1
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Paramagnetic NMR Spectroscopy Is a Tool to Address Reactivity, Structure, and Protein–Protein Interactions of Metalloproteins: The Case of Iron–Sulfur Proteins. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of cellular machineries responsible for the iron–sulfur (Fe–S) cluster biogenesis has led to the identification of a large number of proteins, whose importance for life is documented by an increasing number of diseases linked to them. The labile nature of Fe–S clusters and the transient protein–protein interactions, occurring during the various steps of the maturation process, make their structural characterization in solution particularly difficult. Paramagnetic nuclear magnetic resonance (NMR) has been used for decades to characterize chemical composition, magnetic coupling, and the electronic structure of Fe–S clusters in proteins; it represents, therefore, a powerful tool to study the protein–protein interaction networks of proteins involving into iron–sulfur cluster biogenesis. The optimization of the various NMR experiments with respect to the hyperfine interaction will be summarized here in the form of a protocol; recently developed experiments for measuring longitudinal and transverse nuclear relaxation rates in highly paramagnetic systems will be also reviewed. Finally, we will address the use of extrinsic paramagnetic centers covalently bound to diamagnetic proteins, which contributed over the last twenty years to promote the applications of paramagnetic NMR well beyond the structural biology of metalloproteins.
Collapse
|
3
|
Mirts EN, Dikanov SA, Jose A, Solomon EI, Lu Y. A Binuclear Cu A Center Designed in an All α-Helical Protein Scaffold. J Am Chem Soc 2020; 142:13779-13794. [PMID: 32662996 DOI: 10.1021/jacs.0c04226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The primary and secondary coordination spheres of metal binding sites in metalloproteins have been investigated extensively, leading to the creation of high-performing functional metalloproteins; however, the impact of the overall structure of the protein scaffold on the unique properties of metalloproteins has rarely been studied. A primary example is the binuclear CuA center, an electron transfer cupredoxin domain of photosynthetic and respiratory complexes and, recently, a protein coregulated with particulate methane and ammonia monooxygenases. The redox potential, Cu-Cu spectroscopic features, and a valence delocalized state of CuA are difficult to reproduce in synthetic models, and every artificial protein CuA center to-date has used a modified cupredoxin. Here, we present a fully functional CuA center designed in a structurally nonhomologous protein, cytochrome c peroxidase (CcP), by only two mutations (CuACcP). We demonstrate with UV-visible absorption, resonance Raman, and magnetic circular dichroism spectroscopy that CuACcP is valence delocalized. Continuous wave and pulsed (HYSCORE) X-band EPR show it has a highly compact gz area and small Az hyperfine principal value with g and A tensors that resemble axially perturbed CuA. Stopped-flow kinetics found that CuA formation proceeds through a single T2Cu intermediate. The reduction potential of CuACcP is comparable to native CuA and can transfer electrons to a physiological redox partner. We built a structural model of the designed Cu binding site from extended X-ray absorption fine structure spectroscopy and validated it by mutation of coordinating Cys and His residues, revealing that a triad of residues (R48C, W51C, and His52) rigidly arranged on one α-helix is responsible for chelating the first Cu(II) and that His175 stabilizes the binuclear complex by rearrangement of the CcP heme-coordinating helix. This design is a demonstration that a highly conserved protein fold is not uniquely necessary to induce certain characteristic physical and chemical properties in a metal redox center.
Collapse
Affiliation(s)
- Evan N Mirts
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anex Jose
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Yu SS, Li JJ, Cui C, Tian S, Chen JJ, Yu HQ, Hou C, Nilges MJ, Lu Y. Structural Basis for a Quadratic Relationship between Electronic Absorption and Electronic Paramagnetic Resonance Parameters of Type 1 Copper Proteins. Inorg Chem 2020; 59:10620-10627. [PMID: 32689800 DOI: 10.1021/acs.inorgchem.0c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type 1 copper (T1Cu) proteins play important roles in electron transfer in biology, largely due to the unique structure of the T1Cu center, which is reflected by its spectroscopic properties. Previous reports have suggested a correlation between a high ratio of electronic absorbance at ∼450 nm to that at ∼600 nm (R = A450/A600) and a large copper(II) hyperfine coupling in the z direction (Az) in electron paramagnetic resonance (EPR). However, this correlation does not have a clear physical meaning, nor does it hold for many proteins with a perturbed T1Cu center. To address this issue, a new parameter of R' [A450/(A450 + A600)] with a better physical meaning of a fractional SCys pseudo-σ to Cu(II) charge transfer transition intensity is defined and a quadratic relationship between R' and Az is found on the basis of a comprehensive analysis of ultraviolet-visible absorption, EPR, and structural parameters of T1Cu proteins. We are able to find good correlations between R' and the displacement of copper from the trigonal plane defined by the His2Cys ligands and the angle between the NHis1-Cu-NHis2 plane and the SCys-Cu-axial ligand plane, providing a structural basis for the observed correlation. These findings and analyses provide a new framework for a deeper understanding of the spectroscopic and electronic properties of T1Cu proteins, which may allow better design and applications of this important class of proteins for redox and electron transfer functions.
Collapse
Affiliation(s)
- Sheng-Song Yu
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jun-Jie Li
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chang Cui
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jie-Jie Chen
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Han-Qing Yu
- Department of Applied Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Changjun Hou
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Mark J Nilges
- School of Chemical Sciences Electron Paramagnetic Resonance Lab, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Morgada MN, Llases ME, Giannini E, Castro MA, Alzari PM, Murgida DH, Lisa MN, Vila AJ. Unexpected electron spin density on the axial methionine ligand in Cu A suggests its involvement in electron pathways. Chem Commun (Camb) 2020; 56:1223-1226. [PMID: 31897463 DOI: 10.1039/c9cc08883k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CuA center is a paradigm for the study of long-range biological electron transfer. This metal center is an essential cofactor for terminal oxidases like cytochrome c oxidase, the enzymatic complex responsible for cellular respiration in eukaryotes and in most bacteria. CuA acts as an electron hub by transferring electrons from reduced cytochrome c to the catalytic site of the enzyme where dioxygen reduction takes place. Different electron transfer pathways have been proposed involving a weak axial methionine ligand residue, conserved in all CuA sites. This hypothesis has been challenged by theoretical calculations indicating the lack of electron spin density in this ligand. Here we report an NMR study with selectively labeled methionine in a native CuA. NMR spectroscopy discloses the presence of net electron spin density in the methionine axial ligand in the two alternative ground states of this metal center. Similar spin delocalization observed on two second sphere mutants further supports this evidence. These data provide a novel view of the electronic structure of CuA centers and support previously neglected electron transfer pathways.
Collapse
Affiliation(s)
- Marcos N Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ross MO, Fisher OS, Morgada MN, Krzyaniak MD, Wasielewski MR, Vila AJ, Hoffman BM, Rosenzweig AC. Formation and Electronic Structure of an Atypical Cu A Site. J Am Chem Soc 2019; 141:4678-4686. [PMID: 30807125 PMCID: PMC6953997 DOI: 10.1021/jacs.8b13610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PmoD, a recently discovered protein from methane-oxidizing bacteria, forms a homodimer with a dicopper CuA center at the dimer interface. Although the optical and electron paramagnetic resonance (EPR) spectroscopic signatures of the PmoD CuA bear similarities to those of canonical CuA sites, there are also some puzzling differences. Here we have characterized the rapid formation (seconds) and slow decay (hours) of this homodimeric CuA site to two mononuclear Cu2+ sites, as well as its electronic and geometric structure, using stopped-flow optical and advanced paramagnetic resonance spectroscopies. PmoD CuA formation occurs rapidly and involves a short-lived intermediate with a λmax of 360 nm. Unlike other CuA sites, the PmoD CuA is unstable, decaying to two type 2 Cu2+ centers. Surprisingly, NMR data indicate that the PmoD CuA has a pure σu* ground state rather than the typical equilibrium between σu* and πu of all other CuA proteins. EPR, ENDOR, ESEEM, and HYSCORE data indicate the presence of two histidine and two cysteine ligands coordinating the CuA core in a highly symmetrical fashion. This report significantly expands the diversity and understanding of known CuA sites.
Collapse
Affiliation(s)
- Matthew O. Ross
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Oriana S. Fisher
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Marcos N. Morgada
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Matthew D. Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Brian M. Hoffman
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Amy C. Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| |
Collapse
|
7
|
Olloqui-Sariego JL, Márquez I, Frutos-Beltrán E, Díaz-Moreno I, De la Rosa MA, Calvente JJ, Andreu R, Díaz-Quintana A. Key Role of the Local Hydrophobicity in the East Patch of Plastocyanins on Their Thermal Stability and Redox Properties. ACS OMEGA 2018; 3:11447-11454. [PMID: 31459248 PMCID: PMC6645426 DOI: 10.1021/acsomega.8b01612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/06/2018] [Indexed: 06/10/2023]
Abstract
Understanding the molecular basis of the thermal stability and functionality of redox proteins has important practical applications. Here, we show a distinct thermal dependence of the spectroscopic and electrochemical properties of two plastocyanins from the thermophilic cyanobacterium Phormidium laminosum and their mesophilic counterpart from Synechocystis sp. PCC 6803, despite the similarity of their molecular structures. To explore the origin of these differences, we have mimicked the local hydrophobicity in the east patch of the thermophilic protein by replacing a valine of the mesophilic plastocyanin by isoleucine. Interestingly, the resulting mutant approaches the thermal stability, redox thermodynamics, and dynamic coupling of the flexible site motions of the thermophilic protein, indicating the existence of a close connection between the hydrophobic packing of the east patch region of plastocyanin and the functional control and stability of the oxidized and reduced forms of the protein.
Collapse
Affiliation(s)
- José Luis Olloqui-Sariego
- Departamento
de Química Física, Universidad
de Sevilla, c/ Profesor García González, 1, 41012 Sevilla, Spain
| | - Inmaculada Márquez
- Departamento
de Química Física, Universidad
de Sevilla, c/ Profesor García González, 1, 41012 Sevilla, Spain
| | - Estrella Frutos-Beltrán
- Instituto
de Investigaciones Químicas, cicCartuja, Universidad de Sevilla y CSIC, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Irene Díaz-Moreno
- Instituto
de Investigaciones Químicas, cicCartuja, Universidad de Sevilla y CSIC, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Miguel A. De la Rosa
- Instituto
de Investigaciones Químicas, cicCartuja, Universidad de Sevilla y CSIC, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan José Calvente
- Departamento
de Química Física, Universidad
de Sevilla, c/ Profesor García González, 1, 41012 Sevilla, Spain
| | - Rafael Andreu
- Departamento
de Química Física, Universidad
de Sevilla, c/ Profesor García González, 1, 41012 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Instituto
de Investigaciones Químicas, cicCartuja, Universidad de Sevilla y CSIC, Avd. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
8
|
Espinoza-Cara A, Zitare U, Alvarez-Paggi D, Klinke S, Otero LH, Murgida DH, Vila AJ. Engineering a bifunctional copper site in the cupredoxin fold by loop-directed mutagenesis. Chem Sci 2018; 9:6692-6702. [PMID: 30310603 PMCID: PMC6115626 DOI: 10.1039/c8sc01444b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/27/2018] [Indexed: 12/30/2022] Open
Abstract
Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and CuA sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a CuA scaffold with unique electronic structures and functional features. A copper-thioether axial bond shorter than the copper-thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature.
Collapse
Affiliation(s)
- Andrés Espinoza-Cara
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) , Rosario , Argentina .
- Área Biofísica , Departamento de Química Biológica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Rosario , Argentina
| | - Ulises Zitare
- Departamento de Química Inorgánica , Analítica y Química Física-INQUIMAE , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires-CONICET , Buenos Aires , Argentina
| | - Damián Alvarez-Paggi
- Departamento de Química Inorgánica , Analítica y Química Física-INQUIMAE , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires-CONICET , Buenos Aires , Argentina
- Fundación Instituto Leloir , IIBBA-CONICET , Buenos Aires , Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir , IIBBA-CONICET , Buenos Aires , Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM. , Buenos Aires , Argentina
| | - Lisandro H Otero
- Fundación Instituto Leloir , IIBBA-CONICET , Buenos Aires , Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM. , Buenos Aires , Argentina
| | - Daniel H Murgida
- Departamento de Química Inorgánica , Analítica y Química Física-INQUIMAE , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires-CONICET , Buenos Aires , Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) , Rosario , Argentina .
- Área Biofísica , Departamento de Química Biológica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Rosario , Argentina
- Plataforma Argentina de Biología Estructural y Metabolómica PLABEM. , Buenos Aires , Argentina
| |
Collapse
|
9
|
Bertini I, Felli IC, Luchinat C, Parigi G, Pierattelli R. Towards a protocol for solution structure determination of copper(II) proteins: the case of Cu(II)Zn(II) superoxide dismutase. Chembiochem 2016; 8:1422-9. [PMID: 17583552 DOI: 10.1002/cbic.200700006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have developed an optimized protocol to solve the solution structure of copper(II) proteins. After assignment, proton-proton NOEs are used for the shell where 1H spectra are conveniently observed. In a shell closer to the metal ion, 13C NMR spectra with band-selective homonuclear decoupling provide the assignment of all nuclei except for those of the metal ligands. A convenient method for the measurement of 13C longitudinal-relaxation rates (R1) of carbonyls and carboxylate moieties is proposed. 1H NOEs and 1H and 13C R1 data are sufficient to produce a good/reasonable solution structure, as demonstrated for a monomeric species of superoxide dismutase, a 153-residue protein.
Collapse
Affiliation(s)
- Ivano Bertini
- CERM and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | |
Collapse
|
10
|
Pérez-Henarejos SA, Alcaraz LA, Donaire A. Blue Copper Proteins: A rigid machine for efficient electron transfer, a flexible device for metal uptake. Arch Biochem Biophys 2015; 584:134-48. [DOI: 10.1016/j.abb.2015.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 08/24/2015] [Accepted: 08/28/2015] [Indexed: 10/23/2022]
|
11
|
Roger M, Biaso F, Castelle CJ, Bauzan M, Chaspoul F, Lojou E, Sciara G, Caffarri S, Giudici-Orticoni MT, Ilbert M. Spectroscopic characterization of a green copper site in a single-domain cupredoxin. PLoS One 2014; 9:e98941. [PMID: 24932914 PMCID: PMC4059628 DOI: 10.1371/journal.pone.0098941] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022] Open
Abstract
Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.
Collapse
Affiliation(s)
- Magali Roger
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Frédéric Biaso
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Cindy J. Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, California, United States of America
| | - Marielle Bauzan
- Unité de Fermentation, Institut de Microbiologie de la Méditerranée, CNRS-FR 3479, Aix Marseille Université, Marseille, France
| | - Florence Chaspoul
- Unité Chimie Physique, Prévention des Risques et Nuisances Technologiques, Faculté de Pharmacie, CNRS-UMR 7263, Aix-Marseille Université, Marseille, France
| | - Elisabeth Lojou
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Giuliano Sciara
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Stefano Caffarri
- Unité de Biologie Végétale et Microbiologie Environnementales, CNRS-UMR 7265, CEA, Aix Marseille Université, Marseille, France
| | - Marie-Thérèse Giudici-Orticoni
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
| | - Marianne Ilbert
- Unité de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS-UMR7281, Aix-Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|
12
|
Argüello JM, Raimunda D, Padilla-Benavides T. Mechanisms of copper homeostasis in bacteria. Front Cell Infect Microbiol 2013; 3:73. [PMID: 24205499 PMCID: PMC3817396 DOI: 10.3389/fcimb.2013.00073] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/17/2013] [Indexed: 01/27/2023] Open
Abstract
Copper is an important micronutrient required as a redox co-factor in the catalytic centers of enzymes. However, free copper is a potential hazard because of its high chemical reactivity. Consequently, organisms exert a tight control on Cu(+) transport (entry-exit) and traffic through different compartments, ensuring the homeostasis required for cuproprotein synthesis and prevention of toxic effects. Recent studies based on biochemical, bioinformatics, and metalloproteomics approaches, reveal a highly regulated system of transcriptional regulators, soluble chaperones, membrane transporters, and target cuproproteins distributed in the various bacterial compartments. As a result, new questions have emerged regarding the diversity and apparent redundancies of these components, their irregular presence in different organisms, functional interactions, and resulting system architectures.
Collapse
Affiliation(s)
- José M Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute Worcester, MA, USA
| | | | | |
Collapse
|
13
|
Reger DL, Pascui AE, Pellechia PJ, Ozarowski A. NMR Investigations of Dinuclear, Single-Anion Bridged Copper(II) Metallacycles: Structure and Antiferromagnetic Behavior in Solution. Inorg Chem 2013; 52:12741-8. [DOI: 10.1021/ic402016m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Daniel L. Reger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Andrea E. Pascui
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Perry J. Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Andrew Ozarowski
- National
High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| |
Collapse
|
14
|
Raimunda D, Padilla-Benavides T, Vogt S, Boutigny S, Tomkinson KN, Finney LA, Argüello JM. Periplasmic response upon disruption of transmembrane Cu transport in Pseudomonas aeruginosa. Metallomics 2013; 5:144-51. [PMID: 23354150 DOI: 10.1039/c2mt20191g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, has two transmembrane Cu(+) transport ATPases, CopA1 and CopA2. Both proteins export cytoplasmic Cu(+) into the periplasm and mutation of either gene leads to attenuation of virulence. CopA1 is required for maintaining cytoplasmic copper levels, while CopA2 provides copper for cytochrome c oxidase assembly. We hypothesized that transported Cu(+) ions would be directed to their destination via specific periplasmic partners and disruption of transport should affect the periplasmic copper homeostasis. Supporting this, mutation of either ATPase gene led to large increments in periplasmic cuproprotein levels. Toward identifying the proteins participating in this cellular response the periplasmic metalloproteome was resolved in non-denaturing bidimensional gel electrophoresis, followed by X-ray fluorescence visualization and identification by mass-spectrometry. A single spot containing the electron shuttle protein azurin was responsible for the observed increments in cuproprotein contents. In agreement, lack of either Cu(+)-ATPase induced an increase in azu transcription. This is associated with an increase in the expression of anr and rpoS oxidative stress response regulators, rather than cueR, a copper sensing regulator. We propose that azurin overexpression and accumulation in the periplasm is part of the cellular response to cytoplasmic oxidative stress in P. aeruginosa.
Collapse
Affiliation(s)
- Daniel Raimunda
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Cacciatore S, Piccioli M, Turano P. Electron self-exchange of cytochrome c measured via13C detected protonless NMR. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424612501404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of protonless 13C′–13C′ EXSY (COCO-EXSY) is proposed here to measure electron self-exchange rates. The experiment is compared to the commonly employed 1H and 15N EXSY experiments using as a reference system human cytochrome c. In COCO-EXSY, the exchange peaks are stronger than in the other experiments with respect to the self peaks and their intensity is less dependent on the choice of the EXSY mixing time. The use of 13C directed detection may be essential for all those cases where T2 relaxation is detrimental, as in the case of proteins containing highly paramagnetic metal centers, or rotating slowly in solution, or where the amide signals are difficult to detect due to chemical or conformational exchange. The proposed experiment has a general applicability and can be used to monitor exchange phenomena different from electron self-exchange.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| | - Mario Piccioli
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry, University of Florence, Via L. Sacconi 6, Sesto, Fiorentino 50019, Italy
| |
Collapse
|
16
|
Choi M, Davidson VL. Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 2011; 3:140-51. [PMID: 21258692 DOI: 10.1039/c0mt00061b] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cupredoxins are small proteins that contain type I copper centers, which are ubiquitous in nature. They function as electron transfer shuttles between proteins. This review of the structure and properties of native cupredoxins, and those modified by site-directed mutagenesis, illustrates how these proteins may have evolved to specifically bind copper, develop recognition sites for specific redox partners, tune redox potential for a particular function, and allow for efficient electron transfer through the protein matrix. This is relevant to the general understanding of the roles of metals in energy metabolism, respiration and photosynthesis.
Collapse
Affiliation(s)
- Moonsung Choi
- Department of Biochemistry, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216-4505, USA
| | | |
Collapse
|
17
|
Lancaster KM, Sproules S, Palmer JH, Richards JH, Gray HB. Outer-sphere effects on reduction potentials of copper sites in proteins: the curious case of high potential type 2 C112D/M121E Pseudomonas aeruginosa azurin. J Am Chem Soc 2011; 132:14590-5. [PMID: 20879734 DOI: 10.1021/ja105731x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Redox and spectroscopic (electronic absorption, multifrequency electron paramagnetic resonance (EPR), and X-ray absorption) properties together with X-ray crystal structures are reported for the type 2 Cu(II) C112D/M121E variant of Pseudomonas aeruginosa azurin. The results suggest that Cu(II) is constrained from interaction with the proximal glutamate; this structural frustration implies a "rack" mechanism for the 290 mV (vs NHE) reduction potential measured at neutral pH. At high pH (∼9), hydrogen bonding in the outer coordination sphere is perturbed to allow axial glutamate ligation to Cu(II), with a decrease in potential to 119 mV. These results highlight the role played by outer-sphere interactions, and the structural constraints they impose, in determining the redox behavior of transition metal protein cofactors.
Collapse
Affiliation(s)
- Kyle M Lancaster
- Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | |
Collapse
|
18
|
Zaballa ME, Ziegler L, Kosman DJ, Vila AJ. NMR study of the exchange coupling in the trinuclear cluster of the multicopper oxidase Fet3p. J Am Chem Soc 2010; 132:11191-6. [PMID: 20698686 DOI: 10.1021/ja1037148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fet3p from Saccharomyces cerevisiae is a multicopper oxidase (MCO) which oxidizes Fe(2+) to Fe(3+). The electronic structure of the different copper centers in this family of enzymes has been extensively studied and discussed for years with a particular focus on the exchange coupling regime in the trinuclear cluster (TNC). Using NMR spectroscopy we have quantified the exchange coupling constant in the type 3 center in a fully metalated oxidase; this value in Fet3p is significantly higher than that reported for proteins containing isolated type 3 centers as tyrosinase. We also provide evidence of exchange coupling between the type 2 and the type 3 Cu(2+) ions, which supports the crystallographic evidence of dioxygen binding to the TNC. This work provides the foundation for the application of NMR to these complex systems.
Collapse
Affiliation(s)
- María-Eugenia Zaballa
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Argentina
| | | | | | | |
Collapse
|
19
|
Clark KM, Yu Y, Marshall NM, Sieracki NA, Nilges MJ, Blackburn NJ, van der Donk WA, Lu Y. Transforming a blue copper into a red copper protein: engineering cysteine and homocysteine into the axial position of azurin using site-directed mutagenesis and expressed protein ligation. J Am Chem Soc 2010; 132:10093-101. [PMID: 20608676 DOI: 10.1021/ja102632p] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interactions of the axial ligand with its blue copper center are known to be important in tuning spectroscopic and redox properties of cupredoxins. While conversion of the blue copper center with a weak axial ligand to a green copper center containing a medium strength axial ligand has been demonstrated in cupredoxins, converting the blue copper center to a red copper center with a strong axial ligand has not been reported. Here we show that replacing Met121 in azurin from Pseudomonas aeruginosa with Cys caused an increased ratio (R(L)) of absorption at 447 nm over that at 621 nm. Whereas no axial Cu-S(Cys121) interaction in Met121Cys was detectable by extended X-ray absorption fine structure (EXAFS) spectroscopy at pH 5, similar to what was observed in native azurin with Met121 as the axial ligand, the Cu-S(Cys121) interaction at 2.74 A is clearly visible at higher pH. Despite the higher R(L) and stronger axial Cys121 interaction with Cu(II) ion, the Met121Cys variant remains largely a type 1 copper protein at low pH (with hyperfine coupling constant A( parallel) = 54 x 10(-4) cm(-1) at pH 4 and 5), or distorted type 1 or green copper protein at high pH (A(parallel) = 87 x 10(-4) cm(-1) at pH 8 and 9), attributable to the relatively long distance between the axial ligand and copper and the constraint placed by the protein scaffold. To shorten the distance between axial ligand and copper, we replaced Met121 with a nonproteinogenic amino acid homocysteine that contains an extra methylene group, resulting in a variant whose spectra (R(L)= 1.5, and A(parallel) = 180 x 10(-4) cm(-1)) and Cu-S(Cys) distance (2.22 A) are very similar to those of the red copper protein nitrosocyanin. Replacing Met121 with Cys or homocysteine resulted in lowering of the reduction potential from 222 mV in the native azurin to 95 +/- 3 mV for Met121Cys azurin and 113 +/- 6 mV for Met121Hcy azurin at pH 7. The results strongly support the "coupled distortion" model that helps explain axial ligand tuning of spectroscopic properties in cupredoxins, and demonstrate the power of using unnatural amino acids to address critical chemical biological questions.
Collapse
Affiliation(s)
- Kevin M Clark
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu KY, Hsieh CC, Horng YC. Mononuclear zinc(II) and mercury(II) complexes of Schiff bases derived from pyrrolealdehyde and cysteamine containing intramolecular NH⋯S hydrogen bonds. J Organomet Chem 2009. [DOI: 10.1016/j.jorganchem.2009.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Abriata LA, Ledesma GN, Pierattelli R, Vila AJ. Electronic structure of the ground and excited states of the Cu(A) site by NMR spectroscopy. J Am Chem Soc 2009; 131:1939-46. [PMID: 19146411 DOI: 10.1021/ja8079669] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic properties of Thermus thermophilus Cu(A) in the oxidized form were studied by (1)H and (13)C NMR spectroscopy. All of the (1)H and (13)C resonances from cysteine and imidazole ligands were observed and assigned in a sequence-specific fashion. The detection of net electron spin density on a peptide moiety is attributed to the presence of a H-bond to a coordinating sulfur atom. This hydrogen bond is conserved in all natural Cu(A) variants and plays an important role for maintaining the electronic structure of the metal site, rendering the two Cys ligands nonequivalent. The anomalous temperature dependence of the chemical shifts is explained by the presence of a low-lying excited state located about 600 cm(-1) above the ground state. The room-temperature shifts can be described as the thermal average of a sigma(u)* ground state and a pi(u) excited state. These results provide a detailed description of the electronic structure of the Cu(A) site at atomic resolution in solution at physiologically relevant temperature.
Collapse
Affiliation(s)
- Luciano A Abriata
- IBR (Instituto de Biologia Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, Argentina
| | | | | | | |
Collapse
|
22
|
Bertini I, Luchinat C, Parigi G, Pierattelli R. Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 2008:3782-90. [PMID: 18629397 DOI: 10.1039/b719526e] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR experiments and tools for the characterization of the structure and dynamics of paramagnetic proteins are presented here. The focus is on the importance of (13)C direct-detection NMR for the assignment of paramagnetic systems in solution, on the information contained in paramagnetic effects observed both in solution and in the solid state, and on novel paramagnetism-based tools for the investigation of conformational heterogeneity in protein-protein complexes or in multi-domain proteins.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, (FI), Italy.
| | | | | | | |
Collapse
|
23
|
Zhang Y, Oldfield E. NMR hyperfine shifts in blue copper proteins: a quantum chemical investigation. J Am Chem Soc 2008; 130:3814-23. [PMID: 18314973 DOI: 10.1021/ja075978b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the results of the first quantum chemical investigations of 1H NMR hyperfine shifts in the blue copper proteins (BCPs): amicyanin, azurin, pseudoazurin, plastocyanin, stellacyanin, and rusticyanin. We find that very large structural models that incorporate extensive hydrogen bond networks, as well as geometry optimization, are required to reproduce the experimental NMR hyperfine shift results, the best theory vs experiment predictions having R2 = 0.94, a slope = 1.01, and a SD = 40.5 ppm (or approximately 4.7% of the overall approximately 860 ppm shift range). We also find interesting correlations between the hyperfine shifts and the bond and ring critical point properties computed using atoms-in-molecules theory, in addition to finding that hyperfine shifts can be well-predicted by using an empirical model, based on the geometry-optimized structures, which in the future should be of use in structure refinement.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
24
|
Worrall JAR, Machczynski MC, Keijser BJF, di Rocco G, Ceola S, Ubbink M, Vijgenboom E, Canters GW. Spectroscopic characterization of a high-potential lipo-cupredoxin found in Streptomyces coelicolor. J Am Chem Soc 2007; 128:14579-89. [PMID: 17090042 DOI: 10.1021/ja064112n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For many streptomycetes, a distinct dependence on the "bioavailability" of copper ions for their morphological development has been reported. Analysis of the Streptomyces coelicolor genome reveals a number of gene products encoding for putative copper-binding proteins. One of these appears as an unusual copper-binding protein with a lipoprotein signal sequence and a cupredoxin-like domain harboring a putative Type-1 copper-binding motif. Cloning of this gene from S. coelicolor and subsequent heterologous expression in Escherichia coli has allowed for a thorough spectroscopic interrogation of this putative copper-binding protein. Optical and electron paramagnetic resonance spectroscopies have confirmed the presence of a "classic" Type-1 copper site with the axial ligand to the copper a methionine. Paramagnetic NMR spectroscopy on both the native Cu(II) form and Co(II)-substituted protein has yielded active-site structural information, which on comparison with that of other cupredoxin active sites reveals metal-ligand interactions most similar to the "classic" Type-1 copper site found in the amicyanin family of cupredoxins. Despite this high structural similarity, the Cu(II)/(I) midpoint potential of the S. coelicolor protein is an unprecedented +605 mV vs normal hydrogen electrode at neutral pH (amicyanin approximately +250 mV), with no active-site protonation of the N-terminal His ligand observed. Suggestions for the physiological role/function of this high-potential cupredoxin are discussed.
Collapse
Affiliation(s)
- Jonathan A R Worrall
- Contribution from the Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cascella M, Cuendet MA, Tavernelli I, Rothlisberger U. Optical Spectra of Cu(II)−Azurin by Hybrid TDDFT-Molecular Dynamics Simulations. J Phys Chem B 2007; 111:10248-52. [PMID: 17676788 DOI: 10.1021/jp071938i] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ground state electronic structure of oxidized azurin from Pseudomonas aeruginosa and its optical response have been investigated by combining hybrid quantum mechanics/molecular mechanics simulations with time-dependent density functional theory. In agreement with experiment, we find that the unpaired electron spin density is mainly localized on the copper ion. The vertical absorption spectrum in the visible range is well reproduced, with the central band centered around 2.1 eV. The anisotropic dipolar field due to the extended alpha-helix polarizes the metal binding site and is responsible for a shift of the absorption bands by +/-0.1-0.2 eV. At 300 K, the bond distances of the copper binding site undergo large fluctuations (approximately 0.3 A). It is crucial to take these thermal fluctuations into account for a faithful description of the optical properties.
Collapse
Affiliation(s)
- Michele Cascella
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), FSB-ISIC-BCH 4109 1015, Lausanne, Switzerland
| | | | | | | |
Collapse
|
26
|
Abstract
Copper-containing nitrite reductases (NiRs) possess type 1 (T1) and type 2 (T2) copper sites and can be either green or blue in color owing to differences at their T1 centers. The active sites of a green and a blue NiR were studied by utilizing their T1CuI/T2CoII and T1CoII/T2CoII-substituted forms. The UV/Vis spectra of these derivatives highlight the similarity of the T2 centers in these enzymes and that T1 site differences are also present in the CoII forms. The paramagnetic NMR spectra of T1CuI/T2CoII enzymes allow hyperfine shifted resonances from the three T2 His ligands to be assigned: these exhibit remarkably similar positions in the spectra of both NiRs, emphasizing the homology of the T2 centers. The addition of nitrite results in subtle alterations in the paramagnetic NMR spectra of the T1CuI/T2CoII forms at pH<7, which indicate a geometry change upon the binding of substrate. Shifted resonances from all of the T1 site ligands have been assigned and the CoII--N(His) interactions are alike, whereas the CbetaH proton resonances of the Cys ligand exhibit subtle chemical shift differences in the blue and green NiRs. The strength of the axial CoII--S(Met) interaction is similar in the two NiRs studied, but the altered conformation of the side chain of this ligand results in a dramatically different chemical shift pattern for the CgammaH protons. This indicates an alteration in the bonding of the axial ligand in these derivatives, which could be influential in the CuII proteins.
Collapse
Affiliation(s)
- Katsuko Sato
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
27
|
Garner DK, Vaughan MD, Hwang HJ, Savelieff MG, Berry SM, Honek JF, Lu Y. Reduction potential tuning of the blue copper center in Pseudomonas aeruginosa azurin by the axial methionine as probed by unnatural amino acids. J Am Chem Soc 2007; 128:15608-17. [PMID: 17147368 DOI: 10.1021/ja062732i] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conserved axial ligand methionine 121 from Pseudomonas aeruginosa azurin (Az) has been replaced by isostructural unnatural amino acid analogues, oxomethionine (OxM), difluoromethionine (DFM), trifluoromethionine (TFM), selenomethionine (SeM), and norleucine (Nle) using expressed protein ligation. The replacements resulted in < 6 nm shifts in the S(Cys)-Cu charge transfer (CT) band in the electronic absorption spectra and < 8 gauss changes in the copper hyperfine coupling constants (AII) in the X-band electron paramagnetic resonance spectra, suggesting that isostructural replacement of Met resulted in minimal structural perturbation of the copper center. The slight blue shifts of the CT band follow the trend of stronger electronegativity of the ligands. This trend is supported by 19F NMR studies of the fluorinated methionine analogues. However, the order of AII differs, suggesting additional factors influencing AII. In contrast to the small changes in the UV-vis and EPR spectra, a large variation of > 227 mV in reduction potential was observed for the series of variants reported here. Additionally, a linear correlation was established between the reduction potentials and hydrophobicity of the variants. Extension of this analysis to other type 1 copper-containing proteins reveals a linear correlation between change in hydrophobicity and change in reduction potential, independent of the protein scaffold, experimental conditions, measurement techniques, and steric modifications. This analysis has also revealed for the first time high and low potential states for type 1 centers, and the difference may be attributable to destabilization of the protein fold by disruption of hydrophobic or hydrogen bonding interactions that stabilize the type 1 center.
Collapse
Affiliation(s)
- Dewain K Garner
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
John M, Headlam MJ, Dixon NE, Otting G. Assignment of paramagnetic (15)N-HSQC spectra by heteronuclear exchange spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2007; 37:43-51. [PMID: 17096205 DOI: 10.1007/s10858-006-9098-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
Paramagnetic metal ions in proteins provide a rich source of structural information, but the resonance assignments required to extract the information can be challenging. Here we demonstrate that paramagnetically shifted (15)N-HSQC cross-peaks can be assigned using N(Z)-exchange spectroscopy under conditions in which the paramagnetic form of the protein is in dynamic equilibrium with its diamagnetic form. Even slow exchange of specifically bound metal ions may be detected within the long lifetime of (15)N longitudinal magnetization of large proteins at high magnetic fields. Alternatively, the exchange can be accelerated using an excess of metal ions. In the resulting exchange spectra, paramagnetic (15)N resonances become visible for residues that are not directly observed in a conventional (15)N-HSQC spectrum due to paramagnetic (1)H(N) broadening. The experiments are illustrated by the 30 kDa lanthanide-binding epsilon186/theta complex of DNA polymerase III in the presence of sub-stoichiometric amounts of Dy(3+) or a mixture of Dy(3+) and La(3+).
Collapse
Affiliation(s)
- Michael John
- Research School of Chemistry, Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
29
|
Díaz-Moreno I, Díaz-Quintana A, Díaz-Moreno S, Subías G, De la Rosa MA. Transient binding of plastocyanin to its physiological redox partners modifies the copper site geometry. FEBS Lett 2006; 580:6187-94. [PMID: 17064694 DOI: 10.1016/j.febslet.2006.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/05/2006] [Accepted: 10/10/2006] [Indexed: 11/21/2022]
Abstract
The transient complexes of plastocyanin with cytochrome f and photosystem I are herein used as excellent model systems to investigate how the metal sites adapt to the changes in the protein matrix in transient complexes that are involved in redox reactions. Thus, both complexes from the cyanobacterium Nostoc sp. PCC 7119 (former Anabaena sp. PCC 7119) have been analysed by X-ray absorption spectroscopy. Our data are consistent with a significant distortion of the trigonal pyramidal geometry of the Cu coordination sphere when plastocyanin binds to cytochrome f, no matter their redox states are. The resulting tetrahedral geometry shows a shortening of the distance between Cu and the S(delta) atom of its ligand Met-97, with respect to the crystallographic structure of free plastocyanin. On the other hand, when plastocyanin binds to photosystem I instead of cytochrome f, the geometric changes are not significant but a displacement in charge distribution around the metal centre can be observed. Noteworthy, the electronic density around the Cu atom increases or decreases when oxidised plastocyanin binds to cytochrome f or photosystem I, respectively, thus indicating that the protein matrix affects the electron transfer between the two partners during their transient interaction.
Collapse
Affiliation(s)
- Irene Díaz-Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla y Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, 41092 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Yanagisawa S, Dennison C. Reduction Potential Tuning at a Type 1 Copper Site Does Not Compromise Electron Transfer Reactivity. J Am Chem Soc 2005; 127:16453-9. [PMID: 16305231 DOI: 10.1021/ja054426v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type 1 (T1) copper sites promote biological electron transfer (ET) and typically possess a weakly coordinated thioether sulfur from an axial Met [Cu(II)-Sdelta approximately 2.6 to 3.3 A] along with the conserved His2Cys equatorial ligands. A strong axial bond [Cu(II)-Oepsilon1 approximately 2.2 A] is sometimes provided by a Gln (as in the stellacyanins), and the axial ligand can be absent (a Val, Leu or Phe in the axial position) as in ceruloplasmin, Fet3p, fungal laccases and some plantacyanins (PLTs). Cucumber basic protein (CBP) is a PLT which has a relatively short Cu(II)-S(Met89) axial bond (2.6 A). The Met89Gln variant of CBP has an electron self-exchange (ESE) rate constant (k(ese), a measure of intrinsic ET reactivity) approximately 7 times lower than that of the wild-type protein. The Met89Val mutation to CBP results in a 2-fold increase in k(ese). As the axial interaction decreases from strong Oepsilon1 of Gln to relatively weak Sdelta of Met to no ligand (Val), ESE reactivity is therefore enhanced by approximately 1 order of magnitude while the reduction potential increases by approximately 350 mV. The variable coordination position at this ubiquitous ET site provides a mechanism for tuning the driving force to optimize ET with the correct partner without significantly compromising intrinsic reactivity. The enhanced reactivity of a three-coordinate T1 copper site will facilitate intramolecular ET in fungal laccases and Fet3p.
Collapse
Affiliation(s)
- Sachiko Yanagisawa
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK
| | | |
Collapse
|
32
|
Alcaraz LA, Donaire A. Rapid binding of copper(I) to folded aporusticyanin. FEBS Lett 2005; 579:5223-6. [PMID: 16165132 DOI: 10.1016/j.febslet.2005.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 11/17/2022]
Abstract
Kinetics of copper uptake in both oxidation states by the folded and unfolded forms of the type 1 copper protein rusticyanin have been studied. The speed of the binding of copper(I) to the folded rusticyanin is fast, and of the same order of magnitude as copper(I) uptake by the unfolded form. Thus, the binding of copper can be subsequent to the protein folding, contrary to previous proposals. Implications for the mechanism of the formation of the active holoprotein in vivo are discussed.
Collapse
Affiliation(s)
- Luis A Alcaraz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández de Elche, Edificio Torregaitán, Avda. de la Universidad, s/n, 03202 Elche Alicante, Spain
| | | |
Collapse
|
33
|
Battistuzzi G, Bellei M, Leonardi A, Pierattelli R, De Candia A, Vila AJ, Sola M. Reduction thermodynamics of the T1 Cu site in plant and fungal laccases. J Biol Inorg Chem 2005; 10:867-73. [PMID: 16231129 DOI: 10.1007/s00775-005-0035-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022]
Abstract
The thermodynamic parameters for reduction of the type-1 (T1) copper site in Rhus vernicifera and Trametes versicolor laccases and for the derivative of the former protein from which the type-2 copper has been selectively removed (T2D) have been determined with UV-vis spectroelectrochemistry. In all cases, the enthalpic term turns out to be the main determinant of the Eo' of the T1 site. Also the difference between the reduction potentials of the two laccases is enthalpy-based and reflects differences in the coordination features of the T1 sites and their protein environment. The T1 sites in native R. vernicifera laccase and its T2D derivative show the same Eo', as a result of compensatory differences in the reduction thermodynamics. This suggests that removal of the type-2 (T2) copper results in modification of the reduction-induced solvent reorganization effects, with no influence in the structure of the multicopper protein site. This conclusion is supported by NMR data recorded on the native, the T2D, and Hg-substituted T1 derivatives of R. vernicifera laccase, which show that the T1 and T2/T3 sites are largely noninteracting.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry-Centro SCS, University of Modena and Reggio Emilia, Via Campi 183, 41100, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Alcaraz LA, Jiménez B, Moratal JM, Donaire A. An NMR view of the unfolding process of rusticyanin: Structural elements that maintain the architecture of a beta-barrel metalloprotein. Protein Sci 2005; 14:1710-22. [PMID: 15987900 PMCID: PMC2253362 DOI: 10.1110/ps.051337505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The unfolding process of the blue copper protein rusticyanin (Rc) as well as its dynamic and D(2)O/H(2)O exchange properties in an incipient unfolded state have been studied by heteronuclear NMR spectroscopy. Titrations of apo, Cu(I), and Cu(II)Rc with guanidinium chloride (GdmCl) show that the copper ion stabilizes the folded species and remains bound in the completely unfolded state. The oxidized state of the copper ion is more efficient than the reduced form in this respect. The long loop of Rc (where the first ligand of the copper ion is located) is one of the most mobile domains of the protein. This region has no defined secondary structure elements and is prone to exchange its amide protons. In contrast, the last loop (including a short alpha-helix) and the last beta-strand (where the other three ligands of the metal ion are located) form the most rigid domain of the protein. The results taken as a whole suggest that the first ligand detaches from the metal ion when the protein unfolds, while the other three ligands remain bound to it. The implications of these findings for the biological folding process of Rc are also discussed.
Collapse
Affiliation(s)
- Luis A Alcaraz
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Edificio Torregaitán, Elche (Alicante), Spain
| | | | | | | |
Collapse
|
35
|
Yamaguchi K, Kataoka K, Kobayashi M, Itoh K, Fukui A, Suzuki S. Characterization of Two Type 1 Cu Sites of Hyphomicrobium denitrificans Nitrite Reductase: A New Class of Copper-Containing Nitrite Reductases. Biochemistry 2004; 43:14180-8. [PMID: 15518568 DOI: 10.1021/bi0492657] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report (1) the amino acid sequence of Hyphomicrobium denitrificans nitrite reductase (HdNIR), containing two type 1 Cu sites and one type 2 Cu site; (2) the expression and preparation of wild-type HdNIR and two mutants replacing the Cys ligand of each type 1 Cu with Ala; and (3) their spectroscopic and functional characterization. The open-reading frame of 50-kDa HdNIR is composed of the 15-kDa N-terminal domain having a type 1 Cu-binding motif like cupredoxins and the 35-kDa C-terminal domain having type 1 Cu-binding and type 2 Cu-binding motifs such as common nitrite reductases (NIRs). Moreover, the amino acid sequences of the N- and C-terminal domains are homologous to those of plastocyanins and NIRs, respectively. The point mutation of the Cys ligand of each type 1 Cu with Ala gives two mutants, C114A and C260A, possessing one type 1 Cu and one type 2 Cu. The spectroscopic data of C114A reveal that the C-terminal NIR-like domain has the green type 1 Cu (type 1 Cu(C)), showing two intense absorption peaks at 455 (epsilon = 2600 M(-1) cm(-1)) and 600 nm (epsilon = 2800 M(-1) cm(-1)) and a rhombic EPR signal like those of the green type 1 Cu of Achromobacter cycloclastes NIR (AcNlR). The spectroscopic data of C260A elucidate that the N-terminal Pc-like domain in HdNIR contains the blue type 1 Cu (type 1 Cu(N)), exhibiting an intense absorption band at 605 nm (epsilon = 2900 M(-1) cm(-1)) and an axial EPR signal like those of the blue type 1 Cu of Alcaligenes xylosoxidans NIR (AxNIR). The sum of the visible absorption or EPR spectra of C114A and C260A is almost equal to the corresponding spectrum of wild-type HdNIR. The spectroscopic characterization of the type 1 Cu indicates that the geometries of the type 1 Cu(N) and Cu(C) sites are slightly distorted tetrahedral (or axially elongated bipyramidal) and flattened tetrahedral, respectively. In the cyclic voltammograms, the midpoint potentials (E(1/2)), probably because of the type 1 Cu ions of C114A and C260A, are observed at +321 and +336 mV versus normal hydrogen electrode (NHE) at pH 7.0, respectively. These values, which are close to each other, are more positive than those ( approximately +0.24-0.28 V at pH 7.0) of the type 1 Cu sites of AcNIR and AxNIR. The electron-accepting capability of C114A from cytochrome c(550) is almost similar to that of wild-type HdNIR, whereas that of C260A is very low. This suggests that the type 1 Cu(C) in the C-terminal domain is essential for the enzyme functions of HdNIR.
Collapse
Affiliation(s)
- Kazuya Yamaguchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Li H, Webb SP, Ivanic J, Jensen JH. Determinants of the Relative Reduction Potentials of Type-1 Copper Sites in Proteins. J Am Chem Soc 2004; 126:8010-9. [PMID: 15212551 DOI: 10.1021/ja049345y] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relative Cu(2+)/Cu(+) reduction potentials of six type-1 copper sites (cucumber stellacyanin, P. aeruginosa azurin, poplar plastocyanin, C. cinereus laccase, T. ferrooxidans rusticyanin, and human ceruloplasmin), which lie in a reduction potential range from 260 mV to over 1000 mV, have been studied by quantum mechanical calculations. The range and relative orderings of the reduction potentials are reproduced very well compared to experimental values. The study suggests that the main structural determinants of the relative reduction potentials of the blue copper sites are located within 6 A of the Cu atoms. Further analysis suggests that the reduction potential differences of type-1 copper sites are caused by axial ligand interactions, hydrogen bonding to the S(Cys), and protein constraint on the inner sphere ligand orientations. The low reduction potential of cucumber stellacyanin is due mainly to a glutamine ligand at the axial position, rather than a methionine or a hydrophobic residue as in the other proteins. A stronger interaction with a backbone carbonyl group is a prime contributor to the lower reduction potential of P. aeruginosa azurin as compared to poplar plastocyanin, whereas the reverse is true for C. cinereus laccase and T. ferrooxidans rusticyanin. The lack of an axial methonine ligand also contributes significantly to the increased reduction potentials of C. cinereus laccase and human ceruloplasmin. However, in the case of C. cinereus laccase, this increase is attenuated by the presence of only one amide NH hydrogen bond to the S(Cys) rather than two in the other proteins. In human ceruloplasmin the reduction potential is further increased by the structural distortion of the equatorial ligand orientation.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
37
|
Bermel W, Bertini I, Felli IC, Kümmerle R, Pierattelli R. 13C direct detection experiments on the paramagnetic oxidized monomeric copper, zinc superoxide dismutase. J Am Chem Soc 2004; 125:16423-9. [PMID: 14692785 DOI: 10.1021/ja037676p] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, the use of 13C direct detection has been pursued in 2D experiments (13C-13C COSY, 13C-13C COCAMQ, 13C-13C NOESY) to detect broad lines in nuclear magnetic resonance spectra of paramagnetic metalloproteins. The sample is a monomeric oxidized copper, zinc superoxide dismutase. Thanks to direct detection probeheads, cryogenic technology, and implementation of 13C band-selective homodecoupling, many broadened signals were detected. Proton signals for the same residues escaped detection in 1H and 1H-15N HSQC experiments because of the broadening. Only the 13C signals which experience large contact coupling escaped detection, i.e., the 13C nuclei of the metal coordinated histidines. Otherwise, nuclei as close to copper(II) as 4 A can be detected. Paramagnetic-based restraints can in principle be used for solution structure determination of paramagnetic metalloproteins and in copper(II) proteins in particular. The present study is significant also for the study of large diamagnetic proteins for which proton relaxation makes proton-based spectroscopy not adequate.
Collapse
|
38
|
Monleón D, Ribes F, Jiménez HR, Moratal JM, Celda B. NMR and homology modeling studies of copper(II)-halocyanin from Natronobacterium pharaonis bacteria. Inorganica Chim Acta 2004. [DOI: 10.1016/j.ica.2003.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Dennison C, Harrison MD. The Active-Site Structure of Umecyanin, the Stellacyanin from Horseradish Roots. J Am Chem Soc 2004; 126:2481-9. [PMID: 14982457 DOI: 10.1021/ja0375378] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type 1 copper sites of cupredoxins typically have a His(2)Cys equatorial ligand set with a weakly interacting axial Met, giving a distorted tetrahedral geometry. Natural variations to this coordination environment are known, and we have utilized paramagnetic (1)H NMR spectroscopy to study the active-site structure of umecyanin (UMC), a stellacyanin with an axial Gln ligand. The assigned spectra of the Cu(II) UMC and its Ni(II) derivative [Ni(II) UMC] demonstrate that this protein has the typical His(2)Cys equatorial coordination observed in other structurally characterized cupredoxins. The NMR spectrum of the Cu(II) protein does not exhibit any paramagnetically shifted resonances from the axial ligand, showing that this residue does not contribute to the singly occupied molecular orbital (SOMO) in Cu(II) UMC. The assigned paramagnetic (1)H NMR spectrum of Ni(II) UMC demonstrates that the axial Gln ligand coordinates in a monodentate fashion via its side-chain amide oxygen atom. The alkaline transition, a feature common to stellacyanins, influences all of the ligating residues but does not alter the coordination mode of the axial Gln ligand in UMC. The structural features which result in Cu(II) UMC possessing a classic type 1 site as compared to the perturbed type 1 center observed for other stellacyanins do not have a significant influence on the paramagnetic (1)H NMR spectra of the Cu(II) or Ni(II) proteins.
Collapse
Affiliation(s)
- Christopher Dennison
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, UK.
| | | |
Collapse
|
40
|
Dennison C, Sato K. Paramagnetic1H NMR Spectrum of the Cobalt(II) Derivative of Spinach Plastocyanin. Inorg Chem 2004; 43:1502-10. [PMID: 14966988 DOI: 10.1021/ic034861v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The native type 1 copper ion of spinach plastocyanin has been substituted with Co(II). The UV/vis spectrum of this derivative is similar to those for other Co(II)-substituted cupredoxins. The paramagnetic 1H NMR spectrum of Co(II) plastocyanin has been completely assigned. A number of similar studies on Co(II) cupredoxins have been published, but this is the first such analysis of a substituted plastocyanin that possesses the archetypal type 1 active site. A truly representative comparison of the available paramagnetic 1H NMR data for Co(II) cupredoxins is now possible. We demonstrate in this work that there is very little difference in the metal-ligand contacts between the Co(II) derivatives of cupredoxins possessing a type 1 axial site (plastocyanin) and those having perturbed (rhombic) spectroscopic features.
Collapse
Affiliation(s)
- Christopher Dennison
- School of Natural Sciences, Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK.
| | | |
Collapse
|
41
|
Jiménez B, Piccioli M, Moratal JM, Donaire A. Backbone dynamics of rusticyanin: the high hydrophobicity and rigidity of this blue copper protein is responsible for its thermodynamic properties. Biochemistry 2003; 42:10396-405. [PMID: 12950166 DOI: 10.1021/bi034692q] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Local dynamics and solute-solvent exchange properties of rusticyanin (Rc) from Thiobacillus ferrooxidans have been studied by applying heteronuclear ((1)H, (15)N) NMR spectroscopy. (15)N relaxation parameters have been determined for the reduced protein, and a model-free analysis has been applied. The high average value of the generalized order parameter, S(2) (0.93), indicates that Rc is very rigid. The analysis of cross correlation rates recorded in both the reduced and the oxidized forms conclusively proves that Rc possesses the same dynamic features in both oxidation states. The accessibility of backbone amide protons to the solvent at different time scales has also been studied by applying specific heteronuclear pulse sequences and by H(2)O/D(2)O exchange experiments. These experiments reveal that rusticyanin is extremely hydrophobic. The first N-35 amino acids, not present in the other BCPs, protect the beta-barrel core from its interaction with the solvent, and thus, this is one of the main factors contributing to the hydrophobicity. Both characteristics (high rigidity and hydrophobicity) are maintained in the metal ion surroundings.
Collapse
Affiliation(s)
- Beatriz Jiménez
- Departamento de Química Inorgánica, Universitat de València, Burjassot, Spain
| | | | | | | |
Collapse
|
42
|
Battistuzzi G, Di Rocco G, Leonardi A, Sola M. 1H NMR of native and azide-inhibited laccase from Rhus vernicifera. J Inorg Biochem 2003; 96:503-6. [PMID: 13678817 DOI: 10.1016/s0162-0134(03)00277-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1H NMR spectra of the fully oxidized Rhus vernicifera laccase and of its 1:1 and 2:1 azide adducts are reported for the first time. These spectra, which are the first so far reported for a multi copper oxidase, contain a number of broad hyperfine-shifted resonances in the high frequency region of the spectrum, which are attributed to the metal binding residues of the mononuclear T1 center. The differences between the patterns of the hyperfine resonances of the free enzyme and its azide derivatives suggest that the alterations in the structural properties of the T3 site induced by the binding of the first azide molecule induce a limited alteration of the spin density distribution over the T1 copper ligands. Overall, these data demonstrate that 1H NMR can be fruitfully applied to characterize the electronic properties of the metal sites of blue oxidases at room temperature.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
43
|
Berry SM, Ralle M, Low DW, Blackburn NJ, Lu Y. Probing the role of axial methionine in the blue copper center of azurin with unnatural amino acids. J Am Chem Soc 2003; 125:8760-8. [PMID: 12862470 DOI: 10.1021/ja029699u] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expressed protein ligation was used to replace the axial methionine of the blue copper protein azurin from Pseudomonas aeruginosa with unnatural amino acids. The highly conserved methionine121 residue was replaced with the isostructural amino acids norleucine (Nle) and selenomethionine (SeM). The UV-visible absorption, X- and Q-band EPR, and Cu EXAFS spectra of the variants are slightly perturbed from WT. All variants have a predominant S(Cys) to Cu(II) charge transfer band around 625 nm and narrow EPR hyperfine splittings. The Se EXAFS of the M121SeM variant is also reported. In contrast to the small spectral changes, the reduction potentials of M121SeM, M121Leu, and M121Nle are 25, 135, and 140 mV, respectively, higher than that of WT azurin. The use of unnatural amino acids allowed deconvolution of different factors affecting the reduction potentials of the blue copper center. A careful analysis of the WT azurin and its variants obtained in this work showed the large reduction potential variation was linearly correlated with the hydrophobicity of the axial ligand side chains. Therefore, hydrophobicity is the dominant factor in tuning the reduction potentials of blue copper centers by axial ligands.
Collapse
Affiliation(s)
- Steven M Berry
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|