1
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
2
|
Kim JM, Seong BL, Jung J. Highly chromophoric dual-terminus labeling of an intrinsically disordered native eukaryotic protein of interest at nanoscale. Int J Biol Macromol 2023:125396. [PMID: 37348577 DOI: 10.1016/j.ijbiomac.2023.125396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Chemical conjugation of purified proteins of interest (POIs) in Escherichia coli cells is effective for high expression but has limitations for highly chromogenic dual labeling of intrinsically disordered native proteins (IDNPs). Our probes can tag IDNPs using chemical conjugation during protein synthesis and folding while preserving biologically active structures in mammalian cells. We fluorescently labeled IDNPs in mammalian cells using pure fluorescent methionine and ATTO 565-biotin at the N-or C-terminus, respectively. The dual-labeled Tat protein was used as a model for IDNPs in HeLa cells and detected using Ni-NTA beads to estimate its highly chromogenic concentration. We also demonstrated highly chromogenic double labeling of genetically encoded fluorescent-Tat expression in eukaryotic cells using a single fluorescent dye pair with Förster resonance energy transfer (FRET) ratio and two-color correlation analysis. This study aims to solve native POI processing and achieve ultra-sensitive protein folding for biological and ecological applications at the nanoscale.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Environmental Science and Ecological Engineering, Ojeong Resilience Institute, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02842, Republic of Korea.
| | - Baik Lin Seong
- Department of Biotechnology, College of Bioscience and Biotechnology, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02842, Republic of Korea
| |
Collapse
|
3
|
Guo J, Niu W. Genetic Code Expansion Through Quadruplet Codon Decoding. J Mol Biol 2021; 434:167346. [PMID: 34762896 PMCID: PMC9018476 DOI: 10.1016/j.jmb.2021.167346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 12/31/2022]
Abstract
Noncanonical amino acid mutagenesis has emerged as a powerful tool for the study of protein structure and function. While triplet nonsense codons, especially the amber codon, have been widely employed, quadruplet codons have attracted attention for the potential of creating additional blank codons for noncanonical amino acids mutagenesis. In this review, we discuss methodologies and applications of quadruplet codon decoding in genetic code expansion both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
4
|
Abstract
![]()
Since the establishment
of site-specific mutagenesis of single
amino acids to interrogate protein function in the 1970s, biochemists
have sought to tailor protein structure in the native cell environment.
Fine-tuning the chemical properties of proteins is an indispensable
way to address fundamental mechanistic questions. Unnatural amino
acids (UAAs) offer the possibility to expand beyond the 20 naturally
occurring amino acids in most species and install new and useful chemical
functions. Here, we review the literature about advances in UAA incorporation
technology from chemoenzymatic aminoacylation of modified tRNAs to in vitro translation systems to genetic encoding of UAAs
in the native cell environment and whole organisms. We discuss innovative
applications of the UAA technology to challenges in bioengineering
and medicine.
Collapse
Affiliation(s)
- Mia A Shandell
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, U.K
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Department of Systems Biology, Columbia University, New York, New York 10027, United States
| |
Collapse
|
5
|
Zhang C, Talukder P, Dedkova LM, Hecht SM. Facilitated synthesis of proteins containing modified dipeptides. Bioorg Med Chem 2021; 41:116210. [PMID: 34022527 DOI: 10.1016/j.bmc.2021.116210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
The elaboration of peptides and proteins containing non-proteinogenic amino acids has been realized using several complementary strategies, including chemical synthesis, ribosome- or non-ribosome-mediated elaboration, intein-mediated polypeptide rearrangements, or some combination of these strategies. All of these have strengths and limitations, and significant efforts have been focused on minimizing the effects of limitations, to improve the overall utility of individual strategies. Our laboratory has studied ribosomally mediated peptide and protein synthesis involving a wide variety of non-proteinogenic amino acids, and in recent years we have described a novel strategy for the selection of modified bacterial ribosomes. These modified ribosomes have enabled the incorporation into peptides and proteins of numerous modified amino acids not accessible using wild-type ribosomes. This has included d-amino acids, β-amino acids, dipeptides and dipeptidomimetic species, as well as phosphorylated amino acids. Presently, we have considered novel strategies for incorporating non-proteinogenic amino acids in improved yields. This has included the incorporation of non-proteinogenic amino acids into contiguous positions, a transformation known to be challenging. We demonstrate the preparation of this type of protein modification by utilizing a suppressor tRNACUA activated with a dipeptide consisting of two identical non-proteinogenic amino acids, in the presence of modified ribosomes selected to recognize such dipeptides. Also, we demonstrate that the use of bis-aminoacylated suppressor tRNAs, shown previously to increase protein yields significantly in vitro, can be extended to the use of non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Poulami Talukder
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
6
|
Dedkova LM, Hecht SM. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. J Am Chem Soc 2019; 141:6430-6447. [PMID: 30901982 DOI: 10.1021/jacs.9b02109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of d-amino acids, β-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic l-α-amino acids. While proteins containing metabolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.
Collapse
Affiliation(s)
- Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
7
|
Abstract
Fourier transform infrared (FTIR) spectroscopy has become one of the major techniques of structural characterization of proteins, peptides, and protein-membrane interactions. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or intermolecular interactions. The sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, the structural features of membrane pore forming proteins and peptides, and much more. The purpose of this chapter was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, is also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
8
|
Talukder P, Chen S, Roy B, Yakovchuk P, Spiering MM, Alam MP, Madathil MM, Bhattacharya C, Benkovic SJ, Hecht SM. Cyanotryptophans as Novel Fluorescent Probes for Studying Protein Conformational Changes and DNA–Protein Interaction. Biochemistry 2015; 54:7457-69. [DOI: 10.1021/acs.biochem.5b01085] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Poulami Talukder
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Basab Roy
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Petro Yakovchuk
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Michelle M. Spiering
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mohammad P. Alam
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Manikandadas M. Madathil
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chandrabali Bhattacharya
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Stephen J. Benkovic
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sidney M. Hecht
- Center
for BioEnergetics, Biodesign Institute, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
9
|
Hosokawa-Muto J, Yamaguchi KI, Kamatari YO, Kuwata K. Synthesis of double-fluorescent labeled prion protein for FRET analysis. Biosci Biotechnol Biochem 2015; 79:1802-9. [PMID: 26035019 DOI: 10.1080/09168451.2015.1050991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
An abnormal form of prion protein (PrP) is considered to be the pathogen in prion diseases. However, the structural details of this abnormal form are not known. To characterize the non-native structure of PrP, we synthesized position-specific double-fluorescent labeled PrP for a fluorescence resonance energy transfer (FRET) experiment. Using FRET, we observed a conformational change in the labeled PrP associated with amyloid fibril formation. The FRET analysis indicated that the distance between fluorescent labeled N- and C-terminal sites of PrP increased upon the formation of amyloid fibrils compared with that of the native state. This approach using FRET analysis is useful for elucidating the structure of abnormal PrP.
Collapse
Affiliation(s)
| | - Kei-ichi Yamaguchi
- a Center for Emerging Infectious Diseases , Gifu University.,b United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University
| | - Yuji O Kamatari
- a Center for Emerging Infectious Diseases , Gifu University.,c Life Science Research Center , Gifu University
| | - Kazuo Kuwata
- a Center for Emerging Infectious Diseases , Gifu University.,b United Graduate School of Drug Discovery and Medical Information Sciences , Gifu University.,d Department of Gene Development, Graduate School of Medicine , Gifu University , Gifu , Japan
| |
Collapse
|
10
|
Quast RB, Mrusek D, Hoffmeister C, Sonnabend A, Kubick S. Cotranslational incorporation of non-standard amino acids using cell-free protein synthesis. FEBS Lett 2015; 589:1703-12. [PMID: 25937125 DOI: 10.1016/j.febslet.2015.04.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
Abstract
Over the last years protein engineering using non-standard amino acids has gained increasing attention. As a result, improved methods are now available, enabling the efficient and directed cotranslational incorporation of various non-standard amino acids to equip proteins with desired characteristics. In this context, the utilization of cell-free protein synthesis is particularly useful due to the direct accessibility of the translational machinery and synthesized proteins without having to maintain a vital cellular host. We review prominent methods for the incorporation of non-standard amino acids into proteins using cell-free protein synthesis. Furthermore, a list of non-standard amino acids that have been successfully incorporated into proteins in cell-free systems together with selected applications is provided.
Collapse
Affiliation(s)
- Robert B Quast
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Devid Mrusek
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Christian Hoffmeister
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany.
| |
Collapse
|
11
|
Talukder P, Chen S, Liu CT, Baldwin EA, Benkovic SJ, Hecht SM. Tryptophan-based fluorophores for studying protein conformational changes. Bioorg Med Chem 2014; 22:5924-34. [PMID: 25284250 PMCID: PMC4254292 DOI: 10.1016/j.bmc.2014.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022]
Abstract
With the continuing interest in deciphering the interplay between protein function and conformational changes, small fluorescence probes will be especially useful for tracking changes in the crowded protein interior space. Presently, we describe the potential utility of six unnatural amino acid fluorescence donors structurally related to tryptophan and show how they can be efficiently incorporated into a protein as fluorescence probes. We also examine the various photophysical properties of the new Trp analogues, which are significantly redshifted in their fluorescence spectra relative to tryptophan. In general, the Trp analogues were well tolerated when inserted into Escherichia coli DHFR, and did not perturb enzyme activity, although substitution for Trp22 did result in a diminution in DHFR activity. Further, it was demonstrated that D and E at position 37 formed efficient FRET pairs with acridon-2-ylalanine (Acd) at position 17. The same was also true for a DHFR construct containing E at position 79 and Acd at position 17. Together, these findings demonstrate that these tryptophan analogues can be introduced into DHFR with minimal disruption of function, and that they can be employed for the selective study of targeted conformational changes in proteins, even in the presence of unmodified tryptophans.
Collapse
Affiliation(s)
- Poulami Talukder
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Shengxi Chen
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - C Tony Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Edwin A Baldwin
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Sidney M Hecht
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
12
|
Speight LC, Samanta M, Petersson EJ. Minimalist Approaches to Protein Labelling: Getting the Most Fluorescent Bang for Your Steric Buck. Aust J Chem 2014. [DOI: 10.1071/ch13554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescence methods allow one to monitor protein conformational changes, protein–protein associations, and proteolysis in real time, at the single molecule level and in living cells. The information gained in such experiments is a function of the spectroscopic techniques used and the strategic placement of fluorophore labels within the protein structure. There is often a trade-off between size and utility for fluorophores, whereby large size can be disruptive to the protein’s fold or function, but valuable characteristics, such as visible wavelength absorption and emission or brightness, require sizable chromophores. Three major types of fluorophore readouts are commonly used: (1) Förster resonance energy transfer (FRET); (2) photoinduced electron transfer (PET); and (3) environmental sensitivity. This review focuses on those probes small enough to be incorporated into proteins during ribosomal translation, which allows the probes to be placed on the interiors of proteins as they are folded during synthesis. The most broadly useful method for doing so is site-specific unnatural amino acid (UAA) mutagenesis. We discuss the use of UAA probes in applications relying on FRET, PET, and environmental sensitivity. We also briefly review other methods of protein labelling and compare their relative merits to UAA mutagenesis. Finally, we discuss small probes that have thus far been used only in synthetic peptides, but which have unusual value and may be candidates for incorporation using UAA methods.
Collapse
|
13
|
Chen S, Fahmi NE, Bhattacharya C, Wang L, Jin Y, Benkovic SJ, Hecht SM. Fluorescent biphenyl derivatives of phenylalanine suitable for protein modification. Biochemistry 2013; 52:8580-9. [PMID: 24152169 PMCID: PMC3875372 DOI: 10.1021/bi401275v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In a recent study, we demonstrated that structurally compact fluorophores incorporated into the side chains of amino acids could be introduced into dihydrofolate reductase from Escherichia coli (ecDHFR) with minimal disruption of protein structure or function, even when the site of incorporation was within a folded region of the protein. The modified proteins could be employed for FRET measurements, providing sensitive monitors of changes in protein conformation. The very favorable results achieved in that study encouraged us to prepare additional fluorescent amino acids of potential utility for studying protein dynamics. Presently, we describe the synthesis and photophysical characterization of four positional isomers of biphenyl-phenylalanine, all of which were found to exhibit potentially useful fluorescent properties. All four phenylalanine derivatives were used to activate suppressor tRNA transcripts and incorporated into multiple positions of ecDHFR. All phenylalanine derivatives were incorporated with good efficiency into position 16 of ecDHFR and afforded modified proteins that consumed NADPH at rates up to about twice the rate measured for wild type. This phenomenon has been noted on a number of occasions previously and shown to be due to an increase in the off-rate of tetrahydrofolate from the enzyme, altering a step that is normally rate limiting. When introduced into sterically accessible position 49, the four phenylalanine derivatives afforded DHFRs having catalytic function comparable to wild type. The four phenylalanine derivatives were also introduced into position 115 of ecDHFR, which is known to be a folded region of the protein less tolerant of structural alteration. As anticipated, significant differences were noted in the catalytic efficiencies of the derived proteins. The ability of two of the sizable biphenyl-phenylalanine derivatives to be accommodated at position 115 with minimal perturbation of DHFR function is attributed to rotational flexibility about the biphenyl bonds.
Collapse
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Nour Eddine Fahmi
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Chandrabali Bhattacharya
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Lin Wang
- Department of Chemistry, the Pennsylvania State University, University Park, PA 106802, USA
| | - Yuguang Jin
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Stephen J. Benkovic
- Department of Chemistry, the Pennsylvania State University, University Park, PA 106802, USA
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
14
|
Chen S, Fahmi NE, Wang L, Bhattacharya C, Benkovic SJ, Hecht SM. Detection of dihydrofolate reductase conformational change by FRET using two fluorescent amino acids. J Am Chem Soc 2013; 135:12924-7. [PMID: 23941571 PMCID: PMC3785542 DOI: 10.1021/ja403007r] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two fluorescent amino acids, including the novel fluorescent species 4-biphenyl-l-phenylalanine (1), have been incorporated at positions 17 and 115 of dihydrofolate reductase (DHFR) to enable a study of conformational changes associated with inhibitor binding. Unlike most studies involving fluorescently labeled proteins, the fluorophores were incorporated into the amino acid side chains, and both probes [1 and L-(7-hydroxycoumarin-4-yl)ethylglycine (2)] were smaller than fluorophores typically used for such studies. The DHFR positions were chosen as potentially useful for Förster resonance energy transfer (FRET) measurements on the basis of their estimated separation (17-18 Å) and the expected change in distance along the reaction coordinate. Also of interest was the steric accessibility of the two sites: Glu17 is on the surface of DHFR, while Ile115 is within a folded region of the protein. Modified DHFR I (1 at position 17; 2 at position 115) and DHFR II (2 at position 17; 1 at position 115) were both catalytically competent. However, DHFR II containing the potentially rotatable biphenylphenylalanine moiety at sterically encumbered position 115 was significantly more active than DHFR I. Irradiation of the modified DHFRs at 280 nm effected excitation of 1, energy transfer to 2, and emission by 2 at 450 nm. However, the energy transfer was substantially more efficient in DHFR II. The effect of inhibitor binding was also measured. Trimethoprim mediated concentration-dependent diminution of the emission observed at 450 nm for DHFR II but not for DHFR I. These findings demonstrate that amino acids containing small fluorophores can be introduced into DHFR with minimal disruption of function and in a fashion that enables sensitive monitoring of changes in DHFR conformation.
Collapse
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Nour Eddine Fahmi
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Lin Wang
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA
| | - Chandrabali Bhattacharya
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Stephen J. Benkovic
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
15
|
Tatulian SA. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods Mol Biol 2013; 974:177-218. [PMID: 23404277 DOI: 10.1007/978-1-62703-275-9_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is widely used in structural characterization of proteins or peptides. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or upon intermolecular interactions. Sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as (13)C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, and molecular architecture of membrane pore or channel forming proteins and peptides. The purpose of this article was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, are also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
16
|
Chen S, Wang L, Fahmi NE, Benkovic SJ, Hecht SM. Two pyrenylalanines in dihydrofolate reductase form an excimer enabling the study of protein dynamics. J Am Chem Soc 2012; 134:18883-5. [PMID: 23116258 DOI: 10.1021/ja307179q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Because of the lack of sensitivity to small changes in distance by available FRET pairs (a constraint imposed by the dimensions of the enzyme), a DHFR containing two pyrene moieties was prepared to enable the observation of excimer formation. Pyren-1-ylalanine was introduced into DHFR positions 16 and 49 using an in vitro expression system in the presence of pyren-1-ylalanyl-tRNA(CUA). Excimer formation (λ(ex) 342 nm; λ(em) 481 nm) was observed in the modified DHFR, which retained its catalytic competence and was studied under multiple and single turnover conditions. The excimer appeared to follow a protein conformational change after the H transfer involving the relative position and orientation of the pyrene moieties and is likely associated with product dissociation.
Collapse
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | |
Collapse
|
17
|
Yamaguchi A, Hohsaka T. Synthesis of Novel BRET/FRET Protein Probes Containing Light-Emitting Proteins and Fluorescent Nonnatural Amino Acids. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2012. [DOI: 10.1246/bcsj.20110368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Atsushi Yamaguchi
- School of Materials Science, Japan Advanced Institute of Science and Technology
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology
| |
Collapse
|
18
|
Chen S, Fahmi NE, Nangreave RC, Mehellou Y, Hecht SM. Synthesis of pdCpAs and transfer RNAs activated with thiothreonine and derivatives. Bioorg Med Chem 2012; 20:2679-89. [PMID: 22405920 PMCID: PMC3575115 DOI: 10.1016/j.bmc.2012.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 11/29/2022]
Abstract
N,S-diprotected L-thiothreonine and L-allo-thiothreonine derivatives were synthesized using a novel chemical strategy, and used for esterification of the dinucleotide pdCpA. The aminoacylated dinucleotides were then employed for the preparation of activated suppressor tRNA(CUA) transcripts. Thiothreonine and allo-thiothreonine were incorporated into a predetermined position of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine, and the elaborated proteins were derivatized site-specifically at the thiothreonine residue with a fluorophore.
Collapse
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Nour Eddine Fahmi
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Ryan C. Nangreave
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Youcef Mehellou
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
19
|
Zheng S, Kwon I. Manipulation of enzyme properties by noncanonical amino acid incorporation. Biotechnol J 2011; 7:47-60. [PMID: 22121038 DOI: 10.1002/biot.201100267] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 11/07/2022]
Abstract
Since wild-type enzymes do not always have the properties needed for various applications, enzymes are often engineered to obtain desirable properties through protein engineering techniques. In the past decade, complementary to the widely used rational protein design and directed evolution techniques, noncanonical amino acid incorporation (NCAAI) has become a new and effective protein engineering technique. Recently, NCAAI has been used to improve intrinsic functions of proteins, such as enzymes and fluorescent proteins, beyond the capacities obtained with natural amino acids. Herein, recent progress on improving enzyme properties through NCAAI in vivo is reviewed and the challenges of current approaches and future directions are also discussed. To date, both NCAAI methods-residue- and site-specific incorporation-have been primarily used to improve the catalytic turnover number and substrate binding affinity of enzymes. Numerous strategies used to minimize structural perturbation and stability loss of a target enzyme upon NCAAI are also explored. Considering the generality of NCAAI incorporation, we expect its application could be expanded to improve other enzyme properties, such as substrate specificity and solvent resistance in the near future.
Collapse
Affiliation(s)
- Shun Zheng
- Department of Chemical Engineering University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
20
|
Abstract
The early detection of many human diseases is crucial if they are to be treated successfully. Therefore, the development of imaging techniques that can facilitate early detection of disease is of high importance. Changes in the levels of enzyme expression are known to occur in many diseases, making their accurate detection at low concentrations an area of considerable active research. Activatable fluorescent probes show immense promise in this area. If properly designed they should exhibit no signal until they interact with their target enzyme, reducing the level of background fluorescence and potentially endowing them with greater sensitivity. The mechanisms of fluorescence changes in activatable probes vary. This review aims to survey the field of activatable probes, focusing on their mechanisms of action as well as illustrating some of the in vitro and in vivo settings in which they have been employed.
Collapse
Affiliation(s)
- Christopher R Drake
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry Street, Suite 350, Box 0946, San Francisco, CA, 94107, USA
| | | | | |
Collapse
|
21
|
Miura M, Muranaka N, Abe R, Hohsaka T. Incorporation of Fluorescent-Labeled Non-α-Amino Carboxylic Acids into the N-Terminus of Proteins in Response to Amber Initiation Codon. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20090320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 2010; 110:2579-619. [PMID: 20205430 PMCID: PMC2868948 DOI: 10.1021/cr900301e] [Citation(s) in RCA: 668] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Renatus W. Sinkeldam
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| | | | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| |
Collapse
|
23
|
Li C, Henry E, Mani NK, Tang J, Brochon JC, Deprez E, Xie J. Click Chemistry to Fluorescent Amino Esters: Synthesis and Spectroscopic Studies. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Pantoja R, Rodriguez EA, Dibas MI, Dougherty DA, Lester HA. Single-molecule imaging of a fluorescent unnatural amino acid incorporated into nicotinic receptors. Biophys J 2010; 96:226-37. [PMID: 19134478 DOI: 10.1016/j.bpj.2008.09.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022] Open
Abstract
We report on the first, to our knowledge, successful detection of a fluorescent unnatural amino acid (fUAA), Lys(BODIPYFL), incorporated into a membrane protein (the muscle nicotinic acetylcholine receptor, nAChR) in a living cell. Xenopus oocytes were injected with a frameshift-suppressor tRNA, amino-acylated with Lys(BODIPYFL) and nAChR (alpha/beta19'GGGU/gamma/delta) mRNAs. We measured fluorescence from oocytes expressing nAChR beta19'Lys(BODIPYFL), using time-resolved total internal reflection fluorescence microscopy. Under conditions of relatively low receptor density (<0.1 receptors/microm(2)), we observed puncta with diffraction-limited profiles that were consistent with the point-spread function of our microscope. Furthermore, diffraction-limited puncta displayed step decreases in fluorescence intensity, consistent with single-molecule photobleaching. The puncta densities agreed with macroscopic ACh-induced current densities, showing that the fUAA was incorporated, and that receptors were functional. Dose-response relations for the nAChR beta19'Lys(BODIPYFL) receptors were similar to those for wild-type receptors. We also studied nAChR beta19'Lys(BODIPYFL) receptors labeled with alpha-bungarotoxin monoconjugated with Alexa488 (alphaBtxAlexa488). The nAChR has two alphaBtx binding sites, and puncta containing the Lys(BODIPYFL) labeled with alphaBtxAlexa488 yielded the expected three discrete photobleaching steps. We also performed positive control experiments with a nAChR containing enhanced green fluorescent protein in the gamma-subunit M3-M4 loop, which confirmed our nAChR beta19'Lys(BODIPYFL) measurements. Thus, we report on the cell-based single-molecule detection of nAChR beta19'Lys(BODIPYFL).
Collapse
Affiliation(s)
- Rigo Pantoja
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
25
|
Design strategies of fluorescent biosensors based on biological macromolecular receptors. SENSORS 2010; 10:1355-76. [PMID: 22205872 PMCID: PMC3244018 DOI: 10.3390/s100201355] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 11/17/2022]
Abstract
Fluorescent biosensors to detect the bona fide events of biologically important molecules in living cells are increasingly demanded in the field of molecular cell biology. Recent advances in the development of fluorescent biosensors have made an outstanding contribution to elucidating not only the roles of individual biomolecules, but also the dynamic intracellular relationships between these molecules. However, rational design strategies of fluorescent biosensors are not as mature as they look. An insatiable request for the establishment of a more universal and versatile strategy continues to provide an attractive alternative, so-called modular strategy, which permits facile preparation of biosensors with tailored characteristics by a simple combination of a receptor and a signal transducer. This review describes an overview of the progress in design strategies of fluorescent biosensors, such as auto-fluorescent protein-based biosensors, protein-based biosensors covalently modified with synthetic fluorophores, and signaling aptamers, and highlights the insight into how a given receptor is converted to a fluorescent biosensor. Furthermore, we will demonstrate a significance of the modular strategy for the sensor design.
Collapse
|
26
|
Wang H, Nakata E, Hamachi I. Recent progress in strategies for the creation of protein-based fluorescent biosensors. Chembiochem 2010; 10:2560-77. [PMID: 19693761 DOI: 10.1002/cbic.200900249] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The creation of novel bioanalytical tools for the detection and monitoring of a range of important target substances and biological events in vivo and in vitro is a great challenge in chemical biology and biotechnology. Protein-based fluorescent biosensors--integrated devices that convert a molecular-recognition event to a fluorescent signal--have recently emerged as a powerful tool. As the recognition units various proteins that can specifically recognize and bind a variety of molecules of biological significance with high affinity are employed. For the transducer, fluorescent proteins, such as green fluorescent protein (GFP) or synthetic fluorophores, are mostly adopted. Recent progress in protein engineering and organic synthesis allows us to manipulate proteins genetically and/or chemically, and a library of such protein scaffolds has been significantly expanded by genome projects. In this review, we briefly describe the recent progress of protein-based fluorescent biosensors on the basis of their platform and construction strategy, which are primarily divided into the genetically encoded fluorescent biosensors and chemically constructed biosensors.
Collapse
Affiliation(s)
- Hangxiang Wang
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
27
|
Katritzky AR, Chen QY, Tala SR. Convenient and Efficient Preparations of Azodye-Labeled Peptides. Chem Biol Drug Des 2009; 73:611-7. [DOI: 10.1111/j.1747-0285.2009.00813.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Iijima I, Hohsaka T. Position-Specific Incorporation of Fluorescent Non-natural Amino Acids into Maltose-Binding Protein for Detection of Ligand Binding by FRET and Fluorescence Quenching. Chembiochem 2009; 10:999-1006. [DOI: 10.1002/cbic.200800703] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
|
30
|
Katritzky AR, Narindoshvili T. Fluorescent amino acids: advances in protein-extrinsic fluorophores. Org Biomol Chem 2009; 7:627-34. [DOI: 10.1039/b818908k] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Watanabe T, Miyata Y, Abe R, Muranaka N, Hohsaka T. N-terminal specific fluorescence labeling of proteins through incorporation of fluorescent hydroxy acid and subsequent ester cleavage. Chembiochem 2008; 9:1235-42. [PMID: 18418818 DOI: 10.1002/cbic.200700578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have developed a novel method to attach a fluorescent label at the N terminus of proteins through a four-base codon-mediated incorporation of a fluorescent hydroxy acid and subsequent cleavage of the ester bond in a cell-free translation system. We found that a fluorescent-labeled p-amino-L-phenyllactic acid was successfully incorporated downstream of N-terminal tag peptides in response to a CGGG codon, and the tag peptides could be removed through ester cleavage to leave the fluorescent hydroxy acid at the N terminus of the proteins. Immunoprecipitation analysis revealed that ester cleavage occurred spontaneously during the translation reaction. The efficiency of the ester cleavage and the yield of the labeled proteins were dependent on the peptide tag sequence. We demonstrate that the insertion of an asparagine residue between the N-terminal T7 tag and the fluorescent hydroxy acid achieved both quantitative ester cleavage and efficient expression of the labeled proteins. The present method is a potential tool for N-terminal specific labeling of proteins with various compounds.
Collapse
Affiliation(s)
- Takayoshi Watanabe
- School of Materials Science, Japan, Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | | | | | | | |
Collapse
|
32
|
Katritzky AR, Chen QY, Tala SR. Convenient preparations of azo-dye labeled amino acids and amines. Org Biomol Chem 2008; 6:2400-4. [DOI: 10.1039/b802846j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Kajihara D, Abe R, Iijima I, Komiyama C, Sisido M, Hohsaka T. FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids. Nat Methods 2006; 3:923-9. [PMID: 17060916 DOI: 10.1038/nmeth945] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 08/28/2006] [Indexed: 11/08/2022]
Abstract
We designed and synthesized new, fluorescent, non-natural amino acids that emit fluorescence of wavelengths longer than 500 nm and are accepted by an Escherichia coli cell-free translation system. We synthesized p-aminophenylalanine derivatives linked with BODIPY fluorophores at the p-amino group and introduced them into streptavidin using the four-base codon CGGG in a cell-free translation system. Practically, the incorporation efficiency was high enough for BODIPYFL, BODIPY558 and BODIPY576. Next, we incorporated BODIPYFL-aminophenylalanine and BODIPY558-aminophenylalanine into different positions of calmodulin as a donor and acceptor pair for fluorescence resonance energy transfer (FRET) using two four-base codons. Fluorescence spectra and polarization measurements revealed that substantial FRET changes upon the binding of calmodulin-binding peptide occurred for the double-labeled calmodulins containing BODIPY558 at the N terminus and BODIPYFL at the Gly40, Phe99 and Leu112 positions. These results demonstrate the usefulness of FRET based on the position-specific double incorporation of fluorescent amino acids for analyzing conformational changes of proteins.
Collapse
Affiliation(s)
- Daisuke Kajihara
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Taira H, Hohsaka T, Sisido M. In vitro selection of tRNAs for efficient four-base decoding to incorporate non-natural amino acids into proteins in an Escherichia coli cell-free translation system. Nucleic Acids Res 2006; 34:1653-62. [PMID: 16549877 PMCID: PMC1405820 DOI: 10.1093/nar/gkl087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Position-specific incorporation of non-natural amino acids into proteins is a useful technique in protein engineering. In this study, we established a novel selection system to obtain tRNAs that show high decoding activity, from a tRNA library in a cell-free translation system to improve the efficiency of incorporation of non-natural amino acids into proteins. In this system, a puromycin–tRNA conjugate, in which the 3′-terminal A unit was replaced by puromycin, was used. The puromycin–tRNA conjugate was fused to a C-terminus of streptavidin through the puromycin moiety in the ribosome. The streptavidin–puromycin–tRNA fusion molecule was collected and brought to the next round after amplification of the tRNA sequence. We applied this system to select efficient frameshift suppressor tRNAs from a tRNA library with a randomly mutated anticodon loop derived from yeast tRNACCCGPhe. After three rounds of the selection, we obtained novel frameshift suppressor tRNAs which had high decoding activity and good orthogonality against endogenous aminoacyl-tRNA synthetases. These results demonstrate that the in vitro selection system developed here is useful to obtain highly active tRNAs for the incorporation of non-natural amino acid from a tRNA library.
Collapse
MESH Headings
- Amino Acids/metabolism
- Amino Acyl-tRNA Synthetases/metabolism
- Anticodon/chemistry
- Base Sequence
- Cell-Free System
- Codon/chemistry
- Escherichia coli/genetics
- Frameshifting, Ribosomal
- Gene Library
- Molecular Sequence Data
- Mutation
- Protein Biosynthesis
- Protein Engineering/methods
- Proteins/chemistry
- Puromycin/chemistry
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Streptavidin/chemistry
- Yeasts/genetics
Collapse
Affiliation(s)
- Hikaru Taira
- Department of Bioscience and Bioengineering, Okayama UniversityTsushimanaka, Okayama 700-8530, Japan
- School of Materials Science, Japan Advanced Institute of Science and Technology1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
- PRESTO, Japan Science and Technology Agency4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- To whom correspondence should be addressed. Tel: +81 761 51 1681; Fax: +81 761 51 1683;
| | - Masahiko Sisido
- Department of Bioscience and Bioengineering, Okayama UniversityTsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
35
|
Altschuh D, Oncul S, Demchenko AP. Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. J Mol Recognit 2006; 19:459-77. [PMID: 17089349 DOI: 10.1002/jmr.807] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Molecular biosensors are devices of molecular size that are designed for sensing different analytes on the basis of biospecific recognition. They should provide two coupled functions - the recognition (specific binding) of the target and the transduction of information about the recognition event into a measurable signal. The present review highlights the achievements and prospects in design and operation of molecular biosensors for which the transduction mechanism is based on fluorescence. We focus on the general strategy of fluorescent molecular sensing, construction of sensor elements, based on natural and designed biopolymers (proteins and nucleic acids). Particular attention is given to the coupling of sensing elements with fluorescent reporter dyes and to the methods for producing efficient fluorescence responses.
Collapse
Affiliation(s)
- Danièle Altschuh
- UMR 7175 CNRS/ULP, ESBS, Parc d'Innovation, Bld S. Brant, BP 10413, 67412 Illkirch Cedex, France.
| | | | | |
Collapse
|
36
|
Lodder M, Wang B, Hecht SM. The N-pentenoyl protecting group for aminoacyl-tRNAs. Methods 2005; 36:245-51. [PMID: 16076450 DOI: 10.1016/j.ymeth.2005.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 04/28/2005] [Indexed: 11/30/2022] Open
Abstract
The elaboration of misacylated transfer RNAs by T4 RNA ligase-mediated condensation of an aminoacylated pdCpA derivative and a tRNA (transcript) missing the two 3'-terminal nucleotides requires that the aminoacyl moiety of the dinucleotide be stabilized during the ligation reaction. This can be done conveniently by the use of a simple 4-pentenoyl group attached to N(alpha) of the amino acid. The pentenoyl amide can be deblocked readily with aqueous iodine, presumably via an iodolactone intermediate. This protecting group can be used in conjunction with side chain protecting group for amino acids having side chain functionality, thus permitting the elaboration of proteins bearing side chain protecting groups that can be removed in a subsequent step (e.g., caged proteins). In addition, an aminated analogue of the pentenoyl protecting group, the unnatural amino acid allylglycine, can be employed as part of the peptide backbone to afford a protein cleavable by iodine.
Collapse
Affiliation(s)
- Michiel Lodder
- Department of Chemistry, University of Virginia, Charlottesville, VA 22901, USA
| | | | | |
Collapse
|
37
|
Abstract
Combinatorial libraries of non-biological polymers and drug-like peptides could in principle be synthesized from unnatural amino acids by exploiting the broad substrate specificity of the ribosome. The ribosomal synthesis of such libraries would allow rare functional molecules to be identified using technologies developed for the in vitro selection of peptides and proteins. Here, we use a reconstituted E. coli translation system to simultaneously re-assign 35 of the 61 sense codons to 12 unnatural amino acid analogues. This reprogrammed genetic code was used to direct the synthesis of a single peptide containing 10 different unnatural amino acids. This system is compatible with mRNA-display, enabling the synthesis of unnatural peptide libraries of 10(14) unique members for the in vitro selection of functional unnatural molecules. We also show that the chemical space sampled by these libraries can be expanded using mutant aminoacyl-tRNA synthetases for the incorporation of additional unnatural amino acids or by the specific posttranslational chemical derivitization of reactive groups with small molecules. This system represents a first step toward a platform for the synthesis by enzymatic tRNA aminoacylation and ribosomal translation of cyclic peptides comprised of unnatural amino acids that are similar to the nonribosomal peptides.
Collapse
Affiliation(s)
- Kristopher Josephson
- Howard Hughes Medical Institute, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
38
|
Nakata E, Koshi Y, Koga E, Katayama Y, Hamachi I. Double-Modification of Lectin Using Two Distinct Chemistries for Fluorescent Ratiometric Sensing and Imaging Saccharides in Test Tube or in Cell. J Am Chem Soc 2005; 127:13253-61. [PMID: 16173755 DOI: 10.1021/ja052731a] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The site-selective incorporation of two different fluorophores into a naturally occurring protein (lectin, a sugar-binding protein) has been successfully carried out using two distinct orthogonal chemical methods. By post-photoaffinity labeling modification, Con A, a glucose- and mannose-selective lectin, was modified with fluorescein in the proximity of the sugar binding site (Tyr100 site), and the controlled acylation reaction provided the site-selective attachment of coumarin at Lys114. In this doubly modified Con A, the fluorescein emission changed upon the binding to the corresponding sugars, such as the glucose or mannose derivatives, whereas the coumarin emission was constant. Thus, the doubly modified Con A fluorescently sensed the glucose- and mannose-rich saccharides in a ratiometric manner while retaining the natural binding selectivity and affinity, regardless of the double modification. On the benefit of the ratiometric fluorescent analysis using two distinct probes, the sugar trimming process of a glycoprotein can be precisely monitored by the engineered Con A. Furthermore, the doubly modified Con A can be used not only for the convenient fluorescent imaging of saccharides localized on a cell surface, such as the MCF-7, a breast cancer cell having rich high-mannose branch, but also for the ratiometric fluorescent sensing of the glucose concentration inside HepG2 cells. These results demonstrated that the semisynthetic lectin modified doubly by two distinct chemistries is superior to the singly modified one in function, and thus, it may be potentially useful in cell, as well as in test tube.
Collapse
Affiliation(s)
- Eiji Nakata
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
Posttranslational modifications are a fundamental mechanism for the regulation of cellular physiology and function. A recent paper by Zhang et al. provides a novel strategy for the generation of homogeneous glycoproteins. The ability to install covalent modifications site-specifically into proteins holds tremendous promise for deciphering the role of posttranslational modifications and has exciting implications for the development of protein therapeutics.
Collapse
Affiliation(s)
- Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
41
|
Klarmann GJ, Eisenhauer BM, Zhang Y, Sitaraman K, Chatterjee DK, Hecht SM, Le Grice SFJ. Site- and subunit-specific incorporation of unnatural amino acids into HIV-1 reverse transcriptase. Protein Expr Purif 2004; 38:37-44. [PMID: 15477080 DOI: 10.1016/j.pep.2004.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/14/2004] [Indexed: 11/24/2022]
Abstract
A highly efficient cell-free translation system has been combined with suppressor tRNA technology to substitute nor-Tyr and 3-fluoro-Tyr in place of Tyr183 at the DNA polymerase active site of p66 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT). Supplementing the wild-type HIV-1 p51 RT subunit into this translation system permitted reconstitution of the biologically relevant p66/p51 heterodimer harboring Tyr analogs exclusively on the catalytically competent p66 subunit. Addition of an affinity tag at the p66 C-terminus allowed rapid, one-step purification of reconstituted and selectively mutated heterodimer HIV-1 RT via strep-Tactin-agarose affinity chromatography. The purified enzyme was demonstrated to be free of contaminating nucleases, allowing characterization of the DNA polymerase and ribonuclease H activities associated with HIV-1 RT. Preliminary characterization of HIV-1 RT(nor-Tyr) and HIV-1 RT(m-fluoro-Tyr) is presented. The success of this strategy will facilitate detailed molecular analysis of structurally and catalytically critical amino acids via their replacement with closely related, unnatural analogs.
Collapse
Affiliation(s)
- George J Klarmann
- HIV Drug Resistance Program, National Cancer Institute-Frederick, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Köhrer C, Yoo JH, Bennett M, Schaack J, RajBhandary UL. A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. ACTA ACUST UNITED AC 2004; 10:1095-102. [PMID: 14652077 DOI: 10.1016/j.chembiol.2003.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The site-specific insertion of an unnatural amino acid into proteins in vivo via nonsense suppression has resulted in major advances in recent years. The ability to incorporate two different unnatural amino acids in vivo would greatly increase the scope and impact of unnatural amino acid mutagenesis. Here, we show the concomitant suppression of an amber and an ochre codon in a single mRNA in mammalian cells by importing a mixture of aminoacylated amber and ochre suppressor tRNAs. This result provides a possible approach to site-specific insertion of two different unnatural amino acids into any protein of interest in mammalian cells. To our knowledge, this result also represents the only demonstration of concomitant suppression of two different termination codons in a single gene in vivo.
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
43
|
Murakami H, Kourouklis D, Suga H. Using a solid-phase ribozyme aminoacylation system to reprogram the genetic code. ACTA ACUST UNITED AC 2004; 10:1077-84. [PMID: 14652075 DOI: 10.1016/j.chembiol.2003.10.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here, we report a simple and economical tRNA aminoacylation system based upon a resin-immobilized ribozyme, referred to as Flexiresin. This catalytic system features a broad spectrum of activities toward various phenylalanine (Phe) analogs and suppressor tRNAs. Most importantly, it allows users to perform the tRNA aminoacylation reaction and isolate the aminoacylated tRNAs in a few hours. We coupled the Flexiresin system with a high-performance cell-free translation system and demonstrated protein mutagenesis with seven different Phe analogs in parallel. Thus, the technology developed herein provides a new tool that significantly simplifies the procedures for the synthesis of aminoacyl-tRNAs charged with nonnatural amino acids, which makes the nonnatural amino acid mutagenesis of proteins more user accessible.
Collapse
Affiliation(s)
- Hiroshi Murakami
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | | | |
Collapse
|
44
|
Abstract
Methods for engineering proteins that contain non-canonical amino acids have advanced rapidly in the past few years. Novel amino acids can be introduced into recombinant proteins in either a residue-specific or site-specific fashion. The methods are complementary: residue-specific incorporation allows engineering of the overall physical and chemical behavior of proteins and protein-like macromolecules, whereas site-specific methods allow mechanistic questions to be probed in atomistic detail. Challenges remain in the engineering of the translational apparatus and in the design of schemes that can be used to encode both canonical and non-canonical amino acids.
Collapse
Affiliation(s)
- A James Link
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
45
|
Strømgaard A, Jensen AA, Strømgaard K. Site-Specific Incorporation of Unnatural Amino Acids into Proteins. Chembiochem 2004; 5:909-16. [PMID: 15239046 DOI: 10.1002/cbic.200400060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anne Strømgaard
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
46
|
Mamaev S, Olejnik J, Olejnik EK, Rothschild KJ. Cell-free N-terminal protein labeling using initiator suppressor tRNA. Anal Biochem 2004; 326:25-32. [PMID: 14769332 DOI: 10.1016/j.ab.2003.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Indexed: 11/17/2022]
Abstract
A highly efficient method for the introduction of fluorophores and other markers at the N terminus of proteins produced in a cell-free extract has been developed. The method utilizes an amber (CUA) initiator suppressor tRNA chemically aminoacylated with a fluorophore-amino acid conjugate which is introduced into an Escherichia coli S30 cell-free translation system. The DNA template contains a complementary amber (UAG) codon instead of the normal initiation (AUG) codon. Using this approach, the fluorophore BODIPY-F1 (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a- diaza-s-indacene-3-propionic acid) has been incorporated at the N terminus of several model proteins. The specific labeling achieved (27-67%) using this approach is much higher than that of wild-type tRNAs. Several potential biophysical and biotechnological applications of this new technology are described.
Collapse
Affiliation(s)
- Sergey Mamaev
- AmberGen, Inc., 1106 Commonwealth Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
47
|
Excited state properties of IrIII(phpy)2(naphthylalaninate) with phpyH = 2-phenylpyridine. J Photochem Photobiol A Chem 2004. [DOI: 10.1016/s1010-6030(03)00267-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Abstract
A mutant yeast phenylalanine transfer RNA (ytRNAPheAAA) containing a modified (AAA) anticodon was generated to explore the feasibility of breaking the degeneracy of the genetic code in Escherichia coli. By using an E. coli strain co-transformed with ytRNAPheAAA and a mutant yeast phenylalanyl-tRNA synthetase, we demonstrate efficient replacement of phenylalanine (Phe) by L-3-(2-naphthyl)alanine (Nal) at UUU, but not at UUC codons.
Collapse
Affiliation(s)
- Inchan Kwon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
49
|
Beene DL, Dougherty DA, Lester HA. Unnatural amino acid mutagenesis in mapping ion channel function. Curr Opin Neurobiol 2003; 13:264-70. [PMID: 12850209 DOI: 10.1016/s0959-4388(03)00068-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unnatural amino acid mutagenesis makes possible the site-specific incorporation of synthetic amino acids, enabling detailed structure-function studies as well as the incorporation of biophysical probes. This method has been adapted for use with heterologous expression in Xenopus oocytes, allowing experiments on ion channels.
Collapse
Affiliation(s)
- Darren L Beene
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
50
|
Forster AC, Tan Z, Nalam MNL, Lin H, Qu H, Cornish VW, Blacklow SC. Programming peptidomimetic syntheses by translating genetic codes designed de novo. Proc Natl Acad Sci U S A 2003; 100:6353-7. [PMID: 12754376 PMCID: PMC164450 DOI: 10.1073/pnas.1132122100] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2003] [Indexed: 11/18/2022] Open
Abstract
Although the universal genetic code exhibits only minor variations in nature, Francis Crick proposed in 1955 that "the adaptor hypothesis allows one to construct, in theory, codes of bewildering variety." The existing code has been expanded to enable incorporation of a variety of unnatural amino acids at one or two nonadjacent sites within a protein by using nonsense or frameshift suppressor aminoacyl-tRNAs (aa-tRNAs) as adaptors. However, the suppressor strategy is inherently limited by compatibility with only a small subset of codons, by the ways such codons can be combined, and by variation in the efficiency of incorporation. Here, by preventing competing reactions with aa-tRNA synthetases, aa-tRNAs, and release factors during translation and by using nonsuppressor aa-tRNA substrates, we realize a potentially generalizable approach for template-encoded polymer synthesis that unmasks the substantially broader versatility of the core translation apparatus as a catalyst. We show that several adjacent, arbitrarily chosen sense codons can be completely reassigned to various unnatural amino acids according to de novo genetic codes by translating mRNAs into specific peptide analog polymers (peptidomimetics). Unnatural aa-tRNA substrates do not uniformly function as well as natural substrates, revealing important recognition elements for the translation apparatus. Genetic programming of peptidomimetic synthesis should facilitate mechanistic studies of translation and may ultimately enable the directed evolution of small molecules with desirable catalytic or pharmacological properties.
Collapse
Affiliation(s)
- Anthony C Forster
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|