovery as it allows efficient and sensitive screening of large numbers of ligands. However, the positive hits found in screening must subsequently be ranked according to their affinity in order to prioritize them for follow-up chemistry. Unfortunately, the primary read-out from the screening experiments, namely the increased relaxation rate upon binding, is not proportional to the affinity of the ligand, as it is polluted by effects such as exchange broadening. Here we present the method CSAR (Chemical Shift-anisotropy-based Affinity Ranking) for reliable ranking of fluorinated ligands by NMR, without the need of isotope labeled protein, titrations or setting up a reporter format. Our strategy is to produce relaxation data that is directly proportional to the binding affinity. This is achieved by removing all other contributions to relaxation as follows: (i) exchange effects are efficiently suppressed by using high power spin lock pulses, (ii) dipolar relaxation effects are approximately subtracted by measuring at two different magnetic fields and (iii) differences in chemical shift anisotropy are normalized using calculated values. A similar ranking can be obtained with the simplified approach FastCSAR that relies on a measurement of a single relaxation experiment at high field (preferably > 600 MHz). An affinity ranking obtained in this simple way will enable prioritizing ligands and thus improve the efficiency of fragment-based drug design.
Collapse
Affiliation(s)
- Simon H Rüdisser
- Institute for Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093, Zürich, Switzerland
| | - Nils Goldberg
- Institute for Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland
- Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093, Zürich, Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie, ETH Zürich, 8093, Zürich, Switzerland
| | | | - Alvar D Gossert
- Institute for Molecular Biology and Biophysics, ETH Zürich, 8093, Zürich, Switzerland.
- Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093, Zürich, Switzerland.
| |
Collapse
|
16
|
Monaco S, Walpole S, Doukani H, Nepravishta R, Martínez‐Bailén M, Carmona AT, Ramos‐Soriano J, Bergström M, Robina I, Angulo J. Exploring Multi-Subsite Binding Pockets in Proteins: DEEP-STD NMR Fingerprinting and Molecular Dynamics Unveil a Cryptic Subsite at the GM1 Binding Pocket of Cholera Toxin B. Chemistry 2020; 26:10024-10034. [PMID: 32449563 PMCID: PMC7496166 DOI: 10.1002/chem.202001723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Indexed: 11/30/2022]
Abstract
Ligand-based NMR techniques to study protein-ligand interactions are potent tools in drug design. Saturation transfer difference (STD) NMR spectroscopy stands out as one of the most versatile techniques, allowing screening of fragments libraries and providing structural information on binding modes. Recently, it has been shown that a multi-frequency STD NMR approach, differential epitope mapping (DEEP)-STD NMR, can provide additional information on the orientation of small ligands within the binding pocket. Here, the approach is extended to a so-called DEEP-STD NMR fingerprinting technique to explore the binding subsites of cholera toxin subunit B (CTB). To that aim, the synthesis of a set of new ligands is presented, which have been subject to a thorough study of their interactions with CTB by weak affinity chromatography (WAC) and NMR spectroscopy. Remarkably, the combination of DEEP-STD NMR fingerprinting and Hamiltonian replica exchange molecular dynamics has proved to be an excellent approach to explore the geometry, flexibility, and ligand occupancy of multi-subsite binding pockets. In the particular case of CTB, it allowed the existence of a hitherto unknown binding subsite adjacent to the GM1 binding pocket to be revealed, paving the way to the design of novel leads for inhibition of this relevant toxin.
Collapse
Affiliation(s)
- Serena Monaco
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
| | - Samuel Walpole
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
| | - Hassan Doukani
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
| | - Ridvan Nepravishta
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
- Department of Biochemistry & Molecular BiologySealy Center for Structural Biology & Molecular BiophysicsUniversity of Texas Medical Branch301 University BlvdGalvestonTX77555-1068USA
| | | | - Ana T. Carmona
- Department of Organic ChemistryFaculty of ChemistryUniversity of Seville41012SevilleSpain
| | - Javier Ramos‐Soriano
- Department of Organic ChemistryFaculty of ChemistryUniversity of Seville41012SevilleSpain
| | - Maria Bergström
- Department of Chemistry and Biomedical SciencesLinnaeus University391 82KalmarSweden
| | - Inmaculada Robina
- Department of Organic ChemistryFaculty of ChemistryUniversity of Seville41012SevilleSpain
| | - Jesus Angulo
- School of PharmacyUniversity of East AngliaNorwich Research ParkNR4 7TJNorwichUK
- Department of Organic ChemistryFaculty of ChemistryUniversity of Seville41012SevilleSpain
- Instituto de Investigaciones Químicas (CSIC-US)Avda. Américo Vespucio, 4941092SevillaSpain
| |
Collapse
|
17
|
Li Q, Kang C. A Practical Perspective on the Roles of Solution NMR Spectroscopy in Drug Discovery. Molecules 2020; 25:molecules25132974. [PMID: 32605297 PMCID: PMC7411973 DOI: 10.3390/molecules25132974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 11/26/2022] Open
Abstract
Solution nuclear magnetic resonance (NMR) spectroscopy is a powerful tool to study structures and dynamics of biomolecules under physiological conditions. As there are numerous NMR-derived methods applicable to probe protein–ligand interactions, NMR has been widely utilized in drug discovery, especially in such steps as hit identification and lead optimization. NMR is frequently used to locate ligand-binding sites on a target protein and to determine ligand binding modes. NMR spectroscopy is also a unique tool in fragment-based drug design (FBDD), as it is able to investigate target-ligand interactions with diverse binding affinities. NMR spectroscopy is able to identify fragments that bind weakly to a target, making it valuable for identifying hits targeting undruggable sites. In this review, we summarize the roles of solution NMR spectroscopy in drug discovery. We describe some methods that are used in identifying fragments, understanding the mechanism of action for a ligand, and monitoring the conformational changes of a target induced by ligand binding. A number of studies have proven that 19F-NMR is very powerful in screening fragments and detecting protein conformational changes. In-cell NMR will also play important roles in drug discovery by elucidating protein-ligand interactions in living cells.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou 510316, China
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore
- Correspondence: (Q.L.); (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.)
| |
Collapse
|
18
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
19
|
Veseli A, Žakelj S, Kristl A. A review of methods for solubility determination in biopharmaceutical drug characterization. Drug Dev Ind Pharm 2019; 45:1717-1724. [PMID: 31512934 DOI: 10.1080/03639045.2019.1665062] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The significance of thermodynamic solubility in biopharmaceutical compound or drug characterization as well as the importance of having methods that accurately establish it have been extensively addressed. Nonetheless, its precise determination continues to remain a challenging task to accomplish. Even more so when the number of compounds to evaluate is high and the available amount of each compound is low, both of which are inevitable for the compound characterization during the drug development process. Except for the shake-flask method which is still considered as the 'gold standard' in obtaining thermodynamic data, it is currently difficult to say that another satisfactory model which is routinely used to determine thermodynamic solubility is being applied. Therefore, this review summarizes the various experimental approaches which are based on the classical shake flask method but have yet attempted to speed up the experimental process of obtaining such data more conveniently. The most important experimental features of these approaches are provided to the reader. Some advantages and disadvantages associated with each approach are also highlighted, consequently offering a resource to those looking for the most appropriate of the approaches that have already fared well at determining the biopharmaceutically relevant drug solubility.
Collapse
Affiliation(s)
- Ardita Veseli
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| | - Simon Žakelj
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| | - Albin Kristl
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
20
|
Dalvit C, Parent A, Vallée F, Mathieu M, Rak A. Fast NMR Methods for Measuring in the Direct and/or Competition Mode the Dissociation Constants of Chemical Fragments Interacting with a Receptor. ChemMedChem 2019; 14:1115-1127. [DOI: 10.1002/cmdc.201900152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Annick Parent
- Bio Structure and BiophysicsIntegrated Drug DiscoverySanofi R&D 13, Quai Jules Guesde—BP 14 94403 Vitry sur Seine Cedex France
| | - Francois Vallée
- Bio Structure and BiophysicsIntegrated Drug DiscoverySanofi R&D 13, Quai Jules Guesde—BP 14 94403 Vitry sur Seine Cedex France
| | - Magali Mathieu
- Bio Structure and BiophysicsIntegrated Drug DiscoverySanofi R&D 13, Quai Jules Guesde—BP 14 94403 Vitry sur Seine Cedex France
| | - Alexey Rak
- Bio Structure and BiophysicsIntegrated Drug DiscoverySanofi R&D 13, Quai Jules Guesde—BP 14 94403 Vitry sur Seine Cedex France
| |
Collapse
|
21
|
The polyanions heparin and suramin impede binding of free adenine to a DNA glycosylase from C. pseudotuberculosis. Int J Biol Macromol 2019; 125:459-468. [DOI: 10.1016/j.ijbiomac.2018.12.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022]
|
22
|
de Castro GV, Ciulli A. Spy vs. spy: selecting the best reporter for 19F NMR competition experiments. Chem Commun (Camb) 2019; 55:1482-1485. [PMID: 30644956 PMCID: PMC6369734 DOI: 10.1039/c8cc09790a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Systematic characterization of a series of fluorinated VHL ligands, varying binding affinity and position of the trifluoromethyl group, qualifies a spy molecule for competitive 19F NMR screening and reveals guiding principles to develop highly sensitive assays with low material consumption.
Collapse
Affiliation(s)
- Guilherme Vieira de Castro
- Division of Biological Chemistry and Drug Discovery
, School of Life Sciences
, University of Dundee
,
Dow Street
, Dundee
, DD1 5EH
, UK
.
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery
, School of Life Sciences
, University of Dundee
,
Dow Street
, Dundee
, DD1 5EH
, UK
.
| |
Collapse
|
23
|
Assessing molecular interactions with biophysical methods using the validation cross. Biochem Soc Trans 2018; 47:63-76. [DOI: 10.1042/bst20180271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/17/2022]
Abstract
Abstract
There are numerous methods for studying molecular interactions. However, each method gives rise to false negative- or false positive binding results, stemming from artifacts of the scientific equipment or from shortcomings of the experimental format. To validate an initial positive binding result, additional methods need to be applied to cover the shortcomings of the primary experiment. The aim of such a validation procedure is to exclude as many artifacts as possible to confirm that there is a true molecular interaction that meets the standards for publishing or is worth investing considerable resources for follow-up activities in a drug discovery project. To simplify this validation process, a graphical scheme — the validation cross — can be used. This simple graphic is a powerful tool for identifying blind spots of a binding hypothesis, for selecting the most informative combination of methods to reveal artifacts and, in general, for understanding more thoroughly the nature of a validation process. The concept of the validation cross was originally introduced for the validation of protein–ligand interactions by NMR in drug discovery. Here, an attempt is made to expand the concept to further biophysical methods and to generalize it for binary molecular interactions.
Collapse
|
24
|
Zawadzka-Kazimierczuk A, Somlyay M, Kaehlig H, Iakobson G, Beier P, Konrat R. 19F multiple-quantum coherence NMR spectroscopy for probing protein-ligand interactions. RSC Adv 2018; 8:40687-40692. [PMID: 35557931 PMCID: PMC9091488 DOI: 10.1039/c8ra09296f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/25/2019] [Accepted: 11/28/2018] [Indexed: 11/23/2022] Open
Abstract
A new 19F NMR method is presented which can be used to detect weak protein binding of small molecules with up to mM affinity. The method capitalizes on the synthetic availability of unique SF5 containing compounds and the generation of five-quantum coherences (5QC). Given the high sensitivity of 5QC relaxation to exchange events (i.e. reversible protein binding) fragments which bind to the target with weak affinity can be identified. The utility of the method in early stage drug discovery programs is demonstrated with applications to two model proteins, the neurotoxic NGAL and the prominent tumor target β-catenin.
Collapse
Affiliation(s)
- Anna Zawadzka-Kazimierczuk
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna Vienna Biocenter Campus 5 A-1030 Vienna Austria
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Mate Somlyay
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna Vienna Biocenter Campus 5 A-1030 Vienna Austria
| | - Hanspeter Kaehlig
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 A-1090 Vienna Austria
| | - George Iakobson
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 160 00 Prague Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 160 00 Prague Czech Republic
| | - Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna Vienna Biocenter Campus 5 A-1030 Vienna Austria
| |
Collapse
|
25
|
Abstract
WaterLOGSY is a ligand-observed NMR method that is widely used for the studies of protein-small molecule interactions. The basis of waterLOGSY relies on the transfer of magnetization between water molecules, proteins, and small molecules via the nuclear Overhauser effect and chemical exchange. WaterLOGSY is used extensively for the screening of protein ligands, as it is a robust, relatively high-throughput, and reliable method to identify small molecules that bind proteins with a binding affinity (KD) in the μM to mM region. WaterLOGSY also enables the determination of KD via ligand titration, although careful optimization of the experimental setup is required to avoid overestimation of binding constants. Finally, waterLOGSY allows the water-accessible ligand protons of protein-bound ligands to be identified, thus providing structural information of the ligand binding orientation. In this chapter, we introduce and describe the waterLOGSY method, and provide a practical guide for ligand screening and KD determination. The use of waterLOGSY to study water accessibility is also discussed.
Collapse
Affiliation(s)
- Renjie Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Ivanhoe K H Leung
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
26
|
Zhang G, Hilty C. Applications of dissolution dynamic nuclear polarization in chemistry and biochemistry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:566-582. [PMID: 29602263 DOI: 10.1002/mrc.4735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 05/15/2023]
Abstract
Sensitivity of detection is one of the most limiting aspects when applying NMR spectroscopy to current problems in the molecular sciences. A number of hyperpolarization methods exist for increasing the population difference between nuclear spin Zeeman states and enhance the signal-to-noise ratio by orders of magnitude. Among these methods, dissolution dynamic nuclear polarization (D-DNP) is unique in its capability of providing high spin polarization for many types of molecules in the liquid state. Originally proposed for biomedical applications including in vivo imaging, applications in high resolution NMR spectroscopy are now emerging. These applications are the focus of the present review. Using D-DNP, a small sample aliquot is first hyperpolarized as a frozen solid at low temperature, followed by dissolution into the liquid state. D-DNP extends the capabilities of liquid state NMR spectroscopy towards shorter timescales and enables the study of nonequilibrium processes, such as the kinetics and mechanisms of reactions. It allows the determination of intermolecular interactions, in particular based on spin relaxation parameters. At the same time, a challenge in the application of this hyperpolarization method is that spin polarization is nonrenewable. Substantial effort has been devoted to develop methods for enabling rapid correlation spectroscopy, the measurement of time-dependent signals, and the extension of the observable time window. With these methods, D-DNP has the potential to open new application areas in the chemical and biochemical sciences.
Collapse
Affiliation(s)
- Guannan Zhang
- Chemistry Department, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
27
|
Nieto PM. The Use of NMR to Study Transient Carbohydrate-Protein Interactions. Front Mol Biosci 2018; 5:33. [PMID: 29696146 PMCID: PMC5904382 DOI: 10.3389/fmolb.2018.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Carbohydrates are biologically ubiquitous and are essential to the existence of all known living organisms. Although they are better known for their role as energy sources (glucose/glycogen or starch) or structural elements (chitin or cellulose), carbohydrates also participate in the recognition events of molecular recognition processes. Such interactions with other biomolecules (nucleic acids, proteins, and lipids) are fundamental to life and disease. This review focuses on the application of NMR methods to understand at the atomic level the mechanisms by which sugar molecules can be recognized by proteins to form complexes, creating new entities with different properties to those of the individual component molecules. These processes have recently gained attention as new techniques have been developed, while at the same time old techniques have been reinvented and adapted to address newer emerging problems.
Collapse
Affiliation(s)
- Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Científicas, cicCartuja, CSIC/USE, Seville, Spain
| |
Collapse
|
28
|
Brittain WDG, Chapin BM, Zhai W, Lynch VM, Buckley BR, Anslyn EV, Fossey JS. The Bull-James assembly as a chiral auxiliary and shift reagent in kinetic resolution of alkyne amines by the CuAAC reaction. Org Biomol Chem 2018; 14:10778-10782. [PMID: 27604036 DOI: 10.1039/c6ob01623e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Bull-James boronic acid assembly is used simultaneously as a chiral auxiliary for kinetic resolution and as a chiral shift reagent for in situ enantiomeric excess (ee) determination by 1H NMR spectroscopy. Chiral terminal alkyne-containing amines, and their corresponding chiral triazoles formed via CuAAC, were probed in situ. Selectivity factors of up to s = 4 were imparted and measured, accurate to within ±3% when compared to chiral GC.
Collapse
Affiliation(s)
- William D G Brittain
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK. and Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Brette M Chapin
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK. and Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Wenlei Zhai
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK. and Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Benjamin R Buckley
- Department of Chemistry, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| |
Collapse
|
29
|
Arya N, Mishra SK, Suryaprakash N. A simple ternary ion-pair complexation protocol for testing the enantiopurity and the absolute configurational analysis of acid and ester derivatives. NEW J CHEM 2018. [DOI: 10.1039/c8nj01489b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ternary ion-pair complexation protocol for rapid testing of the enantiopurity and the assignment of absolute configurations of various acid and ester derivatives.
Collapse
Affiliation(s)
- Neeru Arya
- NMR Research Centre and Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - Sandeep Kumar Mishra
- NMR Research Centre and Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| | - N. Suryaprakash
- NMR Research Centre and Solid State and Structural Chemistry Unit
- Indian Institute of Science
- Bangalore 560012
- India
| |
Collapse
|
30
|
Brender JR, Krishnamoorthy J, Ghosh A, Bhunia A. Binding Moiety Mapping by Saturation Transfer Difference NMR. Methods Mol Biol 2018; 1824:49-65. [PMID: 30039401 DOI: 10.1007/978-1-4939-8630-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Saturation transfer difference (STD) NMR has emerged as one of the key technologies in lead optimization during drug design. Unlike most biophysical assays which report only on the binding affinity, STD NMR reports simultaneously on both the binding affinity and the structure of the binding ligand/protein complex. The STD experiment drives magnetization from a protein to a bound small molecule ligand which carries away the memory of the saturation signal when it dissociates. Since the transfer of saturation is distance dependent, STD NMR can be used to map the specific atoms on the ligand in contact with a protein receptor allowing the impact of any structural change in the binding site to be mapped directly on to the individual functional groups responsible when a suitable compound library is screened. Because the signal is detected from the free ligand and not the bound complex, it can be used on a much wider range of systems than protein-detected NMR and has the advantage of more directly reporting on distances than changes in chemical shifts alone. The STD experiment, while deceptively simple, is very sensitive to both sample conditions and acquisition parameters. We present a general protocol for setting up and STD NMR experiment with a particular focus on how choices in sample conditions and acquisition parameters affect the outcome of the experiment.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | - Anirban Ghosh
- Department of Biophysics, Bose Institute, Kolkata, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata, India
| |
Collapse
|
31
|
Ángeles Canales M, Félix Espinosa J. Ligand-detected NMR Methods in Drug Discovery. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This book chapter describes the basic principles of NMR-based techniques for detecting ligand binding and uses examples of the application of these techniques in drug discovery programs for screening, hit validation and optimization to illustrate their utility in characterizing ligand–protein interactions. The binding of small molecules to biological receptors can be observed directly by detecting changes in a particular NMR parameter when the protein is added to a sample containing the ligand, or indirectly, using a “spy” molecule in competitive NMR experiments. Combinations of different NMR experiments can be used to confirm binding and also to obtain structural information that can be used to guide medicinal chemistry decisions. Ligand-observed NMR methods are able to identify weak affinity ligands that cannot be detected by other biophysical techniques, which means that NMR-based methods are extremely valuable tools for fragment-based drug discovery approaches.
Collapse
Affiliation(s)
- María Ángeles Canales
- Department of Química Orgánica I, Universidad Complutense de Madrid Avd. Complutense s/n 28040 Madrid Spain
| | - Juan Félix Espinosa
- Centro de Investigación Lilly Avda. de la Industria 30 28108, Alcobendas, Madrid Spain
| |
Collapse
|
32
|
Monaco S, Tailford LE, Juge N, Angulo J. Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Serena Monaco
- School of Pharmacy; University of East Anglia; Norwich Research Park Norwich UK
| | - Louise E. Tailford
- The Gut Health And Food Safety Institute Strategic Program; Quadram Institute of Bioscience; NR47UA Norwich Research Park Norwich UK
| | - Nathalie Juge
- The Gut Health And Food Safety Institute Strategic Program; Quadram Institute of Bioscience; NR47UA Norwich Research Park Norwich UK
| | - Jesus Angulo
- School of Pharmacy; University of East Anglia; Norwich Research Park Norwich UK
| |
Collapse
|
33
|
Monaco S, Tailford LE, Juge N, Angulo J. Differential Epitope Mapping by STD NMR Spectroscopy To Reveal the Nature of Protein-Ligand Contacts. Angew Chem Int Ed Engl 2017; 56:15289-15293. [PMID: 28977722 PMCID: PMC5725711 DOI: 10.1002/anie.201707682] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/08/2017] [Indexed: 11/21/2022]
Abstract
Saturation transfer difference (STD) NMR spectroscopy is extensively used to obtain epitope maps of ligands binding to protein receptors, thereby revealing structural details of the interaction, which is key to direct lead optimization efforts in drug discovery. However, it does not give information about the nature of the amino acids surrounding the ligand in the binding pocket. Herein, we report the development of the novel method differential epitope mapping by STD NMR (DEEP‐STD NMR) for identifying the type of protein residues contacting the ligand. The method produces differential epitope maps through 1) differential frequency STD NMR and/or 2) differential solvent (D2O/H2O) STD NMR experiments. The two approaches provide different complementary information on the binding pocket. We demonstrate that DEEP‐STD NMR can be used to readily obtain pharmacophore information on the protein. Furthermore, if the 3D structure of the protein is known, this information also helps in orienting the ligand in the binding pocket.
Collapse
Affiliation(s)
- Serena Monaco
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Louise E Tailford
- The Gut Health And Food Safety Institute Strategic Program, Quadram Institute of Bioscience, NR47UA, Norwich Research Park, Norwich, UK
| | - Nathalie Juge
- The Gut Health And Food Safety Institute Strategic Program, Quadram Institute of Bioscience, NR47UA, Norwich Research Park, Norwich, UK
| | - Jesus Angulo
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
34
|
Schlossmann J, Wolfertstetter S. Identification of cCMP and cUMP Substrate Proteins and Cross Talk Between cNMPs. Handb Exp Pharmacol 2017; 238:149-167. [PMID: 26721673 DOI: 10.1007/164_2015_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
cCMP and cUMP are pyrimidine cyclic nucleotides which are present in several types of cells. These molecules could exert diverse cellular functions and might act as second messengers. In the last years, diverse approaches were performed to analyze possible cellular substrates and signaling pathways of cCMP and cUMP. In this review these approaches are summarized, and probable cross talk of these signaling molecules is described. These analyses might lead to the (patho)physiological and pharmacological relevance of these noncanonical cyclic nucleotides.
Collapse
Affiliation(s)
- Jens Schlossmann
- Pharmacology and Toxicology, Institute of Pharmacy, University Regensburg, Universitätsstr. 31, D-93040, Regensburg, Germany.
| | - Stefanie Wolfertstetter
- Pharmacology and Toxicology, Institute of Pharmacy, University Regensburg, Universitätsstr. 31, D-93040, Regensburg, Germany
| |
Collapse
|
35
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
36
|
Harner MJ, Mueller L, Robbins KJ, Reily MD. NMR in drug design. Arch Biochem Biophys 2017; 628:132-147. [DOI: 10.1016/j.abb.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 02/09/2023]
|
37
|
Perez M. Autonomous driving in NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:15-21. [PMID: 27785822 DOI: 10.1002/mrc.4546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Manuel Perez
- Mestrelab Research, S.L. Feliciano Barrera 9B-Baixo, Santiago de Compostela, Spain
| |
Collapse
|
38
|
Gossert AD, Jahnke W. NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:82-125. [PMID: 27888841 DOI: 10.1016/j.pnmrs.2016.09.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 05/12/2023]
Abstract
Protein-ligand interactions are at the heart of drug discovery research. NMR spectroscopy is an excellent technology to identify and validate protein-ligand interactions. A plethora of NMR methods are available which are powerful, robust and information-rich, but also have pitfalls and limitations. In this review, we will focus on how to choose between different experiments, and assess their strengths and liabilities. We introduce the concept of the validation cross, which helps to categorize experiments according to their information content and to simplify the choice of the right experiment in order to address a specific question. Additionally, we will provide the framework for drawing correct conclusions from experimental results in order to accurately evaluate such interactions. Out of scope for this review are methods for subsequent characterization of the interaction such as quantitative KD determination, binding mode analysis, or structure determination.
Collapse
Affiliation(s)
- Alvar D Gossert
- Novartis Institutes for BioMedical Research, Novartis Campus, 4002 Basel, Switzerland.
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, 4002 Basel, Switzerland
| |
Collapse
|
39
|
Kim Y, Liu M, Hilty C. Parallelized Ligand Screening Using Dissolution Dynamic Nuclear Polarization. Anal Chem 2016; 88:11178-11183. [PMID: 27723298 DOI: 10.1021/acs.analchem.6b03382] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Protein-ligand interactions are frequently screened using nuclear magnetic resonance (NMR) spectroscopy. The dissociation constant (KD) of a ligand of interest can be determined via a spin-spin relaxation measurement of a reporter ligand in a single scan when using hyperpolarization by means of dissolution dynamic nuclear polarization (D-DNP). Despite nearly instantaneous signal acquisition, a limitation of D-DNP for the screening of protein-ligand interactions is the required polarization time on the order of tens of minutes. Here, we introduce a multiplexed NMR experiment, where a single hyperpolarized ligand sample is rapidly mixed with protein injected into two flow cells. NMR detection is achieved simultaneously on both channels, resulting in a chemical shift resolved spin relaxation measurement. Spectral resolution allows the use of reference compounds for accurate quantification of concentrations. Simultaneous use of two concentration ratios between protein and ligand broadens the range of KD that is accurately measurable in a single experiment to at least an order of magnitude. In a comparison of inhibitors for the protein trypsin, the average KD values of benzamidine and benzylamine were found to be 12.6 ± 1.4 μM and 207 ± 22 μM from three measurements, based on KD = 142 μM assumed known for the reporter ligand 4-(trifluoromethyl)benzene-1-carboximidamide. Typical confidence ranges at 95% evaluated for single experiments were (8.3 μM, 20 μM) and (151 μM, 328 μM). The multiplexed detection of two or more hyperpolarized samples increases throughput of D-DNP by the same factor, improving the applicability to most multipoint measurements that would traditionally be achieved using titrations.
Collapse
Affiliation(s)
- Yaewon Kim
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| | - Mengxiao Liu
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| | - Christian Hilty
- Department of Chemistry, Texas A&M University , College Station, Texas 77843-3255, United States
| |
Collapse
|
40
|
Buratto R, Mammoli D, Canet E, Bodenhausen G. Ligand–Protein Affinity Studies Using Long-Lived States of Fluorine-19 Nuclei. J Med Chem 2016; 59:1960-6. [DOI: 10.1021/acs.jmedchem.5b01583] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Roberto Buratto
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniele Mammoli
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Estel Canet
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Département
de Chimie, Ecole Normale Supérieure−PSL Research University, 24 Rue Lhomond, 75231 Paris Cedex 05, France
- Sorbonne Université, UPMC Univ Paris 06, 4 place Jussieu, 75005 Paris, France
- CNRS, UMR 7203 LBM, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Département
de Chimie, Ecole Normale Supérieure−PSL Research University, 24 Rue Lhomond, 75231 Paris Cedex 05, France
- Sorbonne Université, UPMC Univ Paris 06, 4 place Jussieu, 75005 Paris, France
- CNRS, UMR 7203 LBM, 75005 Paris, France
| |
Collapse
|
41
|
Lei H, Jones C, Zhu T, Patel K, Wolf NM, Fung LWM, Lee H, Johnson ME. Identification of B. anthracis N5-carboxyaminoimidazole ribonucleotide mutase (PurE) active site binding compounds via fragment library screening. Bioorg Med Chem 2016; 24:596-605. [DOI: 10.1016/j.bmc.2015.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/07/2015] [Accepted: 12/15/2015] [Indexed: 12/31/2022]
|
42
|
Buckton LK, Wahyudi H, McAlpine SR. The first report of direct inhibitors that target the C-terminal MEEVD region on heat shock protein 90. Chem Commun (Camb) 2015; 52:501-4. [PMID: 26528929 DOI: 10.1039/c5cc03245h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Sixteen linear and cyclic peptides were designed de novo to target the C-terminus of heat shock protein 90 (Hsp90). Protein binding data indicates that three compounds directly block co-chaperone access to Hsp90's C-terminus and luciferase renaturation assays confirm Hsp90-mediated protein folding is disrupted. This is the first report of an inhibitor that binds directly to the C-terminal MEEVD region of Hsp90.
Collapse
Affiliation(s)
- L K Buckton
- School of Chemistry, Gate 2 High Street, Dalton 219, University of New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
43
|
Yu Y, New SY, Lin J, Su X, Tan YN. A Rapid and Quantitative Fluorimetric Method for Protein-Targeting Small Molecule Drug Screening. J Vis Exp 2015:e53261. [PMID: 26555855 DOI: 10.3791/53261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We demonstrate a new drug screening method for determining the binding affinity of small drug molecules to a target protein by forming fluorescent gold nanoclusters (Au NCs) within the drug-loaded protein, based on the differential fluorescence signal emitted by the Au NCs. Albumin proteins such as human serum albumin (HSA) and bovine serum albumin (BSA) are selected as the model proteins. Four small molecular drugs (e.g., ibuprofen, warfarin, phenytoin, and sulfanilamide) of different binding affinities to the albumin proteins are tested. It was found that the formation rate of fluorescent Au NCs inside the drug loaded albumin protein under denaturing conditions (i.e., 60 °C or in the presence of urea) is slower than that formed in the pristine protein (without drugs). Moreover, the fluorescent intensity of the as-formed NCs is found to be inversely correlated to the binding affinities of these drugs to the albumin proteins. Particularly, the higher the drug-protein binding affinity, the slower the rate of Au NCs formation, and thus a lower fluorescence intensity of the resultant Au NCs is observed. The fluorescence intensity of the resultant Au NCs therefore provides a simple measure of the relative binding strength of different drugs tested. This method is also extendable to measure the specific drug-protein binding constant (KD) by simply varying the drug content preloaded in the protein at a fixed protein concentration. The measured results match well with the values obtained using other prestige but more complicated methods.
Collapse
Affiliation(s)
- Yong Yu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
| | - Siu Yee New
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
| | - Jiaxian Lin
- School of Chemical & Biomedical Engineering, Nanyang Technological University
| | - Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR)
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR);
| |
Collapse
|
44
|
Wang Z, Bhattacharya A, Ivanov DN. Identification of Small-Molecule Inhibitors of the HuR/RNA Interaction Using a Fluorescence Polarization Screening Assay Followed by NMR Validation. PLoS One 2015; 10:e0138780. [PMID: 26390015 PMCID: PMC4577092 DOI: 10.1371/journal.pone.0138780] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/03/2015] [Indexed: 01/25/2023] Open
Abstract
The human antigen R (HuR) stabilizes many mRNAs of proto-oncogene, transcription factors, cytokines and growth factors by recognizing AU-rich elements (AREs) presented in their 3’ or 5’ untranslated region (UTR). Multiple lines of experimental evidence suggest that this process plays a key role in cancer development. Thus, destabilizing HuR/RNA interaction by small molecules presents an opportunity for cancer treatment/prevention. Here we present an integrated approach to identify inhibitors of HuR/RNA interaction using a combination of fluorescence-based and NMR-based high throughput screening (HTS). The HTS assay with fluorescence polarization readout and Z’-score of 0.8 was used to perform a screen of the NCI diversity set V library in a 384 well plate format. An NMR-based assay with saturation transfer difference (STD) detection was used for hits validation. Protein NMR spectroscopy was used to demonstrate that some hit compounds disrupt formation of HuR oligomer, whereas others block RNA binding. Thus, our integrated high throughput approach provides a new avenue for identification of small molecules targeting HuR/RNA interaction.
Collapse
Affiliation(s)
- Zhonghua Wang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
- * E-mail:
| | - Akash Bhattacharya
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| | - Dmitri N. Ivanov
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States of America
| |
Collapse
|
45
|
Min H, Sekar G, Hilty C. Polarization Transfer from Ligands Hyperpolarized by Dissolution Dynamic Nuclear Polarization for Screening in Drug Discovery. ChemMedChem 2015; 10:1559-63. [DOI: 10.1002/cmdc.201500241] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/03/2015] [Indexed: 11/06/2022]
|
46
|
Edfeldt F, Evenäs J, Lepistö M, Ward A, Petersen J, Wissler L, Rohman M, Sivars U, Svensson K, Perry M, Feierberg I, Zhou XH, Hansson T, Narjes F. Identification of indole inhibitors of human hematopoietic prostaglandin D2 synthase (hH-PGDS). Bioorg Med Chem Lett 2015; 25:2496-500. [DOI: 10.1016/j.bmcl.2015.04.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 11/25/2022]
|
47
|
Chappuis Q, Milani J, Vuichoud B, Bornet A, Gossert AD, Bodenhausen G, Jannin S. Hyperpolarized Water to Study Protein-Ligand Interactions. J Phys Chem Lett 2015; 6:1674-1678. [PMID: 26263332 DOI: 10.1021/acs.jpclett.5b00403] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The affinity between a chosen target protein and small molecules is a key aspect of drug discovery. Screening by popular NMR methods such as Water-LOGSY suffers from low sensitivity and from false positives caused by aggregated or denatured proteins. This work demonstrates that the sensitivity of Water-LOGSY can be greatly boosted by injecting hyperpolarized water into solutions of proteins and ligands. Ligand binding can be detected in a few seconds, whereas about 30 min is usually required without hyperpolarization. Hyperpolarized water also enhances proton signals of proteins at concentrations below 20 μM so that one can verify in a few seconds whether the proteins remain intact or have been denatured.
Collapse
Affiliation(s)
- Quentin Chappuis
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Jonas Milani
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Basile Vuichoud
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aurélien Bornet
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alvar D Gossert
- ‡Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Geoffrey Bodenhausen
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- §Département de Chimie, Ecole Normale Supérieure, PSL, 75005 Paris, France
- ⊥Sorbonne Université, UPMC Univ Paris 06, 75005 Paris, France
- #Laboratoire des BioMolécules, UMR 7203, 75005 Paris, France
| | - Sami Jannin
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- ∥Bruker BioSpin AG, 8117 Fällanden, Switzerland
| |
Collapse
|
48
|
19F nuclear magnetic resonance screening of glucokinase activators. Anal Biochem 2015; 477:62-8. [DOI: 10.1016/j.ab.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
|
49
|
Kim Y, Hilty C. Affinity screening using competitive binding with fluorine-19 hyperpolarized ligands. Angew Chem Int Ed Engl 2015; 54:4941-4. [PMID: 25703090 PMCID: PMC4472436 DOI: 10.1002/anie.201411424] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/08/2022]
Abstract
Fluorine-19 NMR and hyperpolarization form a powerful combination for drug screening. Under a competitive equilibrium with a selected fluorinated reporter ligand, the dissociation constant (K(D)) of other ligands of interest is measurable using a single-scan Carr-Purcell-Meiboom-Gill (CPMG) experiment, without the need for a titration. This method is demonstrated by characterizing the binding of three ligands with different affinities for the serine protease trypsin. Monte Carlo simulations show that the highest accuracy is obtained when about one-half of the bound reporter ligand is displaced in the binding competition. Such conditions can be achieved over a wide range of affinities, allowing for rapid screening of non-fluorinated compounds when a single fluorinated ligand for the binding pocket of interest is known.
Collapse
Affiliation(s)
- Yaewon Kim
- Department of Chemistry Texas A&M University, College Station, TX 77843 (USA)
| | - Christian Hilty
- Department of Chemistry Texas A&M University, College Station, TX 77843 (USA)
| |
Collapse
|
50
|
Kim Y, Hilty C. Affinitätsbestimmung durch kompetitive Bindung mit Fluor-19-hyperpolarisierten Liganden. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|